Around The World 100,000 Times

Around the World 100,000 Times

The International Space Station is a microgravity laboratory in which an international crew of six people live and work while traveling at a speed of five miles per second (or 17,500 miles per hour), orbiting Earth every 90 minutes.

Monday, May 16, marks the International Space Station’s 100,000th orbit!

image

That’s more than 2,643,342,240 miles traveled! Which is also like 10 round trips to Mars, OR nearly the distance to Neptune!

image

The space station has been in orbit for over 17 years, and during that time, over 1,922 research investigations have been performed. More than 1,200 scientific results publications have been produced as a result. 

Important studies like the VEGGIE experiment, which is working to grow plants in microgravity, and the Twin’s Study, which is studying the impacts of microgravity on the human body, are helping us on our journey to Mars. Using this unique orbiting laboratory as a place to conduct research is helping us learn important things for future deep space missions. 

image

There have even been 222 different people that have visited the space station. This includes the current crew that is working and living on orbit. 

Did you know that the space station is the third brightest object in the sky? If you know when and where to look up, you can spot it on your own! Find out when and where to look up HERE. 

On Snapchat? Watch today’s Live Story to discover more about the orbiting laboratory and get a tour of the station! You can also add ‘nasa’ on Snapchat to get a regular dose of space. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

9 years ago

Astronomy Night at the White House

NASA took over the White House Instagram today in honor of Astronomy Night to share some incredible views of the universe and the world around us. Check out more updates from the astronauts, scientists, and students on South Lawn.

image

Here’s a nighttime view of Washington, D.C. from the astronauts on the International Space Station on October 17. Can you spot the White House? 

image

Check out this look at our sun taken by NASA’s Solar Dynamics Observatory. The SDO watches the sun constantly, and it captured this image of the sun emitting a mid-level solar flare on June 25. Solar flares are powerful bursts of radiation. Harmful radiation from a flare can’t pass through Earth’s atmosphere to physically affect humans on the ground. But when they’re intense enough, they can disturb the atmosphere in the layer where GPS and communications signals travel.

image

Next up is this incredible view of Saturn’s rings, seen in ultraviolet by NASA’s Cassini spacecraft. Hinting at the origin of the rings and their evolution, this ultraviolet view indicates that there’s more ice toward the outer part of the rings than in the inner part.

image

Take a look at the millions of galaxies that populate the patch of sky known as the COSMOS field, short for Cosmic Evolution Survey. A portion of the COSMOS field is seen here by NASA’s Spitzer Space Telescope. Even the smallest dots in this image are galaxies, some up to 12 billion light-years away. The picture is a combination of infrared data from Spitzer (red) and visible-light data (blue and green) from Japan’s Subaru telescope atop Mauna Kea in Hawaii. The brightest objects in the field are more than ten thousand times fainter than what you can see with the naked eye.

image

This incredible look at the Cat’s Eye nebula was taken from a composite of data from NASA’s Chandra X-ray Observatory and Hubble Space Telescope. This famous object is a so-called planetary nebula that represents a phase of stellar evolution that the Sun should experience several billion years from now. When a star like the Sun begins to run out of fuel, it becomes what is known as a red giant. In this phase, a star sheds some of its outer layers, eventually leaving behind a hot core that collapses to form a dense white dwarf star. A fast wind emanating from the hot core rams into the ejected atmosphere, pushes it outward, and creates the graceful filamentary structures seen with optical telescopes.

image

This view of the International Space Station is a composite of nine frames that captured the ISS transiting the moon at roughly five miles per second on August 2. The International Space Station is a unique place—a convergence of science, technology, and human innovation that demonstrates new technologies and makes research breakthroughs not possible on Earth. As the third brightest object in the sky, the International Space Station is easy to see if you know when to look up. You can sign up for alerts and get information on when the International Space Station flies over you at spotthestation.nasa.gov. Thanks for following along today as NASA shared the view from astronomy night at the White House. Remember to look up and stay curious!

7 years ago

I was looking at the GLOBE Observer experiments for citizens and was wondering how the eclipse affects the cloud type? Or, I guess, why is that an important thing to measure? Thank you for answering our questions!

As my dad likes to say, I went to college to take up space, so I’m not sure what happens in the atmosphere. However, I think that the atmospheric scientists are interested in the types of waves that will be set up by the temperature gradients generated by the eclipse. So as totality occurs you get a very fast temperature drop in a localized area. I believe this can set up strong winds which may affect the type of clouds and/or their shapes. This is going to be the best-observed eclipse! And one thing I’ve learned as a scientist is that you never know what you’ll find in your data so collect as much of it as possible even if you aren’t sure what you’ll find. That is sometimes when you get the most exciting results! Thanks for downloading the app and helping to collect the data! 


Tags
9 years ago

What Have We Learned About Pluto?

This month (March 2016), in the journal Science, New Horizons scientists have authored the first comprehensive set of papers describing results from last summer’s Pluto system flyby. These detailed papers completely transform our view of Pluto and reveal the former “astronomer’s planet” to be a real world with diverse and active geology, exotic surface chemistry, a complex atmosphere, puzzling interaction with the sun and an intriguing system of small moons.

Here’s a breakdown of what we’ve learned about Pluto:

image

1. Pluto has been geologically active throughout the past 4 billion years. The age-dating of Pluto’s surface through crater counts has revealed that Pluto has been geologically active throughout the past 4 billion years. Further, the surface of Pluto’s informally-named Sputnik Planum, a massive ice plain larger than Texas, is devoid of any detectable craters and estimated to be geologically young – no more than 10 million years old.

image

2. Pluto’s moon Charon has been discovered to have an ancient surface. As an example, the great expanse of smooth plains on Charon is likely a vast cryovolcanic flow or flows that erupted onto Charon’s surface about 4 billion years ago. These flows are likely related to the freezing of an internal ocean that globally ruptured Charon’s crust.

image

3. Pluto’s surface has many types of terrain. The distribution of compositional units on Pluto’s surface – from nitrogen-rich, to methane-rich, to water-rich – has been found to be surprisingly complex, creating puzzles for understanding Pluto’s climate and geologic history. The variations in surface composition on Pluto are unprecedented elsewhere in the outer solar system.

image

4. Pluto’s atmosphere is colder than we thought. Pluto’s upper atmospheric temperature has been found to be much colder (by about 70 degrees Fahrenheit) than had been thought from Earth-based studies, with important implications for its atmospheric escape rate. Why the atmosphere is colder is a mystery. 

image

5. We know what Pluto’s atmosphere is made of. The New Horizon spacecraft made observations of sunlight passing through Pluto’s atmosphere. We see absorption features that indicate an atmosphere made up of nitrogen (like Earth’s) with methane, acetylene and ethylene as minor constituents.

image

6. We might have an idea for how Pluto’s haze formed. For first time, a plausible mechanism for forming Pluto’s atmospheric haze layers has been found. This mechanism involves the concentration of haze particles by atmospheric buoyancy waves, created by winds blowing over Pluto’s mountainous topography. Pluto’s haze extends hundreds of kilometers into space, and embedded within it are over 20 very thin, but far brighter, layers.

image

7. There isn’t much dust around Pluto. Before the flyby, there was concern that a small piece of debris (even the size of a grain of sand) could cause great damage to (or even destroy) the spacecraft. But the Venetia Burney Student Dust Counter (an instrument on the New Horizons spacecraft) only counted a single dust particle within five days of the flyby. This is similar to the density of dust particles in free space in the outer solar system – about 6 particles per cubic mile – showing that the region around Pluto is, in fact, not filled with debris.

image

8. Pluto’s atmosphere is smaller than we expected. The uppermost region of Pluto’s atmosphere is slowly escaping to space. The hotter the upper atmosphere, the more rapid the gasses escape. The lower the planet’s mass, the lower the gravity, and the faster the atmospheric loss. As molecules escape, they are ionized by solar ultraviolet light. Once ionized, the charged molecules are carried away by the solar wind. As more Pluto-genic material is picked up by the solar wind, the more the solar wind is slowed down and deflected around Pluto. So - the net result is a region (the interaction region), which is like a blunt cone pointed toward the sun, where the escaping ionized gasses interact with the solar wind. The cone extends to a distance about 6 Pluto radii from Pluto toward the sun, but extend behind Pluto at least 400 Pluto radii behind Pluto - like a wake behind the dwarf planet.

image

9. Pluto’s moons are brighter than we thought. The high albedos (reflectiveness) of Pluto’s small satellites (moons) – about 50 to 80 percent – are entirely different from the much lower reflectiveness of the small bodies in the general Kuiper Belt population, which range from about 5 to 20 percent. This difference lends further support to the idea that these moons were not captured from the general Kuiper Belt population, but instead formed by the collection of material produced in the aftermath of the giant collision that created the entire Pluto satellite system.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Water on Mars!

image

Did you hear? New findings from our Mars Reconnaissance Orbiter (MRO) provide the strongest evidence yet that liquid water flows intermittently on present-day Mars.

Using an imaging spectrometer on MRO, we found hydrated minerals on slopes where mysterious streaks are seen on Mars. One thing that researchers noticed was that the darkish streaks appear to ebb and flow over time. During warm seasons, they darken and then fade in cooler seasons.

image

When discovered in 2010, these downhill flows known as recurring slope lineae (RSL) were thought to be related to liquid water. With the recent spectral detection of molecular water, we’re able to say it’s likely a shallow subsurface flow explains the darkening.

Mars is so cold, how could liquid water flow there? Great question! Since this liquid water is briny, the freezing point would be lower than that of pure water. Also, these saline slopes appear on Mars when temperatures are above minus 10 degrees Fahrenheit (minus 23 Celsius).

The dark, narrow streaks flowing downhill in the below image are roughly the length of a football field.

image

So there’s water, but how much? Currently we think this area has a very small amount of water, probably just enough to wet the top layer of the surface of Mars. The streaks are around four to five meters wide and 200 to 300 meters long.

Could humans drink this water? The salts in the water appear to be perchlorates, so you probably wouldn’t want to drink the water. It would most likely be very salty and would need to be purified before human consumption.

Perchlorate...What is that? A perchlorate is a salt that absorbs water from the air. Learn more about how it’s helping us unlock the mysteries of Mars in this video:

What’s next? We want to look for more locations where brine flows may occur. We have only covered 3% of Mars at resolutions high enough to see these features.

For more information on the Mars announcement, visit our Journey to Mars landing page. There is also a full recap of the press conference HERE, and a short recap below.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

NASA’s Fleet of Planet-hunters and World-explorers

Around every star there could be at least one planet, so we’re bound to find one that is rocky, like Earth, and possibly suitable for life. While we’re not quite to the point where we can zoom up and take clear snapshots of the thousands of distant worlds we’ve found outside our solar system, there are ways we can figure out what exoplanets light years away are made of, and if they have signs of basic building blocks for life. Here are a few current and upcoming missions helping us explore new worlds:

Kepler

image

Launched in 2009, the Kepler space telescope searched for planets by looking for telltale dips in a star’s brightness caused by crossing, or transiting, planets. It has confirmed more than 1,000 planets; of these, fewer than 20 are Earth-size (therefore possibly rocky) and in the habitable zone -- the area around a star where liquid water could pool on the surface of an orbiting planet. Astronomers using Kepler data found the first Earth-sized planet orbiting in the habitable zone of its star and one in the habitable zone of a sun-like star.

In May 2013, a second pointing wheel on the spacecraft broke, making it not stable enough to continue its original mission. But clever engineers and scientists got to work, and in May 2014, Kepler took on a new job as the K2 mission. K2 continues the search for other worlds but has introduced new opportunities to observe star clusters, young and old stars, active galaxies and supernovae.

Transiting Exoplanet Survey Satellite (TESS)

image

Revving up for launch around 2017-2018, NASA’s Transiting Exoplanet Survey Satellite (TESS) will find new planets the same way Kepler does, but right in the stellar backyard of our solar system while covering 400 times the sky area. It plans to monitor 200,000 bright, nearby stars for planets, with a focus on finding Earth and Super-Earth-sized planets. 

Once we’ve narrowed down the best targets for follow-up, astronomers can figure out what these planets are made of, and what’s in the atmosphere. One of the ways to look into the atmosphere is through spectroscopy.  

As a planet passes between us and its star, a small amount of starlight is absorbed by the gas in the planet’s atmosphere. This leaves telltale chemical “fingerprints” in the star’s light that astronomers can use to discover the chemical composition of the atmosphere, such as methane, carbon dioxide, or water vapor. 

James Webb Space Telescope

image

Launching in 2018, NASA’s most powerful telescope to date, the James Webb Space Telescope (JWST), will not only be able to search for planets orbiting distant stars, its near-infrared multi-object spectrograph will split infrared light into its different colors- spectrum- providing scientists with information about an physical properties about an exoplanet’s atmosphere, including temperature, mass, and chemical composition. 

Hubble Space Telescope

image

Hubble Space Telescope is better than ever after 25 years of science, and has found evidence for atmospheres bleeding off exoplanets very close to their stars, and even provided thermal maps of exoplanet atmospheres. Hubble holds the record for finding the farthest exoplanets discovered to date, located 26,000 light-years away in the hub of our Milky Way galaxy.

Chandra X-ray Observatory

image

Chandra X-ray Observatory can detect exoplanets passing in front of their parent stars. X-ray observations can also help give clues on an exoplanet’s atmosphere and magnetic fields. It has observed an exoplanet that made its star act much older than it actually is. 

Spitzer Space Telescope

image

Spitzer Space Telescope has been unveiling hidden cosmic objects with its dust-piercing infrared vision for more than 12 years. It helped pioneer the study of atmospheres and weather on large, gaseous exoplanets. Spitzer can help narrow down the sizes of exoplanets, and recently confirmed the closest known rocky planet to Earth.

SOFIA

image

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airplane mounted with an infrared telescope that can fly above more than 99 percent of Earth's atmospheric water vapor. Unlike most space observatories, SOFIA can be routinely upgraded and repaired. It can look at planetary-forming systems and has recently observed its first exoplanet transit. 

What’s Coming Next?

Analyzing the chemical makeup of Earth-sized, rocky planets with thin atmospheres is a big challenge, since smaller planets are incredibly faint compared to their stars. One solution is to block the light of the planets' glaring stars so that we can directly see the reflected light of the planets. Telescope instruments called coronagraphs use masks to block the starlight while letting the planet's light pass through. Another possible tool is a large, flower-shaped structure known as the starshade. This structure would fly in tandem with a space telescope to block the light of a star before it enters the telescope. 

All images (except SOFIA) are artist illustrations.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

A Q&A from the Space Station!

Did you miss it? Astronaut Scott Kelly answered questions over the weekend on People Magazine’s Facebook page! Anything and everything from his favorite food in space to his year aboard the International Space Station. 

Here are a few highlights from the conversation:

image
image
image
image
image
image
image
image
image

Follow Astronaut Scott Kelly during the remainder of his year in space: Facebook, Twitter, Instagram

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
7 years ago

Why We Study the Sun-Earth Connection – Explained Through Songs

We're launching a new mission to the International Space Station to continue measurements of the Sun's energy reaching Earth.

image

The Total and Spectral solar Irradiance Sensor (TSIS-1) will precisely measure the total amount of sunlight that falls on Earth and how that light is distributed among different wavelengths, including the ultraviolet, visible and infrared. This will give us a better understanding of Earth’s primary energy supply and help improve models simulating Earth’s climate.

1. You are my sunshine, my only sunshine. You make me happy when skies are gray.

image

The Sun is Earth's sunshine and it does more than make us happy; it gives us life. Our Sun's energy drives our planet's ocean currents, seasons, weather and climate. Changes in the Sun also alter our climate in at least two ways.

First, solar radiation has a direct effect where it heats regions of Earth, like our oceans, land, and atmosphere. Second, the solar radiation can cause indirect effects, such as when sunlight interacts with molecules in the upper atmosphere to produce ozone which can affect human health.  

image

Earth’s energy system is in a constant dance to maintain a balance between incoming energy from the Sun and outgoing energy from Earth to space, which scientists call Earth’s energy budget. If you have more energy absorbed by the Earth than leaving it, its temperature increases and vice versa. Because the Sun is Earth's fundamental energy source and only sunshine, we need a quantitative record of the Sun's solar energy output. TSIS-1 will provide the most accurate measurements ever made of sunlight as seen from above Earth’s atmosphere.

2. You're hot then you're cold…You're in then you're out. You're up then you're down.

image

The energy flow between the Earth and Sun's connection is not a constant thing. The Sun can be fickle, sometimes it puts out slightly more energy and some years less. Earth is no better. The Earth absorbs different amounts of the Sun's energy depending on many factors, such as the presence of clouds and tiny particles in the atmosphere called aerosols.  

What we do know is that the Sun's cycle is about 11 years rolling through periods of quiet to times of intense activity. When the Sun is super-intense it releases explosions of light and solar material. This time is a solar maximum.

When the Sun is in a quiet state this period is called the solar minimum.

image

Over the course of one solar cycle (one 11-year period), the Sun’s total emitted energy varies on average at about 0.1 percent. That may not sound like a lot, but the Sun emits a large amount of energy – 1,361 watts per square meter. Even fluctuations at just a tenth of a percent can affect Earth. That's why TSIS-1 is launching: to help scientists understand and anticipate how changes in the Sun will affect us on Earth.

3. You're so vain. You probably think this climate model is about you.

image

Scientists use computer models to interpret changes in the Sun’s energy input. If less solar energy is available, scientists can gauge how that affects Earth’s atmosphere, oceans, weather and seasons by using computer simulations. But the Sun is just one of many factors scientists use to model Earth’s climate. A lot of other factors come into play in addition to the energy from the Sun. Factors like greenhouse gases, clouds scattering light and small particles in the atmosphere called aerosols all can affect Earth’s climate so they all need to be included in climate models. So, while we need to measure the total amount of energy from the Sun, we also need to understand how these other factors alter the amount of energy reaching Earth's surface and affect our climate.

4. Someday we'll find it, the rainbow connection. The lovers, the dreamers and me.

image

We receive the Sun's energy in many different wavelengths, including visible light (rainbows!) as well as light we can't see like infrared and ultraviolet wavelengths. Each color or wavelength of light from the Sun affects Earth’s atmosphere differently.

For instance, ultraviolet light from the Sun can affect Earth's ozone. High in the atmosphere is a layer of protective ozone gas. Ozone is Earth’s natural sunscreen, absorbing the Sun’s most harmful ultraviolet radiation and protecting living things below. But ozone is vulnerable to certain gases made by humans that reach the upper atmosphere. Once there, they react in the presence of sunlight to destroy ozone molecules. Currently, several satellites from us and the National Oceanic and Atmospheric Administration (NOAA) track the ozone in the upper atmosphere and the solar energy that drives the photochemistry that creates and destroys ozone. Our new instrument, TSIS-1, will join that fleet with even better accuracy.

image

TSIS-1 will see different types of ultraviolet (UV) light, including UV-B and UV-C. Each plays a different role in the ozone layer. UV-C rays are essential in creating ozone. UV-B rays and some naturally occurring chemicals regulate the abundance of ozone in the upper atmosphere. The amount of ozone is a balance between these natural production and loss processes.

TSIS-1 data of the Sun's UV energy will help improve computer models of the atmosphere that need accurate measurements of sunlight across the ultraviolet spectrum to model the ozone layer correctly. While UV light represents a tiny fraction of the total sunlight that reaches the top of Earth's atmosphere, it fluctuates from 3 to 10 percent, a change that, in turn causes small changes in the chemical composition and thermal structure of the upper atmosphere.

This is just one of the important applications of TSIS-1 measurements. TSIS-1 will measure how the Sun's energy is distributed over 1,000 different wavelengths.

5. Every move you make…every step you take, I'll be watching you.

image

TSIS-1 will continue our nearly 40 years of closely studying the total amount of energy the Sun sends to Earth from space. We've previously studied this 'total solar irradiance' with nine previous satellites, currently with Solar Radiation and Climate Experiment, (SORCE).

image

NASA’s SORCE collected this data on the total amount of the Sun’s radiant energy throughout Sept. 2017. The satellite actually detected a dip in total irradiance – or the total amount of energy from the Sun- during the month’s intense solar activity.

But there's still very much we don't know about total solar irradiance. We do not know how it varies over longer timescales. Longer term observations are especially important because scientists have observed unusually quiet magnetic activity from the Sun for the past two decades with previous satellites. During the last prolonged solar minimum in 2008-2009, our Sun was the quietest it has ever been since we started observations in 1978. Scientists expect the Sun to enter a solar minimum within the next three years, and TSIS-1 will be primed to take measurements of the next minimum and see if this is part of a larger trend.

For all the latest Earth updates, follow us on Twitter @NASAEarth or Facebook. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

We’re Landing a Rover on Mars in 2020…But How Do We Decide Where?

In 2020, we will launch our next Mars rover. It will journey more than 33 million miles to the Red Planet where it will land, explore and search for signs of ancient microbial life. But how do we pinpoint the perfect location to complete this science…when we’re a million miles away on Earth?

image

We utilize data sent to us by spacecraft on and orbiting Mars. That includes spacecraft that have recorded data in the past.

This week, hundreds of scientists and Mars enthusiasts are gathering to deliberate the four remaining options for where we’re going to land the Mars 2020 rover on the Red Planet.

image

The landing site for Mars 2020 is of great interest to the planetary community because, among the rover's new science gear for surface exploration, it carries a sample system that will collect rock and soil samples and set them aside in a "cache" on the surface of Mars. A future mission could potentially return these samples to Earth. The next Mars landing, after Mars 2020, could very well be a vehicle which would retrieve these Mars 2020 samples.

Here's an overview of the potential landing sites for our Mars 2020 rover…

Northeast Syrtis

image

This area was once warmed by volcanic activity. Underground heat sources made hot springs flow and surface ice melt. Microbes could have flourished here in liquid water that was in contact with minerals. The layered terrain there holds a rich record of interactions between water and minerals over successive periods of early Mars history.

Jezero Crater

image

This area tells a story of the on-again, off-again nature of the wet past of Mars. Water filled and drained away from the crater on at least two occasions. More than 3.5 billion years ago, river channels spilled over the crater wall and created a lake. Scientists see evidence that water carried clay minerals from the surrounding area into the crater after the lake dried up. Conceivably, microbial life could have lived in Jezero during one or more of these wet times. If so, signs of their remains might be found in lakebed sediments.

Columbia Hills

image

At this site, mineral springs once bubbled up from the rocks. The discovery that hot springs flowed here was a major achievement of the Mars Exploration Rover, Spirit. The rover’s discovery was an especially welcome surprise because Spirit had not found signs of water anywhere else in the 100-mile-wide Gusev Crater. After the rover stopped working in 2010, studies of its older data records showed evidence that past floods may have formed a shallow lake in Gusev.

Midway

image

Candidate landing sites Jezero and Northeast Syrtis are approximately 37 km apart…which is close enough for regional geologic similarities to be present, but probably too far for the Mars 2020 rover to travel. This midway point allows exploration of areas of both landing sites.

image

How Will We Select a Site?

The team is gathered this week for the fourth time to discuss these locations. It'll be the final workshop in a series designed to ensure we receive the best and most diverse range of information and opinion from the scientific community before deciding where to send our newest rover.

The Mars 2020 mission is tasked with not only seeking signs of ancient habitable conditions on Mars, but also searching for signs of past microbial life itself. So how do we choose a landing site that will optimize these goals? Since InSight is stationary and needs a flat surface to deploy its instruments, we’re basically looking for a flat, parking lot area on Mars to land the spacecraft.

image

The first workshop started with about 30 candidate landing sites and was narrowed down to eight locations to evaluate further. At the end of the third workshop in February 2017, there were only three sites on the radar as potential landing locations…

…but in the ensuing months, a proposal came forward for a landing site that is in between Jezero and Northeast Syrtis – The Midway site. Since our goal is to get to the right site that provides the maximum science, this fourth site was viewed as worthy of being included in the discussions.

Now, with four sites remaining, champions for each option will take their turn at the podium, presenting and defending their favorite spot on the Red Planet.

image

On the final day, after all presentations have concluded, workshop participants will weigh the pros and cons of each site. The results of these deliberations will be provided to the Mars 2020 Team, which will incorporate them into a recommendation to NASA Headquarters. A final selection will be made and will likely be announced by the end of the year.

To get more information about the workshop, visit: https://marsnext.jpl.nasa.gov/workshops/wkshp_2018_10.cfm

Learn more about our Mars 2020 rover HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Six Science-y Shipments Sent to the Space Station

Northrop Grumman launched its Cygnus spacecraft into orbit to the International Space Station at 4:01 a.m. EST on Nov. 17 from Wallops Flight Facility in Virginia. Cygnus launched on an Antares rocket carrying crew supplies, equipment and scientific research to crewmembers aboard the station. The spacecraft is named after NASA astronaut and U.S. Navy officer John Young, who walked on the Moon during Apollo 16 and commanded the first space shuttle mission. Throughout his lifetime, Young logged 835 hours in space over the course of six missions.

Antares launched the S.S. John Young from the Mid-Atlantic Regional Spaceport’s Pad-0A on Wallops Island, carrying tons of cargo, including scientific investigations that will study 3D printing and recycling, cement solidification, and crystals that may fight Parkinson’s disease.

image

Here’s a look at six science-y experiments and research this mission will deliver to the space station.

1. 3D printing and recycling

Refabricator demonstrates an integrated 3D printer and recycler for the first time aboard the space station.

image

It recycles waste plastic materials into high-quality 3D-printer filament, which could enable sustainable fabrication, repair, and recycling on long-duration space missions.

2. Sensory input in microgravity

Changes in sensory input in microgravity may be misinterpreted and cause a person to make errors in estimation of velocity, distance or orientation.

image

VECTION, a Canadian Space Agency (CSA) investigation, examines this effect as well as whether people adapt to altered sensory input on long-duration missions and how that adaptation changes upon return to Earth.

3. Solidifying cement in space

The MVP-Cell 05 investigation uses a centrifuge to provide a variable gravity environment to study the complex process of cement solidification, a step toward eventually making and using concrete on extraterrestrial bodies.

image

4. From stardust to solar systems

Much of the universe was created when dust from star-based processes clumped into intermediate-sized particles and eventually became planets, moons and other objects. Many questions remain as to just how this worked, though.

image

The EXCISS investigation seeks answers by simulating the high-energy, low gravity conditions that were present during formation of the early solar system. Scientists plan to zap a specially formulated dust with an electrical current, then study the shape and texture of pellets formed.

5. Growing crystals to fight Parkinson’s disease

The CASIS PCG-16 investigation grows large crystals of an important protein, Leucine-rich repeat kinase 2, or LRRK2, in microgravity for analysis back on Earth.

image

This protein is implicated in development of Parkinson’s disease, and defining its shape and morphology may help scientists better understand the pathology of the disease and develop therapies to treat it. Crystals of LRRK2 grown in gravity are too small and too compact to study, making microgravity an essential part of this research.

6. Better gas separation membranes

Membranes represent one of the most energy-efficient and cost-effective technologies for separating and removing carbon dioxide from waste gases, thereby reducing greenhouse gas emissions. CEMSICA tests membranes made from particles of calcium-silicate (C-S) with pores 100 nanometers or smaller. Producing these membranes in microgravity may resolve some of the challenges of their manufacture on Earth and lead to development of lower-cost, more durable membranes that use less energy. The technology ultimately may help reduce the harmful effects of CO2 emissions on the planet.

For daily updates, follow @ISS_Research.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Five Orion Technologies That Will Help Us Get Home From Mars

Orion is a key piece of NASA’s journey to Mars. The spacecraft, which was first tested in space last year, will enable crew to travel to deep space on the journey to the Red Planet and bring astronauts home safely. It’s a critical technology we’ll use to help NASA test, demonstrate and hone the skills and capabilities we need to operate farther and farther away from Earth.

image

Environmental Control and Life Support Systems

Water. Air. A temperate environment. A bathroom. These are some of the things astronauts need to survive the long journey back to Earth from Mars. NASA has developed an environmental control and life support system on the International Space Station and is designing such a system for Orion. The system can recycle carbon dioxide and make it back into useable air and process urine to make it into potable water, for example. Right now on the space station, engineers and astronauts are testing a filtering system for efficiency and reliability on long-duration missions. The investigation uses an amine-based chemical compound combined with the vacuum of space to filter and renew cabin air for breathing. When astronauts travel home from Mars, they won’t be able to count on the arrival of spare parts or extra supplies if something breaks or gets depleted, so engineers are hard at work developing reliable and robust technologies to keep crews alive and healthy in space.

image

Radiation protection

Astronauts traveling to and from Mars will be far away from the protective shield of Earth’s atmosphere and magnetic field, and their spacecraft and its systems will need to be able to protect against the full spectrum of space radiation. NASA is working now to develop protective methods.  

Orion will use items already on board to protect the crew and create a temporary shelter in the aft bay of the spacecraft, which is the inside portion closest to the heat shield. This location minimizes the amount of equipment to move around while maximizing the amount of material that can be placed between the crew and the outside environment. The items that will be used include supplies, equipment and launch and re-entry seats as well as water and food. By using the items already on board, the astronauts benefit from additional shielding without adding to Orion’s mass.

image

Power and Propulsion

A spacecraft needs power and propulsion in space to refine its trajectory during the trip back to Earth. Orion will include a service module capable of helping the spacecraft make any necessary mid-course corrections. A service module provides power, heat rejection, in-space propulsion and water and air for crews, and NASA is working with ESA (European Space Agency) to provide Orion’s service module for its next mission in a partnership that will also bring international cooperation on the journey to Mars. The service module will provide propulsion, batteries and solar arrays to generate power and contain all the air, nitrogen and water for crews.

The ESA-provided element brings together new technology and lightweight materials while also taking advantage of spaceflight-proven hardware. For example, ESA is modeling several key components – like the solar arrays – from technology developed for its Automated Transfer Vehicle-series of cargo vessels, which delivered thousands of pounds of supplies to the space station during five missions between 2008 and 2015. NASA is providing ESA one of the Orbital Maneuvering System pods that allowed space shuttles to move in space to be upgraded and integrated into the service module.

image

Heat shield

When an uncrewed Orion was tested in space in 2014, the heat shield withstood temperatures of about 4,000 degrees Fahrenheit, or about twice as hot as molten lava. That heat was generated when the spacecraft, traveling at about 20,000 mph back toward our planet, made its way through Earth’s atmosphere, which acts as a braking mechanism to cause friction and slow down a returning spacecraft. Its speed was about 80 percent of what Orion will experience when it comes back from missions near the moon and will need to be even more robust for missions where return speeds, and therefore reentry temperatures, are higher.

Orion’s heat shield is built around a titanium skeleton and carbon fiber skin that provide structural support. A honeycomb structure fits over the skin with thousands of cells that are filled with a material called Avcoat. That layer is 1.6 inches at its thickest and erodes as Orion travels through Earth’s atmosphere.

image

Parachutes

A spacecraft bringing crews back to Earth after a long trip to Mars will need a parachute system to help it slow down from its high-speed reentry through the atmosphere to a relatively slow speed for splashdown in the ocean. While Earth’s atmosphere will initially slow Orion down from thousands of miles per hour to about 325 mph, its 11 parachutes will deploy in precise sequence to further slow the capsule’s descent. There are three forward bay cover parachutes that pull a protective cover off the top of the capsule, two drogue parachutes that deploy to stabilize the spacecraft, and three pilot parachutes that are used to pull out Orion’s three orange and white main parachutes that are charged with slowing the spacecraft to its final landing speed. The main parachutes are so big that the three of them together nearly cover an entire football field.

Engineers are currently building the Orion spacecraft that will launch on the world’s most powerful rocket, the Space Launch System, and will enable astronauts to travel farther into space than ever before on the journey to Mars.

Visit NASA on the Web for more information about Orion and NASA’s journey to Mars. http://www.nasa.gov/orion 

Loading...
End of content
No more pages to load
  • darthkyros
    darthkyros reblogged this · 3 years ago
  • ledentsa
    ledentsa liked this · 6 years ago
  • mojomatao
    mojomatao reblogged this · 6 years ago
  • pepdart
    pepdart liked this · 6 years ago
  • justinrezz
    justinrezz liked this · 7 years ago
  • timallenphoto
    timallenphoto liked this · 7 years ago
  • ponywing
    ponywing liked this · 8 years ago
  • spidermonkey1775
    spidermonkey1775 reblogged this · 8 years ago
  • spidermonkey1775
    spidermonkey1775 liked this · 8 years ago
  • microbefanatic
    microbefanatic liked this · 8 years ago
  • omeletti
    omeletti liked this · 8 years ago
  • tiranosauriosrex
    tiranosauriosrex liked this · 8 years ago
  • teresaintheworld
    teresaintheworld liked this · 8 years ago
  • jedihorkpeltssatan
    jedihorkpeltssatan reblogged this · 8 years ago
  • yozoshimada
    yozoshimada liked this · 8 years ago
  • fleurdebach5-blog
    fleurdebach5-blog liked this · 8 years ago
  • gummy-island-blog
    gummy-island-blog liked this · 8 years ago
  • thingsmydadmightlike-blog
    thingsmydadmightlike-blog reblogged this · 8 years ago
  • imflyingcactus
    imflyingcactus reblogged this · 8 years ago
  • spaceman93-blog1
    spaceman93-blog1 reblogged this · 8 years ago
  • contradicting-enigma
    contradicting-enigma reblogged this · 8 years ago
  • contradicting-enigma
    contradicting-enigma liked this · 8 years ago
  • nerdyjoq
    nerdyjoq reblogged this · 8 years ago
  • everbright-mourning
    everbright-mourning reblogged this · 8 years ago
  • caststone
    caststone reblogged this · 8 years ago
  • everbright-mourning
    everbright-mourning liked this · 8 years ago
  • hyperspeedelephants
    hyperspeedelephants liked this · 8 years ago
  • dontsquishkat
    dontsquishkat liked this · 8 years ago
  • salt-hag
    salt-hag liked this · 8 years ago
  • alfaro117
    alfaro117 reblogged this · 8 years ago
  • alfaro117
    alfaro117 liked this · 8 years ago
  • mckitterick
    mckitterick reblogged this · 8 years ago
  • mckitterick
    mckitterick liked this · 8 years ago
  • medagirl
    medagirl liked this · 8 years ago
  • thebluelibra
    thebluelibra liked this · 8 years ago
  • bitter-derivative
    bitter-derivative reblogged this · 8 years ago
  • bat-boss-golem-us-blog
    bat-boss-golem-us-blog liked this · 8 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags