Beautiful :o

Beautiful :o

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Clearest Picture Of Mercury Ever Taken

Clearest Picture of mercury ever taken

via reddit

More Posts from Acosmicgeek and Others

4 years ago

I’m so hype for this telescope though

They say it might be able to see back to when the first stars were born - how exciting!

Eat shit Hubble telescope

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

The Launch Of The James Webb Telescope – The Successor Of The Hubble Telescope – Has Been Delayed

The launch of the James Webb Telescope – the successor of the Hubble Telescope – has been delayed until 2021 but damn it’s going to be awesome.


Tags
4 years ago

Only two things are infinite, the universe and human stupidity, and I'm not sure about the former.

Albert Einstein

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
4 years ago

Aw heck yeah let’s go

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

List of extrasolar candidates for liquid water

The following list contains candidates from the list of confirmed objects that meet the following criteria:

Confirmed object orbiting within a circumstellar habitable zone of Earth mass or greater (because smaller objects may not have the gravitational means to retain water) but not a star

Has been studied for more than a year

Confirmed surface with strong evidence for it being either solid or liquid

Water vapour detected in its atmosphere

Gravitational, radio or differentation models that predict a wet stratum

55 Cancri f

List Of Extrasolar Candidates For Liquid Water

With a mass half that of Saturn, 55 Cancri f is likely to be a gas giant with no solid surface. It orbits in the so-called “habitable zone,” which means that liquid water could exist on the surface of a possible moon. ]

Proxima Centauri b

List Of Extrasolar Candidates For Liquid Water

Proxima Centauri b is an exoplanet orbiting in the habitable zone of the red dwarfstar Proxima Centauri, which is the closest star to the Sun and part of a triple star system. It is located about 4.2 light-years from Earth in the constellation of Centaurus, making it the closest known exoplanet to the Solar System.

Gliese 581c

List Of Extrasolar Candidates For Liquid Water

Gliese 581c gained interest from astronomers because it was reported to be the first potentially Earth-like planet in the habitable zone of its star, with a temperature right for liquid water on its surface, and by extension, potentially capable of supporting extremophile forms of Earth-like life.

Gliese 667 Cc

List Of Extrasolar Candidates For Liquid Water

Gliese 667 Cc is an exoplanet orbiting within the habitable zone of the red dwarf star Gliese 667 C, which is a member of the Gliese 667 triple star system, approximately 23.62 light-years away in the constellation of Scorpius.

Gliese 1214 b

List Of Extrasolar Candidates For Liquid Water

Gliese 1214 b is an exoplanet that orbits the star Gliese 1214, and was discovered in December 2009. Its parent star is 48 light-years from the Sun, in the constellation Ophiuchus. As of 2017, GJ 1214 b is the most likely known candidate for being an ocean planet. For that reason, scientists have nicknamed the planet “the waterworld”.

HD 85512 b

List Of Extrasolar Candidates For Liquid Water

HD 85512 b is an exoplanet orbiting HD 85512, a K-type main-sequence star approximately 36 light-years from Earth in the constellation of Vela.

Due to its mass of at least 3.6 times the mass of Earth, HD 85512 b is classified as a rocky Earth-size exoplanet (<5M⊕) and is one of the smallest exoplanets discovered to be just outside the inner edge of the habitable zone.

MOA-2007-BLG-192Lb

List Of Extrasolar Candidates For Liquid Water

MOA-2007-BLG-192Lb, occasionally shortened to MOA-192 b, is an extrasolar planet approximately 3,000 light-years away in the constellation of Sagittarius. The planet was discovered orbiting the brown dwarf or low-mass star MOA-2007-BLG-192L. At a mass of approximately 3.3 times Earth, it is one of the lowest-mass extrasolar planets at the time of discovery. It was found when it caused a gravitational microlensing event on May 24, 2007, which was detected as part of the MOA-II microlensing survey at the Mount John University Observatory in New Zealand.

Kepler-22b

List Of Extrasolar Candidates For Liquid Water

Kepler-22b, also known by its Kepler object of interest designation KOI-087.01, is an extrasolar planet orbiting within the habitable zone of the Sun-like star Kepler-22. It is located about 587 light-years (180 pc) from Earth in the constellation of Cygnus. source


Tags
5 years ago

Woah :o

That is soooooooo cool!

I don’t do excess research into exoplanets - like I do stars - but wow. Isn’t it just amazing how much information we can get from such a far object??? Science has really come so far, it brings a single tear to my eye ;)

I’ll definitely be on the lookout for more info!

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

YALE’S EXPRES LOOKS TO THE SKIES OF A SCORCHING, DISTANT PLANET
YALE’S EXPRES LOOKS TO THE SKIES OF A SCORCHING, DISTANT PLANET

YALE’S EXPRES LOOKS TO THE SKIES OF A SCORCHING, DISTANT PLANET

Yale technology is giving astronomers a closer look at the atmosphere of a distant planet where it’s so hot the air contains vaporized metals.

The planet, MASCARA-2 b, is 140 parsecs from Earth – or roughly 2.68 quadrillion miles. It’s a gas giant, like Jupiter. However, its orbit is 100 times closer to its star than Jupiter’s orbit is to our Sun.

The atmosphere of MASCARA-2 b reaches temperatures of more than 3,140 degrees Fahrenheit, putting it on the extreme end of a class of planets known as hot Jupiters. Astronomers are keenly interested in hot Jupiters because their existence had been unknown until 25 years ago and they may offer new information about the formation of planetary systems.

“Hot Jupiters provide the best laboratories for developing analysis techniques that will one day be used to search for biosignatures on potentially habitable worlds,” said Yale astronomer Debra Fischer, the Eugene Higgins Professor of Astronomy and co-author of a new study that has been accepted by the journal Astronomy and Astrophysics.

Fischer is the guiding force behind the instrument that made the discovery possible: the Extreme PREcision Spectrometer (EXPRES), which was built at Yale and installed on the 4.3-meter Lowell Discovery Telescope near Flagstaff, Ariz.

The primary mission of EXPRES is finding Earth-like planets based on the slight gravitational influence they have on their stars. This precision also comes in handy when looking for atmospheric details of far-away planets, the researchers said.

Here’s how it works.

As MASCARA-2 b crosses the direct line of sight between its host star and Earth, elements in the planet’s atmosphere absorb starlight at specific wavelengths – leaving a chemical fingerprint. EXPRES is able to pick up those fingerprints.

Using EXPRES, Yale astronomers and colleagues from the Geneva Observatory and Bern University in Switzerland, as well as the Technical University of Denmark, found gaseous iron, magnesium, and chromium in MASCARA-2 b’s atmosphere.

“Atmospheric signatures are very faint and difficult to detect,” said co-author Sam Cabot, a graduate student in astronomy at Yale and leader of the study’s data analysis. “Serendipitously, EXPRES offers this capability, since you need very high-fidelity instruments to find planets outside our own solar system.”

The study’s lead author, astronomer Jens Hoeijmakers of the Geneva Observatory, said EXPRES also found evidence of different chemistry between the “morning” and “evening” sides of MASCARA-2 b.

“These chemical detections may not only teach us about the elemental composition of the atmosphere, but also about the efficiency of atmospheric circulation patterns,” Hoeijmakers said.

Along with other advanced spectrometers such as ESPRESSO, built by Swiss astronomers in Chile, EXPRES is expected to collect a wealth of new data that may dramatically advance the search for exoplanets – planets orbiting stars other than our own Sun.

“The detection of vaporized metals in the atmosphere of MASCARA-2 b is one of the first exciting science results to emerge from EXPRES,” Fischer said. “More results are on the way.”


Tags
4 years ago

Galileo, what a man

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Reality Is Often Disappointing

Reality is often disappointing

4 years ago
Bad Astronomy
The Bad Astronomy blog is all about real-world science — it covers the entire Universe, from subatomic particles to the Big Bang itself. Astronomy, space exploration, the effect of politics on science... you'll find it all here, as well as anything else that pops into the science-drenched brain of Phil Plait - astronomer, author and communicator. And you'll find it described with obvious joy and love for all things cosmic.

So I just finished re-watching Crash Course Astronomy - and I didn’t know that Phil had a blog :OOOOOOOO

Welp I know what my next read is gonna be

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
4 years ago
THE LIFE OF A STAR: WHAT GOES AROUND, COMES AROUND

THE LIFE OF A STAR: WHAT GOES AROUND, COMES AROUND

Previously on The Life of a Star, Chapter 6 ...

"But what happens after the shell is fused? We'll get back to that in Chapter 7, where we'll discuss White Dwarfs and Planetary Nebulae."

        After a low-mass star loses its hydrogen core, it becomes a mighty Red Giant - the star contracts and then heats up again, igniting hydrogen shell fusion and swelling the star to epic proportions. That is, until the hydrogen shell and the helium core and all fused up, in which the helium shell will begin to fuse. Remember the last chapter, when I said that these stars don't have enough pressure to fuse the results of the triple-alpha process? Well, I wasn't lying.

        And unlike the end of hydrogen fusion - where low-mass stars have a "2nd life" and continue fusing the elements - this means the end for our star.  Now, due to the build-up of carbon and oxygen in the core (and the lack of enough pressure to fuse these elements), the star has run out of fuel. This cancels out gas pressure, which breaks the hydrostatic equilibrium. Gravity wins the constant battle within the star, and the core collapses.

        The leftover core - tiny and hot - is called a Wolf-Rayet type star and squeezed into a volume one-millionth the size of the original star (Harvard). Now, why does the star stop here? If gravity overpowers the pressure inside the star, why does it not completely collapse into a black hole? Well, that's due to a little thing called electron degeneracy pressure.  Basically, the Pauli exclusion principle states that "no two electrons with the same spin can occupy the same energy state in the same volume." Due to the core collapse, electrons are forced together. The Pauli exclusion principle predicts that these electrons, once having filled a lower energy state, will move to a higher one and begin to speed up. This creates pressure and prevents the core from further collapse. However, at a certain mass, this becomes impossible to maintain. White dwarfs have something called the Chandrasekhar limit, which states that white dwarfs cannot exist if their original mass is over 1.44 times the mass of the Sun. This is due to mass-radius relationships, something we'll discuss in the next chapter.

        One of my favorite things about stars is the fact that they're a cycle - the death of some stars causes the birth of others. White dwarfs do this, too, by creating something we talked about in Chapter 3: Planetary Nebulae.

        The collapsed Wolf-Rayet type star is extremely small, with high density and temperature. Streams of photons/energy/heat - stellar winds - push out the cooler outer layers of the dead star (Astronomy Notes). The core emits UV radiation, which ionizes the hydrogen and causes it to emit light, forming fluorescent and spherical clouds of gas and dust surrounding the hot white dwarf. These are Planetary Nebulae, which can later be clumped by gravity and spun to create a new star. The cycle continues (Uoregon).

        The leftover core, the White Dwarf, is characterized by a low luminosity (due to the lack of new photons, which the star will start to lose by radiation) and a mass under about 1.44 times that of the Sun.

        Due to the intense gravity, the White Dwarf (despite being very large in mass) has a radius comparable to that of the Earth. If you consult the density equation (d=m/v, which basically means that if you enlarge or shrink either the mass or the volume that the density will increase), White Dwarfs have enormous densities. The core is a compact of carbon and oxygen. Because the star is unable to fuse these elements, they kind of just ... sit there. Surrounding this is a shell of helium and a small hydrogen envelope. Some even have a very thin layer of carbon (Britannica).

        However, the White Dwarf isn't the end for the star. There's one more stage for the star to go through before completely "dying": becoming a Black Dwarf.

        After the core is left behind, there Is no fuel left to burn. That means no new energy production. However, the leftover heat from the contraction remains, and the star will begin to cool down. Higher mass White Dwarfs, due to having a smaller radius, radiate this away slower than the low-mass ones. There are two types of cooling: radiative and neutrino. Radiative cooling is simple: as the star gives off light and energy outward, it loses heat. Neutrino cooling is a bit more complex: at extremely hot temperatures, gamma radiation passes electrons, and this reaction creates a pair of neutrinos. Because neutrinos interact very weakly with matter, they escape the White Dwarf quickly, taking energy with them. It's also possible to have a hunch of crystal in the center of a Black Dwarf: "On the other hand, as a white dwarf cools, the ions can arrange themselves in an organized lattice structure when their temperature falls below a certain point. This is called crystallization and will release energy that delays the cooling time up to 30%." (Uoregon).

        The White Dwarf will become a Black Dwarf after it radiates away all of its heat and becomes a cold, dark shell of its former self. Because it's radiated away all of its heat, it emits no light, hence the name. However, according to theoretical physics, there isn't a single Black Dwarf in the universe. Why? Because it should take at least a hundred million, billion years for a White Dwarf to cool down into a Black Dwarf. Because the universe is predicted to be around 13.7 billion years old, there hasn't been enough time for a single White Dwarf to completely cool down (space.com).

        However, there's one last thing that can happen to a White Dwarf. And that's where things in this book will start to get explosive.

        White Dwarfs in binary star systems (where two stars orbit around a center of mass, we'll touch on it more in Additional Topics) can undergo a Classical Nova. These supernovae occur in systems with one White Dwarf and one main-sequence star. If they orbit close enough, the White Dwarf will begin to pull the hydrogen and helium from the other star in what is called an Accretion Disk, what is to say a disk of plasma and particles which spiral inwards due to gravity and feeds one body off of another. The accretion of this plasma onto the surface of the White Dwarf increases pressure and temperature so much that fusion reactions spark and the outburst of energy ejects the shell in a burst of light - a nova (Cosmos).

        This process doesn't end, however. It can repeat itself again and again in what is called a Recurrent Nova. We know the existence of these based on pictures of the same star system with expanding shells, the aftermath of recurrent novae. Because White Dwarfs are the most common star death in the universe, and most stars are in binary or multiple star systems, novae are fairly common (Uoregon).

        Our discussion of novae will be an excellent transition into our next topic: supernovae! This will be the beginning of the end for the High-mass stars we talked about in Chapter 6, and we’ll even talk a little bit more about White Dwarf collisions and how they are related to supernovae, neutron stars, and more!

        From here on out, stars are going to become much more dramatic - and all the cooler (well, not really)!

First -  Chapter 1: An Introduction

Previous -  Chapter 6: The End (But Not Really)

Next - Chapter 8: Why We’re Literally Made of Star-stuff (unpublished)

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
4 years ago

That’s gorgeous! 

This picture right here is why I hate light pollution

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

The Galaxy Above : Have You Contemplated Your Home Galaxy Lately? If Your Sky Looked Like This, Perhaps

The Galaxy Above : Have you contemplated your home galaxy lately? If your sky looked like this, perhaps you’d contemplate it more often! The featured picture is actually a composite of two images taken last month from the same location in south Brazil and with the same camera – but a few hours apart. The person in the image – also the astrophotographer – has much to see in the Milky Way Galaxy above. The central band of our home Galaxy stretches diagonally up from the lower left. This band is dotted with spectacular sights including dark nebular filaments, bright blue stars, and red nebulas. Millions of fainter and redder stars fill in the deep Galactic background. To the lower right of the Milky Way are the colorful gas and dust clouds of Rho Ophiuchus, featuring the bright orange star Antares. On this night, just above and to the right of Antares was a bright planet Jupiter. The sky is so old and so familiar that humanity has formulated many stories about it, some of which inspired this very picture. via NASA


Tags
4 years ago

Woah :o

So, basically, like the Mission Space ride at Epcot (that one is my favoriteeeee)?

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Testing And Training On The Boeing Starliner : NASA Astronaut Mike Fincke Works Through A Check List

Testing and Training on the Boeing Starliner : NASA astronaut Mike Fincke works through a check list inside a mockup of Boeing’s CST-100 Starliner during a simulation at NASA’s Johnson Space Center on Aug. 21, 2019. (via NASA)


Tags
5 years ago

In a sense cosmology contains all subjects because it is the story of everything, including biology, psychology and human history.

Peter Theodore Landsberg

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG! 


Tags
Loading...
End of content
No more pages to load
  • liminalnomad
    liminalnomad reblogged this · 1 year ago
  • sacowboysfan
    sacowboysfan liked this · 2 years ago
  • rosevanparis
    rosevanparis reblogged this · 2 years ago
  • northwestphotag1
    northwestphotag1 liked this · 2 years ago
  • wisent15
    wisent15 liked this · 2 years ago
  • wisent15
    wisent15 reblogged this · 2 years ago
  • thingshavechangedbobby
    thingshavechangedbobby liked this · 2 years ago
  • 1softerside
    1softerside liked this · 2 years ago
  • n2ucla
    n2ucla liked this · 2 years ago
  • the-baby-seal
    the-baby-seal liked this · 2 years ago
  • veronicasgarden
    veronicasgarden liked this · 2 years ago
  • benhul
    benhul liked this · 2 years ago
  • spnjohnlocked
    spnjohnlocked reblogged this · 2 years ago
  • spnjohnlocked
    spnjohnlocked liked this · 2 years ago
  • norcrosscats
    norcrosscats liked this · 2 years ago
  • perry-t
    perry-t reblogged this · 2 years ago
  • perry-t
    perry-t liked this · 2 years ago
  • nodynasty4us
    nodynasty4us liked this · 2 years ago
  • justsayin59
    justsayin59 reblogged this · 2 years ago
  • justsayin59
    justsayin59 liked this · 2 years ago
  • raffinha2
    raffinha2 liked this · 2 years ago
  • richardmark1
    richardmark1 reblogged this · 2 years ago
  • richardmark1
    richardmark1 liked this · 2 years ago
  • posttexasstressdisorder
    posttexasstressdisorder reblogged this · 2 years ago
  • ashotasfireandasdeepastheocean1
    ashotasfireandasdeepastheocean1 liked this · 2 years ago
  • tomblerete
    tomblerete reblogged this · 2 years ago
  • probey
    probey liked this · 2 years ago
  • wallbike
    wallbike reblogged this · 2 years ago
  • decembersoul
    decembersoul liked this · 2 years ago
  • mmcrea21
    mmcrea21 reblogged this · 2 years ago
  • mmcrea21
    mmcrea21 liked this · 2 years ago
  • lalulutres
    lalulutres reblogged this · 2 years ago
  • lalulutres
    lalulutres liked this · 2 years ago
  • switching-to-glide
    switching-to-glide reblogged this · 2 years ago
  • switching-to-glide
    switching-to-glide liked this · 2 years ago
  • zacnign
    zacnign liked this · 2 years ago
acosmicgeek - A COSMIC GEEK
A COSMIC GEEK

Get your head stuck in the stars.

101 posts

Explore Tumblr Blog
Search Through Tumblr Tags