A Cosmic Geek, At Sunset

A Cosmic Geek, at Sunset

Parents: Wow look at how beautiful the sunset is. Catherine? Catherine? Why are you looking away?

A Cosmic Geek: Shush I'm trying to figure out what phase the Moon is in. Is that a Waxing Gibbous? Waning??? (Edit: it was a Waxing Gibbous - also there's going to be a Full Moon on May 7th!!!)

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

More Posts from Acosmicgeek and Others

5 years ago

I love that

After my Life of Stars series I’ve been wanting to do one on galaxies. Maybe I will hmmmmm

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Galaxies: Types and morphology

A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas, dust, and dark matter. Galaxies range in size from dwarfs with just a few hundred million (108) stars to giants with one hundred trillion (1014) stars, each orbiting its galaxy’s center of mass.

image

Galaxies come in three main types: ellipticals, spirals, and irregulars. A slightly more extensive description of galaxy types based on their appearance is given by the Hubble sequence. 

image

Since the Hubble sequence is entirely based upon visual morphological type (shape), it may miss certain important characteristics of galaxies such as star formation rate in starburst galaxies and activity in the cores of active galaxies.

Ellipticals

image

The Hubble classification system rates elliptical galaxies on the basis of their ellipticity, ranging from E0, being nearly spherical, up to E7, which is highly elongated. These galaxies have an ellipsoidal profile, giving them an elliptical appearance regardless of the viewing angle. Their appearance shows little structure and they typically have relatively little interstellar matter. Consequently, these galaxies also have a low portion of open clusters and a reduced rate of new star formation. Instead they are dominated by generally older, more evolved stars that are orbiting the common center of gravity in random directions.

Spirals

image

Spiral galaxies resemble spiraling pinwheels. Though the stars and other visible material contained in such a galaxy lie mostly on a plane, the majority of mass in spiral galaxies exists in a roughly spherical halo of dark matter that extends beyond the visible component, as demonstrated by the universal rotation curve concept.

Spiral galaxies consist of a rotating disk of stars and interstellar medium, along with a central bulge of generally older stars. Extending outward from the bulge are relatively bright arms. In the Hubble classification scheme, spiral galaxies are listed as type S, followed by a letter (a, b, or c) that indicates the degree of tightness of the spiral arms and the size of the central bulge.

Barred spiral galaxy

image

A majority of spiral galaxies, including our own Milky Way galaxy, have a linear, bar-shaped band of stars that extends outward to either side of the core, then merges into the spiral arm structure. In the Hubble classification scheme, these are designated by an SB, followed by a lower-case letter (a, b or c) that indicates the form of the spiral arms (in the same manner as the categorization of normal spiral galaxies). 

Ring galaxy

image

A ring galaxy is a galaxy with a circle-like appearance. Hoag’s Object, discovered by Art Hoag in 1950, is an example of a ring galaxy. The ring contains many massive, relatively young blue stars, which are extremely bright. The central region contains relatively little luminous matter. Some astronomers believe that ring galaxies are formed when a smaller galaxy passes through the center of a larger galaxy. Because most of a galaxy consists of empty space, this “collision” rarely results in any actual collisions between stars.

Lenticular galaxy

image

A lenticular galaxy (denoted S0) is a type of galaxy intermediate between an elliptical (denoted E) and a spiral galaxy in galaxy morphological classification schemes. They contain large-scale discs but they do not have large-scale spiral arms. Lenticular galaxies are disc galaxies that have used up or lost most of their interstellar matter and therefore have very little ongoing star formation. They may, however, retain significant dust in their disks.

Irregular galaxy

image

An irregular galaxy is a galaxy that does not have a distinct regular shape, unlike a spiral or an elliptical galaxy. Irregular galaxies do not fall into any of the regular classes of the Hubble sequence, and they are often chaotic in appearance, with neither a nuclear bulge nor any trace of spiral arm structure.

Dwarf galaxy

image

Despite the prominence of large elliptical and spiral galaxies, most galaxies in the Universe are dwarf galaxies. These galaxies are relatively small when compared with other galactic formations, being about one hundredth the size of the Milky Way, containing only a few billion stars. Ultra-compact dwarf galaxies have recently been discovered that are only 100 parsecs across.

Interacting

image

Interactions between galaxies are relatively frequent, and they can play an important role in galactic evolution. Near misses between galaxies result in warping distortions due to tidal interactions, and may cause some exchange of gas and dust. Collisions occur when two galaxies pass directly through each other and have sufficient relative momentum not to merge.

Starburst

image

Stars are created within galaxies from a reserve of cold gas that forms into giant molecular clouds. Some galaxies have been observed to form stars at an exceptional rate, which is known as a starburst. If they continue to do so, then they would consume their reserve of gas in a time span less than the lifespan of the galaxy. Hence starburst activity usually lasts for only about ten million years, a relatively brief period in the history of a galaxy.

Active galaxy

A portion of the observable galaxies are classified as active galaxies if the galaxy contains an active galactic nucleus (AGN). A significant portion of the total energy output from the galaxy is emitted by the active galactic nucleus, instead of the stars, dust and interstellar medium of the galaxy.

image

The standard model for an active galactic nucleus is based upon an accretion disc that forms around a supermassive black hole (SMBH) at the core region of the galaxy. The radiation from an active galactic nucleus results from the gravitational energy of matter as it falls toward the black hole from the disc. In about 10% of these galaxies, a diametrically opposed pair of energetic jets ejects particles from the galaxy core at velocities close to the speed of light. The mechanism for producing these jets is not well understood.

image

The main known types are: Seyfert galaxies, quasars, Blazars, LINERS and Radio galaxy.

source

images: NASA/ESA, Hubble (via wikipedia)


Tags
4 years ago

Update on The Life of a Star, Chapter 7

So I’m a little over halfway done (I should be ready for some editing on Saturday) with this chapter and I think this might be my one longest yet! My current longest is Chapter 6, with 1,245 words. I’m currently at around 700 words with this one, and I’ve got at least 400 more to go. Anyway, I’m really excited for this one. We’ll be touching on nebulae again, and finally addressing our first ending for a star. 

We’ve only got three more chapters left, plus a possible one for additional topics. I’ll be sad to end this one, but I’m starting to gather ideas for the next book. Maybe on the methods of observing the universe? Maybe on random astrophysics topics? Perhaps one on galaxies? Cosmology? The Four Fundamental Forces? Haven’t decided yet xD

I think you’ll all really like these last chapters I have planned, or at least I hope you do. Thanks for reading :)

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
5 years ago

The rickroll is basically all scientists in a nutshell

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Let’s Keep Asking Questions…

Let’s keep asking questions…


Tags
4 years ago

Just so you guys know, the Galilean Moons aren’t Jupiter’s only moons. It has 79 confirmed moons.

Hey, at least they’re not all lonely.

Also, fun-fact, the Moon Europa is a big candidate for a “2nd Earth,” having an ocean under a shell of ice.

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Over The Span Of A Few Hours, I Collected Images Of Jupiter And Its Galilean Moons. I Labelled Each One

Over the span of a few hours, I collected images of Jupiter and its Galilean Moons. I labelled each one and you can see them move in their orbits! 🪐🪐🪐

Taken by me (Michelle Park) using the Slooh Canary Two telescope on June 3rd, 2020.


Tags
4 years ago

Yeah, Mercury did kinda kick Newton in the balls, didn’t it?

Guess that’s why it’s my favorite planet

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Ah Yes, The Science

Ah yes, the science


Tags
4 years ago

Aw heck yeah let’s go

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

List of extrasolar candidates for liquid water

The following list contains candidates from the list of confirmed objects that meet the following criteria:

Confirmed object orbiting within a circumstellar habitable zone of Earth mass or greater (because smaller objects may not have the gravitational means to retain water) but not a star

Has been studied for more than a year

Confirmed surface with strong evidence for it being either solid or liquid

Water vapour detected in its atmosphere

Gravitational, radio or differentation models that predict a wet stratum

55 Cancri f

List Of Extrasolar Candidates For Liquid Water

With a mass half that of Saturn, 55 Cancri f is likely to be a gas giant with no solid surface. It orbits in the so-called “habitable zone,” which means that liquid water could exist on the surface of a possible moon. ]

Proxima Centauri b

List Of Extrasolar Candidates For Liquid Water

Proxima Centauri b is an exoplanet orbiting in the habitable zone of the red dwarfstar Proxima Centauri, which is the closest star to the Sun and part of a triple star system. It is located about 4.2 light-years from Earth in the constellation of Centaurus, making it the closest known exoplanet to the Solar System.

Gliese 581c

List Of Extrasolar Candidates For Liquid Water

Gliese 581c gained interest from astronomers because it was reported to be the first potentially Earth-like planet in the habitable zone of its star, with a temperature right for liquid water on its surface, and by extension, potentially capable of supporting extremophile forms of Earth-like life.

Gliese 667 Cc

List Of Extrasolar Candidates For Liquid Water

Gliese 667 Cc is an exoplanet orbiting within the habitable zone of the red dwarf star Gliese 667 C, which is a member of the Gliese 667 triple star system, approximately 23.62 light-years away in the constellation of Scorpius.

Gliese 1214 b

List Of Extrasolar Candidates For Liquid Water

Gliese 1214 b is an exoplanet that orbits the star Gliese 1214, and was discovered in December 2009. Its parent star is 48 light-years from the Sun, in the constellation Ophiuchus. As of 2017, GJ 1214 b is the most likely known candidate for being an ocean planet. For that reason, scientists have nicknamed the planet “the waterworld”.

HD 85512 b

List Of Extrasolar Candidates For Liquid Water

HD 85512 b is an exoplanet orbiting HD 85512, a K-type main-sequence star approximately 36 light-years from Earth in the constellation of Vela.

Due to its mass of at least 3.6 times the mass of Earth, HD 85512 b is classified as a rocky Earth-size exoplanet (<5M⊕) and is one of the smallest exoplanets discovered to be just outside the inner edge of the habitable zone.

MOA-2007-BLG-192Lb

List Of Extrasolar Candidates For Liquid Water

MOA-2007-BLG-192Lb, occasionally shortened to MOA-192 b, is an extrasolar planet approximately 3,000 light-years away in the constellation of Sagittarius. The planet was discovered orbiting the brown dwarf or low-mass star MOA-2007-BLG-192L. At a mass of approximately 3.3 times Earth, it is one of the lowest-mass extrasolar planets at the time of discovery. It was found when it caused a gravitational microlensing event on May 24, 2007, which was detected as part of the MOA-II microlensing survey at the Mount John University Observatory in New Zealand.

Kepler-22b

List Of Extrasolar Candidates For Liquid Water

Kepler-22b, also known by its Kepler object of interest designation KOI-087.01, is an extrasolar planet orbiting within the habitable zone of the Sun-like star Kepler-22. It is located about 587 light-years (180 pc) from Earth in the constellation of Cygnus. source


Tags
4 years ago

My favorite YouTube video as of now (I know this doesn’t seem like it’s related to space - but it has a nice discussion about black holes and hawking radiation, which is I love it so much)

Remember kids: be cautious of bouncy castles!

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
4 years ago
Can you kill a star with iron?
Since the energy required to fuse iron is more than the energy that you get from doing it, could you use iron to kill a star like our sun?

I read this article when answering a question on quotev and it’s fascinating!

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
5 years ago
Today's Moon Phase!
Keep track of the Moon on MoonGiant as it does it's monthly dance around the Earth

Full Moon day!!!

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
4 years ago

That’s epic :o

Kennedy Space Center reopens on May 28th and I begged my parents to go but they don’t want to xD

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

The first West Coast SpaceX launch captured by photographer Dylan Schwartz.


Tags
Loading...
End of content
No more pages to load
acosmicgeek - A COSMIC GEEK
A COSMIC GEEK

Get your head stuck in the stars.

101 posts

Explore Tumblr Blog
Search Through Tumblr Tags