beautiful
Amazing space concept art by John Grello
Amazing.
On May 25, 2017, the moon photobombed one of our sun-watching satellites by passing directly between the satellite and the sun.
The Solar Dynamics Observatory, or SDO, orbits Earth and watches the sun nearly 24/7 — except when another body, like the moon, gets in the way. These lunar photobombs are called transits, the generic term for when any celestial body passes in front of another.
Transits are one way we detect distant worlds. When a planet in another star system passes in front of its host star, it blocks some of the star’s light so the star appears slightly dimmer. By monitoring changes in a star’s light over time, scientists can deduce the presence of a planet, and even determine what its atmosphere is like. This method has been used to discover thousands of planets, including the TRAPPIST-1 planets.
SDO sees lunar transits about twice a year, and this one lasted about an hour with the moon covering about 89 percent of the sun at the peak of its journey across the sun’s face.
When they’re seen from Earth, we call lunar transits by another name: eclipses.
Solar eclipses are just a special kind of transit where the moon blocks all or part of our view of the sun. Since SDO’s view of the sun was only partially blocked, it saw a partial eclipse. Later this year, on Aug. 21, a total eclipse will be observable from the ground: The moon will completely block the sun’s face in some parts of the US, creating a total solar eclipse on a 70-mile-wide stretch of land, called the path of totality, that runs from Oregon to South Carolina.
Throughout the rest of North America — and even in parts of South America, Africa, Europe and Asia — the moon will partially obscure the sun, creating a partial eclipse. SDO will also witness this partial eclipse.
Total solar eclipses are incredible, cosmic coincidences: The sun is about 400 times wider than the moon, but it also happens to be 400 times farther away, so the sun and moon appear to be the same size in our sky. This allows the moon to completely block the sun when they line up just right.
Within the path of totality, the moon completely obscures the sun’s bright face, revealing the comparatively faint corona — the sun’s pearly-white outer atmosphere.
It’s essential to observe eye safety during an eclipse. You must use proper eclipse glasses or an indirect viewing method when any part of the sun’s surface is exposed, whether during the partial phases of an eclipse, or just on a regular day. If you’re in the path of totality, you may look at the eclipse ONLY during the brief moments of totality.
A total solar eclipse is one of nature’s most awe-inspiring sights, so make your plans now for August 21! You’ll also be able to see the eclipse cross the country that day through the eyes of NASA – including views of the partial eclipse from SDO – on NASA TV and at nasa.gov.
Learn more about the August eclipse — including where, when, and how to safely see it — at eclipse2017.nasa.gov and follow along on Twitter @NASASun.
THATS IT
The new moon phase starts the month on October 1. Of course, the new moon isn’t visible, because it’s between Earth and the sun, and the unlit side is facing Earth.
Night by night the slender crescent gets bigger and higher in the sky and easier to see just after sunset. On the 3rd and 4th, the moon will pass just above Venus!
A week later on the 9th the moon has traveled through one quarter of its 29-day orbit around Earth, and we see the first quarter phase. Also look for Mars just below the moon.
Join us in celebrating International Observe the Moon Night Saturday, October 8th, with your local astronomy club or science center. Conveniently, the 8th is also Fall Astronomy Day, celebrated internationally by astronomy clubs since 1973.
One week later on the 16th the moon reaches opposition, or the full moon phase, when the moon and the sun are on opposite sides of Earth. And the sun completely illuminates the moon as seen from Earth.
During this phase, the moon rises in the east just as the sun is setting in the west. Overnight, the moon crosses the sky and sets at dawn.
A week later, on the 22nd of October, the last quarter moon rises at midnight. Later, the pretty and bright Beehive Cluster will be visible near the moon until dawn.
To wrap up the month, 29 days after the last new moon we start the lunar cycle all over again with another new moon phase on October 30th. Will you be able to spot the one-day old moon on Halloween? It will be a challenge!
There are three meteor showers in October–the Draconids, the Taurids and the Orionids. Try for the Draconids on October 8th.
See the Taurids on October 10th.
The Orionids will be marred by the full moon on the 21st, but all three meteor showers will offer some possible bright meteors.
Finally, you’ll have an especially pretty view of Saturn, when it forms a straight line with Venus and the red star Antares on the 27th.
You can catch up on NASA’s lunar mission, the Lunar Reconnaissance Orbiter, the Cassini Mission to Saturn and all of our missions at www.nasa.gov.
Watch the full October “What’s Up" video for more:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
www.instructables.com
"We shall never know all the good that a simple SMILE can do"
St.Mother Teresa
Visit the official JPl site of NASA and get the latest news of space.
Guess what?! We have a new lead for our science missions, and we’re excited to introduce him to you. Recently, NASA Administrator Charles Bolden has named Thomas Zurbuchen as the new head of our organization for science missions. Let’s get to know him…
Zurbuchen was most recently a professor of space science and aerospace engineering at the University of Michigan in Ann Arbor. He was also the university’s founding director of the Center for Entrepreneurship in the College of Engineering.
Zurbuchen’s experience includes research in solar and heliospheric physics, experimental space research, space systems and innovation and entrepreneurship.
1. What is your vision for science at NASA?
Right now, I am focusing on my team and I am learning how I can help them achieve the goals we have; to design and build the missions we are currently working on. Once the presidential transition is complete, we will engage in strategic activity with that team. It has been my experience that the best ideas always come from great and diverse teams working together. I intend to do that here as well.
2. What solar system destination are you most eager for NASA to explore?
Tough question to answer. Basically, I want to go where there are answers to the most important questions. One question on my mind is the origin of extraterrestrial life. Some parts of the answer to this question can be answered at Mars, some at Europa or other moons in the outer solar system like Enceladus. Other parts of the answer is around other stars, where we have found thousands of planets…some of which are amazingly similar to Earth!
3. With raw images posted to several websites from our missions, what’s one thing you hope members of the public can help NASA do with that powerful data?
I hope that people all over the world play with the data and find new ways to explore. It’s almost like hanging out in the most amazing libraries talking about nature. Many of the books in this library have never been opened and curious minds can find true treasures in there. I know that there are over a billion data-products NASA is making available about the Earth – it’s a treasure chest!
4. In your opinion, what big science breakthrough from the past informs missions of today?
In science, everything we do builds on successes and also failures of the past. Sometimes we forget our failures or near-failures, which tend to teach us a lot about what to do and what not to do. One of my favorite stories is about the Explorer 1 mission: first they observed almost nothing, until they realized that there was so much radiation that the detectors were chocking. The Van Allen Probes is a mission that are conducting the best exploration today of these radiation belts, discovered by Explorer 1. Our exploration history is full of stories like that.
5. Behind every pretty space image is a team of scientists who analyze all the data to make the discovery happen. What do you wish the public knew about the people and work that goes into each of those pretty pictures?
I wish people knew that every picture they see, every data-set they use, is a product of a team. One of the most exhilarating facts of working in space is to be able to work in teams composed of some of the nicest and most interesting people I have ever met. There are some super-famous people I run with every time we are in the same town, others who like to play music and listen to it, and some who have been in space or climbed mountains.
6. If you were a member of the public, what mission events in the next year would you be most excited about?
The public’s lives will be directly affected by our missions in our Earth Science portfolio. Some of them are done together with NOAA, our sister agency responsible for forecasts. For example, GOES will feature a lightning detector that will enable better predictions of storms. We are also launching CYGNSS in December. This NASA mission, composed of 8 spacecraft will provide unique and high-resolution data designed to provide a deeper understanding and better prediction for hurricanes globally.
7. NASA science rewrites textbooks all the time. What do you hope the kids of tomorrow will know as facts that are merely hypothesis today?
I hope they will know about life elsewhere. They will learn how life evolves, and where there is life today.
8. NASA has explored planets within our solar system. With the launch of the James Webb Space Telescope in 2018, what do you hope we learn about distant worlds?
James Webb is going to allow us to go back in time and look at the first stars and first galaxies. This is something we have never seen – we can only guess what will happen. James Webb is going to allow us to look at many, many more planets around other stars and will allow us to start doing the kind of research that links to the question about how habitable life is there.
9. What sort of elements make for an exciting new science discovery? What do you hope is the next big discovery?
Almost always, an exciting discovery is a surprise. Sometimes, discoveries happen because we are looking for something totally different. The biggest discoveries are the ones that change everything we thought before. All of a sudden, nature wags the finger at us and says “you are wrong!” That is how you know you are up to something new.
I hope the next big discovery tells us about the origin of the 95% of the universe we don’t know enough about. We call these 95% “Dark Energy” and “Dark Matter”, but – to be honest – we really don’t know. So, we are today living in a time where we know with 100% certainty that we don’t know what makes up 95% of our universe.
10. In your opinion, why should people care about the science at NASA?
They should care because we improve and protect lives on Earth. They should also care because we make the world we live in bigger. This is because we find things out we never knew, which creates new opportunities for humankind. Some of these opportunities are near-term – they are patents, innovations, companies or great educations. But, some of them are long-term – they change how we think about life itself.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Check that out!
The sky may not be falling, but it can certainly seem that way during a meteor shower. Shooting stars, as meteors are sometimes called occur when rock and debris in space fall through the Earth’s atmosphere, leaving a bright trail as they are heated to incandescence by friction with the air. Sometimes the number of meteors in the sky increases dramatically, becoming meteor showers. Some showers occur annually or at regular intervals as the Earth passes through the trail of dusty debris left by a comet. Here’s a guide to the top meteor showers expected in 2017.
At its peak this shower will have about 40 meteors per hour. The parent comet is 2003 EH1, which was discovered in 2003. First quarter moon sets after midnight and meteors radiate from the constellation Bootes.
This shower will have up to 60 meteors per hour at its peak and is produced by dust particles left behind by comet Halley, which has been known and observed since ancient times. The shower runs annually from April 19 to May 28. The waxing gibbous moon will block out many of the fainter meteors this year. Meteors will radiate from the constellation Aquarius.
The annual Perseid shower will have up to 60 meteors per hour at its peak. It is produced by comet Swift-Tuttle. The Perseids are famous for producing a large number of bright meteors. The shower runs annually from July 17 to August 24. The waning gibbous moon will block out many of the fainter meteors this year, but the Perseids are so bright and numerous that it should still be a good show. Meteors will radiate from the constellation Perseus.
This is a minor shower that will produce only about 10 meteors per hour. It is produced by dust grains left behind by comet 21P Giacobini-Zinner, which was first discovered in 1900. The Draconids is an unusual shower in that the best viewing is in the early evening instead of early morning like most other showers. The shower runs annually from October 6-10 and peaks this year on the the night of the 7th. Unfortunately, the nearly full moon will block all but the brightest meteors this year. If you are extremely patient, you may be able to catch a few good ones. Meteors will radiate from the constellation Draco.
The Geminids may be the best shower, producing up to 120 meteors per hour at its peak. It is produced by debris left behind by an asteroid known as 3200 Phaethon, which was discovered in 1982. The shower runs annually from December 7-17. The waning crescent moon will be no match for the Geminids this year. The skies should still be dark enough for an excellent show. Meteors will radiate from the constellation Gemini, but can appear anywhere in the sky.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
"don't blame gravity for falling in love"
Albert eienstine
Although European Space Agency’s comet-landing mission Rosetta ended on 30 September, the data gathered through it will keep teaching us about comets for a while.
Here are images taken by the Rosetta spacecraft’s camera when Comet 67P/Churyumov–Gerasimenko approached closest to the Sun in August. The comet became very active and outbursts occurred, a typical one thought to release 60–260 tonnes of material in just few minutes!
The outburst can be divided into three categories based on how their dust flow looks like, and the outbursts occurred both when the Sun had started to warm up the previously shaded surface, and after illumination of a few hours. [1] So the outbursts could happen in at least two different ways.
Anyhow, they provide scientists insights of cometary lives and they look pretty cool.
1. Summer fireworks on Rosetta’s comet. 23 September 2016
Copyright: OSIRIS: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM /DASP/IDA; NavCam: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0