Misscounterfactual - Retrograde Orbit

misscounterfactual - Retrograde Orbit
Tags

More Posts from Misscounterfactual and Others

2 years ago

5 Ways Studying Water Will Help Us Better Understand Earth

Studying our home planet is just as powerful as exploring what’s beyond it.

Surface Water and Ocean Topography (SWOT) is a joint mission developed by NASA and the French space agency Centre National d’Études Spatiales (CNES), with contributions from the Canadian Space Agency and the UK Space Agency. It will track water on more than 90% of Earth’s surface and help communities, scientists, and researchers better understand this finite and vital resource. And it’s launching this month!

So how will SWOT help us better understand Earth? Here are 5 ways.

This is a GIF of SWOT in space as it passes over Earth and simulates the satellite becoming operational. The SWOT satellite deploys components that were stored for the launch, including extending its solar panels and deploys its booms and antennas.

SWOT will address some of the most pressing climate change questions of our time.

An important part of predicting our future climate is determining at what point Earth’s ocean water slows down its absorption of the excess heat in the atmosphere and starts releasing that heat back into the air, where it could accelerate global warming. SWOT will provide crucial information about this global heat exchange between the ocean and the atmosphere, enabling researchers to test and improve future climate forecasts.

The satellite will also offer insights to improve computer models for sea level rise projections and coastal flood forecasting.

Data from SWOT will additionally help scientists, engineers, water managers, and others better monitor drought conditions in lakes and reservoirs and improve flood forecasts for rivers.

This GIF is a short timelapse of a tree in the middle of a wetland type environment. As the timelapse begins water slowly starts to increase and by the end of the timelapse, the area around the tree is completely flooded.

SWOT is the first satellite mission that will observe nearly all water on the planet’s surface.

SWOT will measure the height of water in Earth’s lakes, rivers, reservoirs, and the ocean, giving scientists the ability to track the movement of water around the world.

SWOT’s eye in the sky will provide a truly global view of the water on more than 90% of Earth’s surface, enriching humankind’s understanding of how the ocean reacts to and influences climate change along with what potential hazards – including floods – lie ahead in different regions of the world.

This GIF was created from video footage of Alaska water ways and roads. It is a collection of scenes throughout Alaska including a large waterway next to road, a car traveling over a bridge, as well as various large rivers and creeks.

SWOT will see Earth’s water in higher definition than ever before.

Because everything is better in HD 😉, SWOT will view Earth’s ocean and freshwater bodies with unprecedented clarity compared to other satellites, much like a high-definition television delivers a picture far more detailed than older models. This means that SWOT will be able to “see” ocean features – like fronts and eddies – that are too small for current space-based instruments to detect. Those measurements will help improve researchers’ understanding of the ocean’s role in climate change.

Not only will the satellite show where – and how fast – sea level is rising, it will also reveal how coastlines around the world are changing. It will provide similar high-definition clarity for Earth’s lakes, rivers, and reservoirs, many of which remain a mystery to researchers, who aren’t able to outfit every water body with monitoring instruments.

Animation of SWOT as it flies over Florida and conducts its measurements of the water below. SWOT will collect data across a 75-mile (120-kilometer) wide swath, with a gap in the center for an altimetry track. This is an animation that shows the collection of data over the state of Florida, which is rich with rivers, lakes, and wetlands. Green and pink lights move downwards from the satellite to Earth, mimicking the satellite collecting data over the ocean and freshwater areas.

SWOT data will be used to help make decisions about our daily lives and livelihoods.

As climate change accelerates the water cycle, more communities around the world will be inundated with water while others won’t have enough. SWOT data will be used to monitor drought conditions and improve flood forecasts, providing essential information to water management agencies, disaster preparedness agencies, universities, civil engineers, and others who need to track water in their local areas. SWOT data also will help industries, like shipping, by providing measurements of water levels along rivers, as well as ocean conditions, including tides, currents, and storm surges.

This GIF shows catastrophic flooding in various communities throughout the world. The first scene includes several houses with water up to the roofs, almost covering the entire neighborhood. The next scene shows a road that is no longer accessible due to water flooding and covering entire segments of the road.

Finally … SWOT will pave the way for future Earth missions.

With its innovative technology and commitment to engaging a diverse community of people who plan to use data from the mission, SWOT is blazing a trail for future Earth-observing missions. SWOT’s data and the tools to support researchers in analyzing the information will be free and accessible. This will help to foster research and applications activities by a wide range of users, including scientists, resource managers, and others who in the past may not have had the opportunity to access this kind of information. Lessons learned from SWOT will lead to new questions and improvements for future missions, including our upcoming Earth System Observatory, a constellation of missions focused on studying key aspects of our home planet.

This is video footage of the SWOT satellite in a Thales Alenia Space clean room facility in Cannes, France. The shot is from faraway so you can see the entirety of the satellite and sheer size – 16.4 feet (5 meters) tall. Below the satellite is a group of about 15 team members admiring the satellite.

Keep track of the mission here. And make sure to follow us on Tumblr for your regular dose of space!

2 years ago
Finally Rained Enough To Get Some Fungi! Currently Waiting On Inaturalist For The ID
Finally Rained Enough To Get Some Fungi! Currently Waiting On Inaturalist For The ID
Finally Rained Enough To Get Some Fungi! Currently Waiting On Inaturalist For The ID
Finally Rained Enough To Get Some Fungi! Currently Waiting On Inaturalist For The ID

Finally rained enough to get some fungi! Currently waiting on inaturalist for the ID

bonus fungus helpers:

Finally Rained Enough To Get Some Fungi! Currently Waiting On Inaturalist For The ID
2 years ago

Say Hello to NGC 6441

A crowded cluster of over a million stars packs together at the center of this image of the star cluster NGC 6441. These stars shine in white, red, blue, and yellowish hues, and grow more sporadic at the image’s edges, all glittering against a black backdrop of space. Credit: ESA/Hubble & NASA, G. Piotto

Location: In the Scorpius constellation

Distance from Earth: About 44,000 light-years

Object type: Globular star cluster

Discovered by: James Dunlop in 1826

Each tiny point of light in this image is its own star - and there are more than a million of them! This stunning image captured by the Hubble Telescope depicts NGC 6441, a globular cluster that weighs about 1.6 million times the mass of our Sun. Globular clusters like NGC 6441 are groups of old stars held together by their mutual gravitational attraction, appearing nearly spherical in shape due to the density of stars that comprises them. This particular cluster is one of the most massive and luminous in our Milky Way Galaxy. It is also home to a planetary nebula and four pulsars (rotating neutron stars that emit beams of radiation at steady intervals, detected when the beams are aimed at Earth). 

Read more information about NGC 6441 here.

Right now, the Hubble Space Telescope is delving into its #StarrySights campaign! Find more star cluster content and spectacular new images by following along on Hubble’s Twitter, Facebook, and Instagram.

Make sure to follow us on Tumblr for your regular dose of space!

2 years ago
Clustered Bonnet Mycena Inclinata
Clustered Bonnet Mycena Inclinata

Clustered Bonnet Mycena inclinata

2 years ago

What Makes the Artemis Moon Mission NASA's Next Leap Forward?

From left to right: A grey hollow pyramid-shaped lightning tower, the white Orion spacecraft and the top of the Space Launch System (SLS) rocket in orange, the Moon in faint white and gray, the Mobile Launcher with many pipes and levels in gray and red. The background is blue skies. Credit: NASA/Ben Smegelsky

When NASA astronauts return to the Moon through Artemis, they will benefit from decades of innovation, research, and technological advancements. We’ll establish long-term lunar science and exploration capabilities at the Moon and inspire a new generation of explorers—the Artemis Generation.

Cloudy skies are the backdrop behind the SLS rocket and Orion spacecraft, which is reflected in the windows of a vehicle to the left of the photo. The SLS is orange with two white boosters on either side, and the spacecraft is white, next to a gray pyramid-shaped lightning tower and Mobile Launcher with many pipes and levels in gray and red. Credit: NASA/Aubrey Gemignani

Meet the Space Launch System rocket, or SLS. This next-generation super heavy-lift rocket was designed to send astronauts and their cargo farther into deep space than any rocket we’ve ever built. During liftoff, SLS will produce 8.8 million pounds (4 million kg) of maximum thrust, 15 percent more than the Saturn V rocket.

The SLS rocket and Orion spacecraft sit inside the Vehicle Assembly Building (VAB) at Kennedy Space Center. The rocket is orange, with two white boosters on either side. The Orion Spacecraft is at the top and white. The VAB has many levels with walkways, pipes, and structures around the rocket. Credit: NASA/Kim Shiflett

SLS will launch the Orion spacecraft into deep space. Orion is the only spacecraft capable of human deep space flight and high-speed return to Earth from the vicinity of the Moon. More than just a crew module, Orion has a launch abort system to keep astronauts safe if an emergency happens during launch, and a European-built service module, which is the powerhouse that fuels and propels Orion and keeps astronauts alive with water, oxygen, power, and temperature control.

The Space Launch System rocket stands upright on the launchpad. The background is the sky dominated by clouds. The rocket has an orange central fuel tank with two white rocket boosters on either side. The Crawler-Transporter 2 is in the foreground with its massive tread-like wheels. Credit: NASA/Kim Shiflett

Orion and SLS will launch from NASA’s Kennedy Space Center in Florida with help from Exploration Ground Systems (EGS) teams. EGS operates the systems and facilities necessary to process and launch rockets and spacecraft during assembly, transport, launch, and recovery.

An artist's depiction of Gateway, the Moon-orbiting space station. Gateway is seen in gray with red solar arrays; behind it, the Moon is gray, black, and white, as well as the blackness of space. Credit: NASA/Alberto Bertolin

The knowledge we've gained while operating the International Space Station has opened new opportunities for long-term exploration of the Moon's surface. Gateway, a vital component of our Artemis plans, is a Moon-orbiting space station that will serve as a staging post for human expeditions to the lunar surface. Crewed and uncrewed landers that dock to Gateway will be able to transport crew, cargo, and scientific equipment to the surface.

An artist's depiction of astronauts working on the Moon. The astronaut suits are white with silver helmets; they work on the gray lunar surface. Credit: NASA

Our astronauts will need a place to live and work on the lunar surface. Artemis Base Camp, our first-ever lunar science base, will include a habitat that can house multiple astronauts and a camper van-style vehicle to support long-distance missions across the Moon’s surface. Apollo astronauts could only stay on the lunar surface for a short while. But as the Artemis base camp evolves, the goal is to allow crew to stay at the lunar surface for up to two months at a time.

Astronaut Mark Vande Hei takes a selfie in front of Earth during the first spacewalk of 2018. His suit is white, the reflective helmet silver, and Earth is blue with white clouds. Credit: NASA

The Apollo Program gave humanity its first experience traveling to a foreign world. Now, America and the world are ready for the next era of space exploration. NASA plans to send the first woman and first person of color to the lunar surface and inspire the next generation of explorers.

An artist's depiction of Orion traversing above the surface of the Moon, with Earth in the background. Orion is white and gray, the Moon's shadowy surface is white and black, and the Earth is surrounded by the blackness of space and is faintly blue and black. Credit: NASA/Liam Yanulis

Our next adventure starts when SLS and Orion roar off the launch pad with Artemis I. Together with commercial and international partners, NASA will establish a long-term presence on the Moon to prepare for missions to Mars. Everything we’ve learned, and everything we will discover, will prepare us to take the next giant leap: sending the first astronauts to Mars.

Make sure to follow us on Tumblr for your regular dose of space!

2 years ago
Hygrocybe Coccinea

Hygrocybe coccinea

Slovakia

Loading...
End of content
No more pages to load
misscounterfactual - Retrograde Orbit
Retrograde Orbit

70 posts

Explore Tumblr Blog
Search Through Tumblr Tags