What’s Up For November?

What’s Up for November?

image

November weather can be challenging for backyard astronomers, but the moon is a reliable target, even when there are clouds.

Did you know that the moon takes about 29 days to go around the Earth once? It also takes the moon about 29 days to spin on its axis. This causes the same side of the moon to always face Earth.

image

On Nov. 3, the moon reaches last quarter when it rises at midnight and sets at noon. This is a great time to see the moon in the morning sky.

image

On Nov. 11, the new moon isn’t visible, because it’s between Earth and the sun, and the unlit side faces Earth. In the days after the new moon, the slender crescent gets bigger and brighter. Look just after sunset on Nov. 13 and 14 near the setting sun in the western sky.

image

The next phase on Nov. 19 is called the first quarter, because the moon has traveled one quarter of its 29-day orbit around Earth. The moon rises at noon and sets at midnight, so you can see it in the afternoon sky. It will rise higher in the sky after dark. That’s when you can look for the areas where four of the six Apollo missions landed on the moon! You won’t see the landers, flag or footprints, but it’s fun and easy to see these historic places with your own eyes or with binoculars.

image

To see the area: Look for three dark, smooth maria, or seas. The middle one is the Sea of Tranquility. Apollo 11 landed very near a bright crater on the edge of this mare in 1969. The Apollo 15, 16 and 17 landing areas form the points of a triangle above and below the Apollo 11 site.

image

On Nov. 25, you can see the full moon phase, which occurs on the 14th day of the lunar cycle. The moon will rise at sunset and will be visible all night long, setting at sunrise.

image

On Thanksgiving (Nov. 26), the 15-day-old moon will rise an hour after sunset. You may even see some interesting features! And this is a great time to see the impact rays of some of the larger craters.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 

More Posts from Nasa and Others

2 years ago

You Are Made of Stardust

Though the billions of people on Earth may come from different areas, we share a common heritage: we are all made of stardust! From the carbon in our DNA to the calcium in our bones, nearly all of the elements in our bodies were forged in the fiery hearts and death throes of stars.

You Are Made Of Stardust

The building blocks for humans, and even our planet, wouldn’t exist if it weren’t for stars. If we could rewind the universe back almost to the very beginning, we would just see a sea of hydrogen, helium, and a tiny bit of lithium.

The first generation of stars formed from this material. There’s so much heat and pressure in a star’s core that they can fuse atoms together, forming new elements. Our DNA is made up of carbon, hydrogen, oxygen, nitrogen, and phosphorus. All those elements (except hydrogen, which has existed since shortly after the big bang) are made by stars and released into the cosmos when the stars die.

You Are Made Of Stardust

Each star comes with a limited fuel supply. When a medium-mass star runs out of fuel, it will swell up and shrug off its outer layers. Only a small, hot core called a white dwarf is left behind. The star’s cast-off debris includes elements like carbon and nitrogen. It expands out into the cosmos, possibly destined to be recycled into later generations of stars and planets. New life may be born from the ashes of stars.

You Are Made Of Stardust

Massive stars are doomed to a more violent fate. For most of their lives, stars are balanced between the outward pressure created by nuclear fusion and the inward pull of gravity. When a massive star runs out of fuel and its nuclear processes die down, it completely throws the star out of balance. The result? An explosion!

Supernova explosions create such intense conditions that even more elements can form. The oxygen we breathe and essential minerals like magnesium and potassium are flung into space by these supernovas.

You Are Made Of Stardust

Supernovas can also occur another way in binary, or double-star, systems. When a white dwarf steals material from its companion, it can throw everything off balance too and lead to another kind of cataclysmic supernova. Our Nancy Grace Roman Space Telescope will study these stellar explosions to figure out what’s speeding up the universe’s expansion. 

This kind of explosion creates calcium – the mineral we need most in our bodies – and trace minerals that we only need a little of, like zinc and manganese. It also produces iron, which is found in our blood and also makes up the bulk of our planet’s mass!

You Are Made Of Stardust

A supernova will either leave behind a black hole or a neutron star – the superdense core of an exploded star. When two neutron stars collide, it showers the cosmos in elements like silver, gold, iodine, uranium, and plutonium.

You Are Made Of Stardust

Some elements only come from stars indirectly. Cosmic rays are nuclei (the central parts of atoms) that have been boosted to high speed by the most energetic events in the universe. When they collide with atoms, the impact can break them apart, forming simpler elements. That’s how we get boron and beryllium – from breaking star-made atoms into smaller ones.

Half a dozen other elements are created by radioactive decay. Some elements are radioactive, which means their nuclei are unstable. They naturally break down to form simpler elements by emitting radiation and particles. That’s how we get elements like radium. The rest are made by humans in labs by slamming atoms of lighter elements together at super high speeds to form heavier ones. We can fuse together elements made by stars to create exotic, short-lived elements like seaborgium and einsteinium.

You Are Made Of Stardust

From some of the most cataclysmic events in the cosmos comes all of the beauty we see here on Earth. Life, and even our planet, wouldn’t have formed without them! But we still have lots of questions about these stellar factories. 

In 2006, our Stardust spacecraft returned to Earth containing tiny particles of interstellar dust that originated in distant stars, light-years away – the first star dust to ever be collected from space and returned for study. You can help us identify and study the composition of these tiny, elusive particles through our Stardust@Home Citizen Science project.

Our upcoming Roman Space Telescope will help us learn more about how elements were created and distributed throughout galaxies, all while exploring many other cosmic questions. Learn more about the exciting science this mission will investigate on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago
Thanks For All Of The Great Questions!  Follow Me At @Astro_Jessica On Twitter And Instagram And Follow

Thanks for all of the great questions!  Follow me at @Astro_Jessica on Twitter and Instagram and follow the Orion space capsule as it prepares to fly to deep space on Twitter and Facebook.  Follow NASA on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Get Ready Stargazers: The Geminids Are Here!

The Geminid meteor shower, one of the biggest meteor showers of the year, will peak this weekend, December 13 to 14. We get a lot of questions about the Geminids—so we’ve put together some answers to the ones we’re most commonly asked. Take a look!  

What are the Geminids?

The Geminids are pieces of debris from an asteroid called 3200 Phaethon. Earth runs into Phaethon’s debris stream every year in mid-December, causing meteors to fly from the direction of the constellation Gemini – hence the name “Geminids.”  

image

Image Credit: Arecibo Observatory/NASA/NSF

When is the best time to view them?

This year, the peak is during the overnight hours of December 13 and into the morning of December 14. Viewing should still be good on the night of December 14 into the early morning hours of the 15th. Weather permitting, the Geminids can be viewed from around midnight to 4 a.m. local time. The best time to see them is around 2 a.m. your local time on December 14, when the Geminid radiant is highest in your night sky. The higher the radiant – the celestial point in the sky from which meteors appear to originate – rises into the sky, the more meteors you are likely to see.

Get Ready Stargazers: The Geminids Are Here!

Image Credit & Copyright: Jeff Dai

What is the best way to see them?

Find the darkest place you can and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will disrupt your night vision. Lie flat on your back and look straight up, taking in as much sky as possible. You will soon start to see the Geminid meteors!

image

Image Credit: NASA/Bill Dunford

Can you see the Geminids from anywhere in the world?

The Geminids are best observed in the Northern Hemisphere, but no matter where you are in the world (except Antarctica), some Geminids will be visible.

image

Image Credit: Jimmy Westlake

How many Geminids can I expect to see?

Under dark, clear skies, the Geminids can produce up to 120 meteors per hour – but this year, a bright, nearly full moon will hinder observations of the shower. Still, observers can hope to see up to 30 meteors per hour. Happy viewing!  

image

Image Credit & Copyright: Yuri Beletsky

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Join NPR today at 5 p.m. EDT for ‪#‎NPRSpaceJam‬ with astronauts Serena Auñón, Cady Coleman, Samantha Cristoforetti, plus our chief scientist Ellen Stofan. Submit your questions!

Tomorrow At 5ET I’ll Be Interviewing Three Astronauts (read All About Them Here) Live On Periscope

Tomorrow at 5ET I’ll be interviewing three astronauts (read all about them here) live on Periscope and Snapchat (user: nprnews). 

What would you like me to ask them? Submit questions here.

6 years ago

Polar Vortex spills Arctic weather into North America

image

What in the world is a polar vortex? On Earth, it’s a large area of low pressure and extremely cold air that usually swirls over the Arctic, with strong counter-clockwise winds that trap the cold around the Pole. But disturbances in the jet stream and the intrusion of warmer mid-latitude air masses can disturb this polar vortex and make it unstable, sending Arctic air south into middle latitudes.

That has been the case in late January 2019 as frigid weather moves across the Midwest and Northern Plains of the United States, as well as interior Canada. Forecasters are predicting that air temperatures in parts of the continental United States will drop to their lowest levels since at least 1994, with the potential to break all-time record lows for January 30 and 31. With clear skies, steady winds, and snow cover on the ground, as many as 90 million Americans could experience temperatures at or below 0 degrees Fahrenheit (-18° Celsius), according to the National Weather Service (NWS).

The Goddard Earth Observing System Model above shows this air temperature movement at 2 meters (around 6.5 feet above the ground) from January 23-29. You can see some portions of the Arctic are close to the freezing point—significantly warmer than usual for the dark of mid-winter—while masses of cooler air plunge toward the interior of North America.

image

Science Behind the Polar Vortex / Credit: NOAA

Meteorologists predicted that steady northwest winds (10 to 20 miles per hour) were likely to add to the misery, causing dangerous wind chills below -40°F (-40°C) in portions of 12 states. A wind chill of -20°F can cause frostbite in as little as 30 minutes, according to the weather service.

Not sure how cold that is? Check out the low temperatures on January 30, 2019 in some of the coldest places on Earth—and a planetary neighbor:

 -46°F (-43°C) -- Chesterfield, Newfoundland

-36°F (-33°C) -- Yukon Territory, Canada

-33°F (-27°C) -- Fargo, North Dakota (Within the Polar Vortex)

-28°F (-18°C) -- Minneapolis, Minnesota (Within the Polar Vortex)

-27°F (-33°C) -- Amundsen-Scott South Pole Station, Antarctica

-24°F (-31°C) -- Chicago, Illinois (Within the Polar Vortex)

-15°F (5°C) -- Barrow, Alaska 

-99°F (-73°C) -- Mars

Learn more about the science behind the polar vortex and how NASA is modeling it here: https://go.nasa.gov/2Wtmb43.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

NASA and Star Trek

Star Trek debuted in September 1966 and in its various incarnations, the series has been an inspiration to many, even some of us at NASA. The series allowed its fans to explore “strange new worlds” and to dream of what could be right in their living rooms. To celebrate the show’s 50th anniversary, we’ve collected some Trek-themed photos featuring Star Trek cast members and NASA astronauts. 

Serious Business

image

The STS-54 crew of the space shuttle Endeavour in their official "gag" photo are costumed as the bridge crew of the Enterprise as depicted in the movie "Star Trek II: The Wrath of Khan.” The photo was taken on the Star Trek Adventure set of the Universal Studios California theme park in Los Angeles, California, while the crew was on a west coast training and public relations tour during the Summer of 1992. From left to right: 

Greg Harbaugh (Mission Specialist/Engineering Officer)

Mario "Spock" Runco Jr. (Mission Specialist/1st Officer/Science Officer) 

John Casper (Commander/Captain) 

Susan Helms (Mission Specialist/Communications Officer) 

Don McMonagle (Pilot/Navigation-Helm Officer) 

“I have been, and always shall be, your friend”

image

Astronaut John Creighton shows the on board Graphical Retrieval Information Display (GRID) computer, which displays a likeness of Mr. Spock aboard STS-051G, June 18, 1985.

“A Keyboard. . . How Quaint”

image

Actor James Doohan (who played engineering genius Montgomery Scott in Star Trek) sits in the commanders seat of the Full Fuselage Trainer while astronaut Mario Runco explains the control panel during a tour of Johnson Space Center on Jan. 18, 1991. 

“You Wanted Excitement, How's Your Adrenaline?”

image

Actress Nichelle Nichols (Uhura in Star Trek) toured Johnson Space Center in Houston on March 4, 1977, while Apollo 12 lunar module pilot and Skylab II commander Alan Bean showed her what it felt like inside the Lower Body Negative Pressure Device and showed her how the Shuttle Procedures Simulator operated. 

image
image

Nichols paid us another visit in 2012 and 2015 with the Space Traveling Museum. 

Infinite Diversity, Infinite Combinations

image

European Space Agency astronaut Samantha Cristoforetti gave the Vulcan salute aboard the International Space Station shortly after the passing of Leonard Nimoy on Feb. 28, 2015. She commented on Tweeter: " ‘Of all the souls I have encountered.. his was the most human.’ Thx @TheRealNimoy for bringing Spock to life for us"

Live Long And Prosper

image

While visiting Johnson Space Center in Houston, TX, George Takei (Hikaru Sulu on the original series) had the chance to exchange Vulcan salutes with Robonaut on May 29, 2012. 

“Let’s See What’s Out There”

image

Scott Bakula, who played Captain Jonathan Archer on Star Trek: Enterprise, stands with astronauts Terry Virts and Mike Fincke on set. The two astronauts made guest appearances on the series finale episode “These Are The Voyages . . .” March 2005.

Boldly Going For Real

image

Above is the crew of STS-134, the next to last shuttle mission, in their version of the 2009 Star Trek movie poster. 

image

The crew of Expedition 21 aboard the International Space Station also made a Trek-themed poster in 2009, wearing uniforms from Star Trek: The Next Generation with the Enterprise NX-01 silhouette in the background.

Learn more about Star Trek and NASA.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
8 years ago

Sample Return Robot Challenge

It’s been a long, technical journey for the seven teams competing this week in Level 2 of our Sample Return Robot Challenge. Over the past five years, more than 50 teams have attempted the $1.5 million competition, which is looking to develop autonomous capabilities in robotics. Basically, we want robots that can think and act on their own, so they can travel to far off places – like Mars – and we can rely on them to work on their own when a time delay or unknown conditions could be factors.

This challenge has two levels, both requiring robots to navigate without human control and Earth-based tools (like GPS or magnetic compassing). The robot has to find samples, pick them up and deliver them to home base. Each of the final seven teams succeeded at Level 1, where they had to find one sample, during previous competition years. Now, they have a shot at the much more difficult Level 2, where they have a two-hour window to locate up to 10 samples of varying point values, but they don’t know where to look or what exactly they’re looking for.

Get to know the final seven, and be sure to cheer them on as we live-stream the competition all day Sept. 4 and 5.

image

West Virginia University Mountaineers Hailing from: Morgantown, West Virginia # of Team Members:  12

Behind the Name: In West Virginia, we call ourselves mountaineers. We like to explore unknown places and be inspired by nature.

Motivation: To challenge ourselves. Through this venture, we are also hoping to create research and career opportunities for everyone on the team.

Strategy: Keeping things simple. Through participating in SRR challenge during the last three years, we have gone a long way in streamlining our system.

Obstacles: One of the biggest challenges was finding and nurturing the talent of individual team members and coordinating the team in making real progress on time.

Prize Plans: We donated 50 percent of our 2015 Level 2 prize money to create an undergraduate “Robotics Achievement Fellowship” at WVU. The rest of the funding was allocated to support team member professional development, such as traveling to conferences. A similar model will be used if we win in 2016.

Extra Credit:  We did an Easter egg hunt with our robot, Cataglyphis (named after a desert ant with extraordinary navigation capabilities), last year.

image

Survey Hailing from: Los Angeles, California # of Team Members: Jascha Little

Behind the Name: It's short, simple, and what the robot spends a lot of its time doing.

Team History: We work together, and we all thought the challenge sounded like an excellent way to solve the problem of what to do with all our free time.

Motivation: We are all engineers and software developers that already work on robotics projects. Reading too much sci-fi when we were kids probably got us to this point.

Strategy: We are trying to solve the search-and-return problem primarily with computer vision. This is mostly to reduce cost. Our budget can't handle high quality IMUs or LIDAR.

Prize Plans: Probably build more robots.

Extra Credit: Favorite pop culture robot is Bender (Futurama). Alcoholic robots are the best.

image

Alabama Astrobotics (The University of Alabama) Hailing from: Tuscaloosa, Alabama # of Team Members: 33

Behind the Name: “Alabama Astrobotics” was chosen to reflect our school affiliation and our mission to design robotics for various space applications.

Team History: Alabama Astrobotics has been involved with other NASA robotics competitions in the past.  So, the team is accustomed to the competition environment.  

Motivation: We are pleased to have advanced to Level 2 in our first year in the competition (the first team to do so), but we are also not satisfied with just advancing.  Our goal is to try to solve Level 2.

Strategy: Our strategy is similar to that used in Level 1.  Our Level 1 approach was chosen so that it would translate to Level 2 as well, thus requiring fewer customizations from Level 1 to Level 2.

Obstacles: As a university team, the biggest challenge was not having all our team members available to work on the robot during the time since Level 1 completed in June. Most of my team members have either graduated or have summer internships, which took them away from campus after Level 1.  Thus, we didn’t have the manpower to address the additional Level 2 technical challenges.

Prize Plans: Any prize money would be donated to the University of Alabama College of Engineering.

Extra Credit: Alabama Astrobotics also competes in the annual NASA Robotic Mining Competition held at the Kennedy Space Center each May.  We have been fortunate enough to win that competition three times in its seven year history, and we are the only team to win it more than once.

image

MAXed-Out Hailing From: Santa Clara, California # of Team Members: 4

Behind the Name: Several reasons: Team leader is Greg Maxwell, and his school nick name was Max. Our robot’s name is Max, which is one of the most common name for a dog, and it is a retriever. Our efforts on this has been too the max…. i.e. MAXed-Out. Our technology requirements have been pushed to their limits - Maxed-Out.

Team History: Greg Maxwell started a Meet-up “Silicon-Valley Robot Operating System” SV-ROS that was to help teach hobbyists how to use ROS on their robots. We needed a project to help implement and make real what we were teaching. This is the third contest we have participated in.

Motivation: There is still such a long way to go to make robots practical. Every little bit we can contribute makes them a little bit better and smarter. Strategy: Level 1 was a test, as a minimum viable product to prove the tech worked. For Level 2, we had to test and add obstacle avoidance to be able to cover the larger area with trees and slopes, plus add internal guidance to allow for Max to be out of the home base camera tracking system.

Obstacles: Lack of a cost effective robot platform that met all the requirements; we had to build our own. Also time and money. The two months (between Level 1 and 2) went really fast, and we had to abandon lots of cool ideas and focus on the basics.

Prize Plans: Not sure, but pay off the credit cards comes to mind. We might open-source the platform since it works pretty well. Or we will see if it works as expected. We may also take a break / vacation away from robots for a while.

Extra Credit: My nephew, Max Hieges, did our logo, based on the 1960-era Rat Fink sticker.

image

Mind & Iron Hailing From: Seattle, Washington # of Team Members: 5

Behind the Name: It was the original title for Isaac Asimov’s “I Robot,” and we thought it was a good combination of what a robot actually is – mechanical and brains.

Team History: Three of us were WPI undergrads and met at school; two of us did our master’s degrees at the University of Washington, where we met another member, and then another of us brought on a family member.

Motivation: We saw that there was an opportunity to compete in a challenge that seemed like there was a reasonable solution that we could tackle with a limited budget. We saw three years of competition and thought that we had some better ideas and a pretty good shot at it. Strategy: The samples and the terrain are much more complex in Level 2, and we have to be more careful about our navigation. We are using the same tools, just expanding their capability and scope.

Obstacles: The team being spread over three different time zones has been the biggest challenge. We are all doing this in our free time after work. The internet has been really handy to get things done.

Prize Plans: Probably invest in more robot stuff! And look for other cool projects we can work on, whether it’s another NASA challenge or other projects.

Extra Credit: We are hoping to collaborate with NASA on the professional side with surgical robots to exoskeletons. Challenge-related, our robot is mostly made of plywood – it is a composite fiber material that works well for fast development using cheap materials.

image

Sirius Hailing From: South Hadley, Massachusetts # of Team Members: 4

Team History: We are a family. Our kids are both robot builders who work for Boston Dynamics, and they have a lot of robot expertise. Both of our kids are robotics engineers, and my wife is intrinsically brilliant, so the combination of that makes for a good team.

Motivation: Because it’s a really hard challenge. It’s one thing to drive a robot with a remote control; it’s another to do the whole thing autonomously. If you make a single change in a robot, it could throw everything off. You have to think through every step for the robot. On a basic level, to learn more about robotics and to win the prize. Strategy: Very similar to Level 1. We approached Level 1 knowing Level 2 was there, so our strategy was no different.

Obstacles: It is very difficult to do object recognition under unpredictable conditions – sun, clouds, weather, sample location. The biggest challenge was trying to recognize known and unknown objects under such a wide variety of environmental possibilities. And the terrain is very different – you don’t know what you’re going to find out there.

Prize Plans: We haven’t really thought about it, but we will give some away, and we’ll invest the rest in our robotics company.

Extra Credit: The first robot we had was called Robo-Dad. Dan was training to be an astronaut in the 1990s, so we built a toy remote-controlled truck that Dan - in Texas - could control via the internet in the house. Robo-Dad had a camera that Dan could see the house with. It had two-way communication; it was a little before it’s time – the internet was very slow.

image

Team AL Hailing From: Ontario, Canada # of Team Members: 1

Team History: I was looking for competitions that were open, and my dad had followed the Centennial Challenges for a while, so he alerted me to this one. I was already doing rover projects, and it was appropriate and awesome and interesting. I felt like I could do it as a team of one.

Motivation: Difficult challenges. I’m definitely inspired seeing really cool robots that other people are building. New emerging tech really motives me to create new things.

Strategy: I showed up with another robot to Level 2. I built three, but ran with only two. It did make it more complicated, but the strategy was to send them to different areas and have them be able to communicate with each other. Everything physically was the same from Level 1.  The idea is that they would all go out with different missions and I would maximize field coverage.

Obstacles: Time. More time would always be nice. Being able to make something like this happen under a timeline is really difficult. I feel like I accomplished a lot for a year. Also, manpower – being a team of 1, I have to do all of the paperwork and other related stuff, but also carry the hardware and do the programming. You have to multitask a lot.

Prize Plans: I’d like to start a robotics company, and be able to expand some of the things I’ve been working on associated with technology and maker education.

Extra Credit: My story is not linear. A lot of people are surprised to hear that my background is in molecular biology and  research. I once lived in a tent in Madagascar for a few months to do a biodiversity study, and I have multiple publications from that side of my life. I am in a whole different place now.

The competition is one of many run by our Centennial Challenges program, which looks to the public – citizen inventors, academics, makers, artists, YOU – to help us advance technology and bring a different perspective to obstacles that gets us outside of our traditional solving community. See what else we’re working on here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
8 years ago

Not a question, but I just want to say that today is my daughter Erin's 7th birthday and she's wearing her NASA shirt and I want to thank you so much for being such an amazing inspiration to my daughter, myself, and women and girls everywhere. <3

Adorable! Please continue to encourage her to reach for the stars. 


Tags
5 years ago
“We Saw To The Edge Of All There Is—⁣⁣

“We saw to the edge of all there is—⁣⁣

So brutal and alive it seemed to comprehend us back.” 

-Tracy K. Smith, US Poet Laureate ⁣⁣

Some pictures are worth a thousand words and some a thousand thoughts. On Jan. 31, astronaut Christina Koch shared this emotional view and quote from the International Space Station. ⁣⁣Enjoy. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago
Image Credit:NASA/JPL-Caltech⁣
Image Credit:NASA/JPL-Caltech⁣

Image Credit:NASA/JPL-Caltech⁣

In this large celestial mosaic, our Spitzer Space Telescope captured a stellar family portrait! You can find infants, parents and grandparents of star-forming regions all in this generational photo.  ⁣ There’s a lot to see in this image, including multiple clusters of stars born from the same dense clumps of gas and dust – some older and more evolved than others. Dive deeper into its intricacies by visiting https://go.nasa.gov/2XpiWLf ⁣

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • sidcam
    sidcam liked this · 8 years ago
  • yurinasruas-blog
    yurinasruas-blog reblogged this · 8 years ago
  • kaylahearts-420
    kaylahearts-420 liked this · 9 years ago
  • plantiestgay
    plantiestgay liked this · 9 years ago
  • th1129
    th1129 liked this · 9 years ago
  • 11g
    11g liked this · 9 years ago
  • catonmyshirt
    catonmyshirt reblogged this · 9 years ago
  • catonmyshirt
    catonmyshirt liked this · 9 years ago
  • littleplasticspaceship
    littleplasticspaceship reblogged this · 9 years ago
  • rameno0dles
    rameno0dles liked this · 9 years ago
  • ssbstan
    ssbstan liked this · 9 years ago
  • cloud-william
    cloud-william liked this · 9 years ago
  • addchan
    addchan liked this · 9 years ago
  • paisleymoons
    paisleymoons reblogged this · 9 years ago
  • i-lik3-giants
    i-lik3-giants reblogged this · 9 years ago
  • i-lik3-giants
    i-lik3-giants liked this · 9 years ago
  • trendstrend-blog
    trendstrend-blog reblogged this · 9 years ago
  • drderange
    drderange reblogged this · 9 years ago
  • drderange
    drderange liked this · 9 years ago
  • sepdet
    sepdet reblogged this · 9 years ago
  • nocoffeejuststudy
    nocoffeejuststudy reblogged this · 9 years ago
  • asterea
    asterea liked this · 9 years ago
  • katiekat1928-blog
    katiekat1928-blog liked this · 9 years ago
  • chryso-poeia
    chryso-poeia liked this · 9 years ago
  • melleh17
    melleh17 reblogged this · 9 years ago
  • melleh17
    melleh17 liked this · 9 years ago
  • maygodhavemercyonme
    maygodhavemercyonme reblogged this · 9 years ago
  • saiya-tina
    saiya-tina reblogged this · 9 years ago
  • ratchetracer
    ratchetracer liked this · 9 years ago
  • blubbyly
    blubbyly reblogged this · 9 years ago
  • blubbyly
    blubbyly liked this · 9 years ago
  • reckless0restlessness
    reckless0restlessness reblogged this · 9 years ago
  • markwyner
    markwyner liked this · 9 years ago
  • mooniat
    mooniat reblogged this · 9 years ago
  • mooniat
    mooniat liked this · 9 years ago
  • hauunted
    hauunted reblogged this · 9 years ago
  • amantedelalunayelmar
    amantedelalunayelmar liked this · 9 years ago
  • ethanpala
    ethanpala reblogged this · 9 years ago
  • dragonfruitsoup
    dragonfruitsoup liked this · 9 years ago
  • finding--bliss
    finding--bliss reblogged this · 9 years ago
  • pareidolaliiiiia
    pareidolaliiiiia liked this · 9 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags