Our Neil Gehrels Swift Observatory — Swift for short — is celebrating its 20th anniversary! The satellite studies cosmic objects and events using visible, ultraviolet, X-ray, and gamma-ray light. Swift plays a key role in our efforts to observe our ever-changing universe. Here are a few cosmic surprises Swift has caught over the years — plus one scientists hope to see.
Swift was designed to detect and study gamma-ray bursts, the most powerful explosions in the universe. These bursts occur all over the sky without warning, with about one a day detected on average. They also usually last less than a minute – sometimes less than a few seconds – so you need a telescope like Swift that can quickly spot and precisely locate these new events.
In the fall of 2022, for example, Swift helped study a gamma-ray burst nicknamed the BOAT, or brightest of all time. The image above depicts X-rays Swift detected for 12 days after the initial flash. Dust in our galaxy scattered the X-ray light back to us, creating an extraordinary set of expanding rings.
Tidal disruptions happen when an unlucky star strays too close to a black hole. Gravitational forces break the star apart into a stream of gas, as seen above. Some of the gas escapes, but some swings back around the black hole and creates a disk of debris that orbits around it.
These events are rare. They only occur once every 10,000 to 100,000 years in a galaxy the size of our Milky Way. Astronomers can’t predict when or where they’ll pop up, but Swift’s quick reflexes have helped it observe several tidal disruption events in other galaxies over its 20-year career.
Usually, we think of galaxies – and most other things in the universe – as changing so slowly that we can’t see the changes. But about 10% of the universe’s galaxies are active, which means their black hole-powered centers are very bright and have a lot going on. They can produce high-speed particle jets or flares of light. Sometimes scientists can catch and watch these real-time changes.
For example, for several years starting in 2018, Swift and other telescopes observed changes in a galaxy’s X-ray and ultraviolet light that led them to think the galaxy’s magnetic field had flipped 180 degrees.
Magnetars are a type of neutron star, a very dense leftover of a massive star that exploded in a supernova. Magnetars have the strongest magnetic fields we know of — up to 10 trillion times more intense than a refrigerator magnet and a thousand times stronger than a typical neutron star’s.
Occasionally, magnetars experience outbursts related to sudden changes in their magnetic fields that can last for months or even years. Swift detected such an outburst from a magnetar in 2020. The satellite’s X-ray observations helped scientists determine that the city-sized object was rotating once every 10.4 seconds.
Swift has also studied comets in our own solar system. Comets are town-sized snowballs of frozen gases, rock, and dust. When one gets close to our Sun, it heats up and spews dust and gases into a giant glowing halo.
In 2019, Swift watched a comet called 2I/Borisov. Using ultraviolet light, scientists calculated that Borisov lost enough water to fill 92 Olympic-size swimming pools! (Another interesting fact about Borisov: Astronomers think it came from outside our solar system.)
Swift has studied a lot of cool events and objects over its two decades, but there are still a few events scientists are hoping it’ll see.
Swift is an important part of a new era of astrophysics called multimessenger astronomy, which is where scientists use light, particles, and space-time ripples called gravitational waves to study different aspects of cosmic events.
In 2017, Swift and other observatories detected light and gravitational waves from the same event, a gamma-ray burst, for the first time. But what astronomers really want is to detect all three messengers from the same event.
As Swift enters its 20th year, it’ll keep watching the ever-changing sky.
Keep up with Swift through NASA Universe on X, Facebook, and Instagram. And make sure to follow us on Tumblr for your regular dose of space!
Detecting new particles around black holes with gravitational waves
Clouds of ultralight particles can form around rotating black holes. A team of physicists from the University of Amsterdam and Harvard University now show that these clouds would leave a characteristic imprint on the gravitational waves emitted by binary black holes.
Black holes are generally thought to swallow all forms of matter and energy surrounding them. It has long been known, however, that they can also shed some of their mass through a process called superradiance. While this phenomenon is known to occur, it is only effective if new, so far unobserved particles with very low mass exist in nature, as predicted by several theories beyond the Standard Model of particle physics.
Ionizing gravitational atoms When mass is extracted from a black hole via superradiance, it forms a large cloud around the black hole, creating a so-called gravitational atom. Despite the immensely larger size of a gravitational atom, the comparison with sub-microscopic atoms is accurate because of the similarity of the black hole plus its cloud with the familiar structure of ordinary atoms, where clouds of electrons surround a core of protons and neutrons.
In a publication that appeared in Physical Review Letters this week, a team consisting of UvA physicists Daniel Baumann, Gianfranco Bertone, and Giovanni Maria Tomaselli, and Harvard University physicist John Stout, suggest that the analogy between ordinary and gravitational atoms runs deeper than just the similarity in structure. They claim that the resemblance can in fact be exploited to discover new particles with upcoming gravitational wave interferometers.
In the new work, the researchers studied the gravitational equivalent of the so-called ‘photoelectric effect’. In this well-known process, which for example is exploited in solar cells to produce an electric current, ordinary electrons absorb the energy of incident particles of light and are thereby ejected from a material – the atoms ‘ionize’. In the gravitational analogue, when the gravitational atom is part of a binary system of two heavy objects, it gets perturbed by the presence of the massive companion, which could be a second black hole or a neutron star. Just as the electrons in the photoelectric effect absorb the energy of the incident light, the cloud of ultralight particles can absorb the orbital energy of the companion, so that some of the cloud gets ejected from the gravitational atom.
Finding new particles The team demonstrated that this process may dramatically alter the evolution of such binary systems, significantly reducing the time required for the components to merge with each other. Moreover, the ionization of the gravitational atom is enhanced at very specific distances between the binary black holes, which leads to sharp features in the gravitational waves that we detect from such mergers. Future gravitational wave interferometers – machines similar to the LIGO and Virgo detectors that over the past few years have shown us the first gravitational waves from black holes – could observe these effects. Finding the predicted features from gravitational atoms would provide distinctive evidence for the existence of new ultralight particles.
IMAGE…An atom in the sky. If new ultralight particles exist, black holes would be surrounded by a cloud of such particles that behaves surprisingly similar to the cloud of electrons in an atom. When another heavy object spirals in and eventually merges with the black hole, the gravitational atom gets ionized and emits particles just like electrons are emitted when light is shone onto a metal. CREDIT UvA Institute of Physics
Godzilla 2019
炎麒-Enki-
Originally a Twitter Thread, with the help of Thread Reader
Baldolino Calvino🏳️🌈🚩🇧🇷✨♻️🌱
Oct 1 • 15 tweets • 4 min read
Fantasy is not science, nor philosophy, and not real (of course). This may seem obvious, but what I am trying to do is creating an exact, non-contradictory definition of fantasy, not as an art genre, but as an object of study. Not by science, but by fantastic natural history.
Fantasy - Wikipedia
"Fantasy is a genre of speculative fiction involving magical elements, typically set in a fictional universe and sometimes inspired by mythology and folklore."
Fantasy, Magic (not meaning prestidigitation), Mythology, and Folklore can be understood as equivalent, overlaping concepts. Wikipedia's entry is mostly tautological, circular, thus.
However, this is an article about the artistic genre, and one could say that it refers to art expression (written, musical, cinematic, other) that uses these references. This is enough for this use case, but we do not advance in an objective conceptualization of fantasy.
Fantasy (psychology) - Wikipedia
"(...) fantasy is a broad range of mental experiences, mediated by the faculty of imagination in the human brain, and marked by an expression of certain desires through vivid mental imagery."
This entry about the concept of fantasy in psychology gives a more elaborared view of it. However, what differentiates fantasy from other instances of human creativjty? The article continues: "Fantasies are associated with scenarios that are absolutely impossible."
Wikipedia's entry on Fantasy (psychology) does not give any reference to this concept, and proceeds listing the importance of Fantasy for various theoretical approaches (Freud, Klein, Lacan), or pathologies (narcissistic personality disorder, schizophrenia). It is not unified.
More revealing is Wikipedia's "History of Fantasy" (about the literary genre).
" (...) the supernatural and the fantastic were an element of literature from its beginning. The modern genre is distinguished from tales and folklore (...)"
It makes a clear distintion between ancient myths and folklore, and so-called "modern fantasy", whose first explicit representant was Scottish author George MacDonald in the late XIX century, with his novels "The Princess and the Goblin" and "Phantastes".
Important precursors were Dickens, Thackeray, Andersen, Ruskin, Morris. And MacDonald's work enormously influenced Tolkien and Lewis. One key word in this historic description of Fantasy is "speculative". And a defining characteristic of modern fantasy is the "fantasy world".
Distinctive differences of modern fantasy are the postulate of a secondary fantasy world apart from reality; fictitious by design; and narratives from a (group of) author(s) with an interpretative aim. Myths or folklore does not have any of these characteristics.
The entry goes on in a detailed description of the development of Fantasy as a literary genre, since writings about tales and legends from Middle Ages. However, one fun example of how medieval mind understood the fantastic can be seen in the novel "Baudolino" by Umberto Eco.
Most of this Wikipedia's entry is based upon https://twitter.com/john_clute and John Grant's https://sf-encyclopedia.com/fe/, published in 1997, and fully available on the internet.
More to come, be patient.
Took this pic some years ago, and love it.
Total Solar Eclipse l April 2024 l U.S. & Canada
Cr. Deran Hall l Rami Ammoun(236) l GabeWasylko l REUTERS l KendallRust l Joshua Intini l Alfredo Juárez l KuzcoKhanda
Bye Twitter! Hello, (again) Tumblr! I am back after years!
this meme but its just horikashi
We are all stardust (Carl Sagan).
Credits: NASA, ESA, CSA, STScI
#spacepic #space #jwst #astronomy #astrophoto #stem #stardust #photography #astrophotography #pilarsofcreation #eaglenebula #serpens #starcreation #stars #newbornstars #science #sciencephotograpy #jameswebspacetelescope #infraredastronomy
Baldolino Calvino. Ecological economist. Professor of Historia Naturalis Phantastica, Tír na nÓg University, Uí Breasail. I am a third order simulacrum and a heteronym.
57 posts