Japan’s Venus probe gets a second shot on December 7th
Astronomers have found a nearby galaxy that’s roughly the same mass as the Milky Way, but somehow contains less than 1 percent of its stars.
The galaxy is so dim, it’s evaded detention for decades, and now the team behind its discovery has figured out how its lack of stars hasn’t ripped it apart - it’s made from 99.99 percent dark matter.
Read more…
Video Explaining Orbital Mechanics
Scientists Make New Form of Gold That’s Nearly as Light as Air
Researchers in Switzerland have been able to produce gold foam that is almost as light as air. In fact, 98% of it consists of air; the rest is made up of 20-carat gold and milk protein. According to materials scientist Raffaele Mezzenga from ETH Zurich, this gold aerogel is a thousand times lighter than any other gold alloy, is lighter than water, and is almost as light as air itself.
Read more at: http://futurism.com/links/scientists-make-new-form-of-gold-thats-nearly-as-light-as-air/
Researchers from the computer science departments at California Polytechnic State University and North Carolina State University gathered data from nearly 1.4 million GitHub users, and the results are in: Women are better at writing code. The researchers also found proof of a specific bias.
Follow @the-future-now
Scientists find “the holy grail of astronomy” after uncovering a galaxy that is made up of mostly dark matter
Mars will one day have a ring system due to Phobos, the planet’s small moon, being crushed by tidal forces
Blue Origin’s New Shepard rocket successfully launches to the edge of space and lands vertically back on Earth
A new exoplanet called GJ1132b is found 39 light-years away, making it the closest Earth-sized exoplanet ever discovered
Researchers make ultra-thin diamond nanothreads, which could help us build a space elevator
A blue Neptune-like exoplanet, which seems to have skies like Earth, is found orbiting a red dwarf star
A staggering 574 newly discovered massive galaxies are revealed that date back to the beginnings of the universe
New research shows that galaxies were far more efficient at making stars during the first 10% of history than they are now
When your little sister discovers and sends you the classic science nerd posts
Our OSIRIS-REx spacecraft launches tomorrow, and will travel to a near-Earth asteroid, called Bennu. While there, it will collect a sample to bring back to Earth for study. But how exactly do we plan to get this spacecraft there and bring the sample back?
After launch, OSIRIS-REx will orbit the sun for a year, then use Earth’s gravitational field to assist it on its way to Bennu. In August 2018, the spacecraft’s approach to Bennu will begin.
The spacecraft will begin a detailed survey of Bennu two months after slowing to encounter the asteroid. The process will last over a year, and will include mapping of potential sample sites. After the selection of the final site, the spacecraft will briefly touch the surface of Bennu to retrieve a sample.
To collect a sample, the sampling arm will make contact with the surface of Bennu for about five seconds, during which it will release a burst of nitrogen gas. The procedure will cause rocks and surface material to be stirred up and captured in the sampler head. The spacecraft has enough nitrogen to allow three sampling attempts, to collect between 60 and 2000 grams (2-70 ounces).
In March 2021, the window for departure from the asteroid will open, and OSIRIS-REx will begin its return journey to Earth, arriving two and a half years later in September 2023.
The sample return capsule will separate from the spacecraft and enter the Earth’s atmosphere. The capsule containing the sample will be collected at the Utah Test and Training Range.
For two years after the sample return, the science team will catalog the sample and conduct analysis. We will also preserve at least 75% of the sample for further research by scientists worldwide, including future generations of scientists.
The OSIRIS-REx spacecraft is outfitted with some amazing instruments that will help complete the mission. Here’s a quick rundown:
The OCAMS Instrument Suite
PolyCam (center), MapCam (left) and SamCam (right) make up the camera suite on the spacecraft. These instruments are responsible for most of the visible light images that will be taken by the spacecraft.
OSIRIS-REx Laser Altimeter (OLA)
This instrument will provide a 3-D map of asteroid Bennu’s shape, which will allow scientists to understand the context of the asteroid’s geography and the sample location.
OSIRIS-REx Thermal Emission Spectrometer (OTES)
The OTES instrument will conduct surveys to map mineral and chemical abundances and will take the asteroid Bennu’s temperature.
OSIRIS-REx Visible and Infrared Spectrometer (OVIRS)
This instrument will measure visible and near infrared light from the asteroid. These observations could be used to identify water and organic materials.
Regolith X-Ray Imaging Spectrometer (REXIS)
REXIS can image X-ray emission from Bennu in order to provide an elemental abundance map of the asteroid’s surface.
Touch-and-Go Sample Arm Mechanism (TAGSAM)
This part of the spacecraft will be responsible for collecting a sample from Bennu’s surface.
OSIRIS-REx Talk Wednesday, Sept. 7 at noon EDT Join us for a discussion with representatives from the mission’s science and engineering teams. This talk will include an overview of the spacecraft and the science behind the mission. Social media followers can ask questions during this event by using #askNASA. Watch HERE.
Uncovering the Secrets of Asteroids Wednesday, Sept. 7 at 1 p.m. EDT During this panel, our scientists will discuss asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. Social media followers can ask questions during this event by using #askNASA. Watch HERE.
Thursday, Sept. 8 starting at 4:30 p.m. EDT
Watch the liftoff of the United Launch Alliance’s (ULA) Atlas V rocket from Kennedy Space Center in Florida at 7:05 p.m.
Full coverage is available online starting at 4:30 p.m. Watch
HERE
.
We will also stream the liftoff on Facebook Live starting at 6:45 p.m. EDT. Watch
HERE
.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On Thursday, Sept. 1, U.S. astronauts Jeff Williams and Kate Rubins will conduct the station’s 195th American spacewalk. As part of their activities, the pair will install the first of several enhanced high-definition television cameras that will monitor activities outside the station, including the comings and goings of visiting cargo and crew vehicles
Working on the station’s backbone, or truss, Williams and Rubins will retract a thermal radiator that is part of the station’s cooling system.
As was the case for their first spacewalk together on Aug. 19, Williams will be designated as extravehicular crew member 1 (EV1), wearing a spacesuit with a red stripe, while Rubins will be EV2, wearing a suit with no stripes.
Coverage of the spacewalk begins at 6:30 a.m. EDT on Thursday, Sept. 1; with the spacewalk scheduled to begin at 8:05 a.m. EDT. Stream live online HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
New research from the University of Southampton has found that copper can effectively help to prevent the spread of respiratory viruses, which are linked to severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS).
S. L. Warnes, Z. R. Little and C. W. Keevil. Human coronavirus 229E remains infectious on common touch surface materials. mBio, November 2015 DOI: 10.1128/mBio.01697-15
This is human coronavirus 229E being inactivated on copper. Credit: University of Southampton