This NPR interview with with Angela Saini about how race science never really left the global scientific consciousness is super interesting! Iโm gonna read her book!
i complain alot when it comes to uni and my course, but not gonna lie, here on my final year i've started to fall in love with it again, the way the fascination started when i was younger and learning new things was exciting.
throughout learning it always felt like i was not built for it, that I just cannot for the life of me focus and dedicate myself on anything. and i was just doubting myself and i should change courses or drop out because I was not meant to do this. and now on my second last semester, things kinda clicked. It may be hard for me to understand and learn, but it's worth it. To see the universe in all of its beauty, its ugliness, its complexity, its charm; it's a struggle but I'll endure it for you.
and I find myself really hoping I get to continue down in the stream of sciences and contribute to something for nature and for humanity as well, or at least deepen my understanding of how this universe works and widen my view of how intricate and special this world we live in actually is, how caring it is, how every single thing is worth something, and nothing from nature is ever truly useless
could you explain why/if we can't just copy the genes of one animal and splice them into another animal, for example why we couldn't give humans cat ears?
There's no one easy way to answer this, but the basic answer is that it's not that simple. There's no one gene, or even easily reducible set of genes, that just is "make cat ears". Not only is there a network of genes activated within a cell, there are a myriad of signals from nearby cells (the "microenvironment") as well as cues from the rest of the body and environment.
So each one of the cells making your ear isn't just encoded to be a cell that makes your ear. In fact, most of them don't have any "ear" genetic characteristics or activation. They're generic cartilage or skin cells that were told to grow more or less by neighboring cells or distant cells during carefully coordinated times during growth and development. Each cell interprets this signal in different ways, and also receives multiple signals at a time, the combination of which can produce unique results.
The easiest to interpret example of this is finger development. During development, when your hand is still a fingerless paddle, a single cell on the pinky side of your hand (or thumb side, it could be reversed) releases a signalling molecules to nearby cells. A cell receiving the highest dose will start to become a pinky, and send a signal for the cells immediately around it to aide in that. The next cell that isn't aiding that, but still receives the initial signal, receives a lower concentration of that signal since it's further away. That lower concentration signals a ring finger, and it repeats until you get thumbs at the lowest concentrations.
That's the most visible example, but it's similar to what happens all over the body- signals that are dependent on the structure and genetics of the microenvironment, not just the genetics of the developing cells alone.
This careful network of timing, signals, gene activations, and spatial placement of cells is the core of the field of Developmental Biology (which, technically, my PhD is in as well bc it's often wrapped in with molecular bio lol).
So making cat ears on a human genetically would essentially require not only genetic manipulation, but also babysitting the fetus the entire time and adding in localized signals to the microenvironment of the developing ear cells, which is essentially impossible. There's too much "human" flying around to realistically get that result, and an attempt at doing so would essentially be akin to molecular sculpting. That's why *my* preferred approach would be epithelial stem cell manipulation/printing and subsequent grafting, but that's an entirely different thing.
If you're interested in this kind of thing, the most approachable and engaging summary of developmental biology is the book "Your Inner Fish", by Neil Shubin, the discoverer of Tiktaalik. He summarizes a lot of dev biology through the lens of evolutionary biology, which is a great way to see how differences in structures have arisen and differentiate across the tree of life.
If you want a shorter introduction, and like cute but kinda "cringey in the way you love" science parodies: the song evo-devo by a capella science is really fun and gets stuck in my head a lot:
But yeah, hope that answered your question!
this might be a stupid question, but if theres a protein that multiple organisms need, wouldn't the a t g c genetic code for it be the same for different species? or at least closely related species? so theoretically some prompts/sequences should have multiple fitting organisms or closest fitting organisms
(i know it isn't this simple, but im wondering what the exact reason it doesn't work like that is, or what im missing)
not a stupid question, i'll try to answer it to the best of my understanding, but if anyone has anything to add, please do.
put shortly: you're right! if multiple organisms need a certain protein, the code in their DNA is generally the same in that region.
from a genetics perspective, all organisms are actually extremely similar. i'm sure you've heard that we humans share more than half our genetic information with bananas and such.
this is just a factor of how evolution works. every so often, a mutation occurs in an organism's genome, which has a chance to increase the fitness of that organism, which allows it to have more offspring, which changes the mix of alleles in the population. and this is how we get different species of things.
but, because we all share a common ancestor from a long, long, long, long time ago, we do maintain some similarities, especially in regions that code for things essential to life.
those regions where things are *different* is where we're able to tell one species from another, differentiating moths from trees and such. but, overall, all living organisms have a whole lot in common.
FUNGI: THE ROTTEN WORLD AROUND US [1983]
red coral is a coral mushroom in the family gomphaceae. :-) it is found in the himalaya & north america. it grows either in clusters or singularly, & prefers western hemlock & tanoak. it likely forms a mycorrhizal association !!
the big question : can i bite it?? it is edible & sold as food in mexico :-) though, overconsumption can cause stomach upset.
r. ariospora description :
"the fruit bodies of ramaria araiospora typically measure 5โ14 cm (2โ5+1โ2 in) tall by 2โ10 cm (3โ4โ3+7โ8 in) wide. there is a single, somewhat bulbous stipe measuring 2โ3 cm (3โ4โ1+1โ8 in) long by 1.5โ2 cm (5โ8โ3โ4 in) thick, which is branched up to six times. the branches are slender, usually about 1โ5 mm (1โ16โ3โ16 in) in diameter, while branches near the base are thicker, up to 4 cm (1+5โ8 in) thick. the terminal branches are forked or finely divided into sharp tips. the trama is fleshy to fibrous in young specimens, but becomes brittle when dried. the branches are red initially, fading to a lighter red in maturity, while the base, including the stipe, is white to yellowish-white. branch tips are yellow."
[images : source & source] [fungus description : source]
"i love this fungus so much<3 she's SO pretty. i only learnt about it recently."
to all my researchers, students and people in general who love learning: if you don't know this already, i'm about to give you a game changer
connectedpapers
the basic rundown is: you use the search bar to enter a topic, scientific paper name or DOI. the website then offers you a list of papers on the topic, and you choose the one you're looking for/most relevant one. from here, it makes a tree diagram of related papers that are clustered based on topic relatability and colour-coded by time they were produced!
for example: here i search "human B12"
i go ahead and choose the first paper, meaning my graph will be based around it and start from the topics of "b12 levels" and "fraility syndrome"
here is the graph output! you can scroll through all the papers included on the left, and clicking on each one shows you it's position on the chart + will pull up details on the paper on the right hand column (title, authors, citations, abstract/summary and links where the paper can be found)
you get a few free graphs a month before you have to sign up, and i think the free version gives you up to 5 a month. there are paid versions but it really depends how often you need to use this kinda thing.