Peering deep into the core of the Crab Nebula, this close-up image reveals the beating heart of one of the most historic and intensively studied remnants of a supernova, an exploding star. The inner region sends out clock-like pulses of radiation and tsunamis of charged particles embedded in magnetic fields.
The neutron star at the very center of the Crab Nebula has about the same mass as the sun but compressed into an incredibly dense sphere that is only a few miles across. Spinning 30 times a second, the neutron star shoots out detectable beams of energy that make it look like it's pulsating.
The Hubble Space Telescope snapshot is centered on the region around the neutron star (the rightmost of the two bright stars near the center of this image) and the expanding, tattered, filamentary debris surrounding it. Hubble's sharp view captures the intricate details of glowing gas, shown in red, that forms a swirling medley of cavities and filaments. Inside this shell is a ghostly blue glow that is radiation given off by electrons spiraling at nearly the speed of light in the powerful magnetic field around the crushed stellar core.
Read more about this image HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
NASA astronauts Shannon Walker, Victor Glover, and Mike Hopkins, and JAXA (Japan Aerospace Exploration Agency) astronaut Soichi Noguchi embark on a historic mission on November 14, 2020 aboard the Crew Dragon. NASA’s Crew-1 mission marks the first certified crew rotation flight to the International Space Station. During their 6-month stay on orbit, these crew members will don their science caps and complete experiments in microgravity. Check out five out of this world experiments you can expect to see these space scientists working on during Expedition 64.
The Crew-1 astronauts will become space farmers with the responsibility of tending to the rad(ish) garden located in a facility known as the Advanced Plant Habitat (APH). Researchers are investigating radishes in the Plant Habitat-02 experiment as a candidate crop for spaceflight applications to supplement food sources for astronauts. Radishes have the benefits of high nutritional content and quick growth rates, making these veggies an intriguing option for future space farmers on longer missions to the Moon or Mars.
Microbes can seemingly do it all, including digging up the dirt (so to speak). The BioAsteroid investigation looks at the ability of bacteria to break down rock. Future space explorers could use this process for extracting elements from planetary surfaces and refining regolith, the type of soil found on the moon, into usable compounds. To sum it up, these microbial miners rock.
The iconic spacesuits used to walk on the moon and perform spacewalks on orbit are getting an upgrade. The next generation spacesuit, the Exploration Extravehicular Mobility Unit (xEMU), will be even cooler than before, both in looks and in terms of ability to regulate astronaut body temperature. The Spacesuit Evaporation Rejection Flight Experiment (SERFE) experiment is a technology demonstration being performed on station to look at the efficiency of multiple components in the xEMU responsible for thermal regulation, evaporation processes, and preventing corrosion of the spacesuits.
Crew-1 can expect to get a delivery of many types of chips during their mission. We aren’t referring to the chips you would find in your pantry. Rather, Tissue Chips in Space is an initiative sponsored by the National Institutes of Health to study 3D organ-like constructs on a small, compact devices in microgravity. Organ on a chip technology allows for the study of disease processes and potential therapeutics in a rapid manner. During Expedition 64, investigations utilizing organ on a chip technology will include studies on muscle loss, lung function, and the blood brain barrier – all on devices the size of a USB flashdrive.
Circadian rhythm, otherwise known as our "internal clock," dictates our sleep-wake cycles and influences cognition. Fruit flies are hitching a ride to the space station as the subjects of the Genes in Space-7 experiment, created by a team of high school students. These flies, more formally known as the Drosophila melanogaster, are a model organism, meaning that they are common subjects of scientific study. Understanding changes in the genetic material that influences circadian rhythm in microgravity can shed light on processes relevant to an astronaut’s brain function.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
For updates on other platforms, follow @ISS_Research, Space Station Research and Technology News, or our Facebook to keep up with the science happening aboard your orbiting laboratory, and step outside to see the space station passing over your town using Spot the Station.
This month binoculars will come in handy--to view the moon, star clusters, and a close pairing of Venus and Jupiter.
You can’t miss bright Venus in the predawn sky. This month Venus pairs up with Jupiter on the morning of November 13th.
The Leonids peak on a moonless November 17th. Expect no more than 10 meteors an hour around 3:00 a.m., the height of the shower.
The Northern and Southern sub-branches of the Taurid meteor shower offer sparse counts of about 5 meteors per hour, but slow, bright meteors are common.
The nearby November Orionids peak on the 28th. In contrast to the Taurids, the Orionids are swift. But don’t expect more than 3 meteors per hour.
The moon glides by three beautiful star clusters in the morning sky this month, and a pair of binoculars will allow you to see the individual stars in the clusters. Aim your binoculars at the Pleiades and the moon on the 5th.
Then aim at the Messier or M-35 cluster and the moon on the 7th and the Beehive cluster and the moon on the 10th.
Meanwhile, at dusk, catch Saturn as it dips closer to the western horizon and pairs up with Mercury on the 24th through the 28th.
Also, Comet C/2017 O1 should still be a binocular-friendly magnitude 7 or 8 greenish object in November. Use Polaris, the North Star as a guide. Look in the East to Northeast sky in the late evening.
Watch the full What’s Up for November Video:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Science is a shared endeavor. We learn more when we work together. Today, July 18, we’re using three different space telescopes to observe the same star/planet system!
As our Transiting Exoplanet Survey Satellite (TESS) enters its third year of observations, it's taking a new look at a familiar system this month. And today it won't be alone. Astronomers are looking at AU Microscopii, a young fiery nearby star – about 22 million years old – with the TESS, NICER and Swift observatories.
TESS will be looking for more transits – the passage of a planet across a star – of a recently-discovered exoplanet lurking in the dust of AU Microscopii (called AU Mic for short). Astronomers think there may be other worlds in this active system, as well!
Our Neutron star Interior Composition Explorer (NICER) telescope on the International Space Station will also focus on AU Mic today. While NICER is designed to study neutron stars, the collapsed remains of massive stars that exploded as supernovae, it can study other X-ray sources, too. Scientists hope to observe stellar flares by looking at the star with its high-precision X-ray instrument.
Scientists aren't sure where the X-rays are coming from on AU Mic — it could be from a stellar corona or magnetic hot spots. If it's from hot spots, NICER might not see the planet transit, unless it happens to pass over one of those spots, then it could see a big dip!
A different team of astronomers will use our Neil Gehrels Swift Observatory to peer at AU Mic in X-ray and UV to monitor for high-energy flares while TESS simultaneously observes the transiting planet in the visible spectrum. Stellar flares like those of AU Mic can bathe planets in radiation.
Studying high-energy flares from AU Mic with Swift will help us understand the flare-rate over time, which will help with models of the planet’s atmosphere and the system’s space weather. There's even a (very) small chance for Swift to see a hint of the planet's transit!
The flares that a star produces can have a direct impact on orbiting planets' atmospheres. The high-energy photons and particles associated with flares can alter the chemical makeup of a planet's atmosphere and erode it away over time.
Another time TESS teamed up with a different spacecraft, it discovered a hidden exoplanet, a planet beyond our solar system called AU Mic b, with the now-retired Spitzer Space Telescope. That notable discovery inspired our latest poster! It’s free to download in English and Spanish.
Spitzer’s infrared instrument was ideal for peering at dusty systems! Astronomers are still using data from Spitzer to make discoveries. In fact, the James Webb Space Telescope will carry on similar study and observe AU Mic after it launches next year.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Hundreds of pieces of rockets, rocket engines, boosters, space capsules, launch structures and more have been built, tested and prepared to take us on our Journey to Mars. Across the country, America’s space program is hard at work to launch the Orion space capsule on its first uncrewed flight atop the powerful Space Launch System in 2018.
But enough of the artist concepts, let’s take a look at the real components being made across the country to prepare for this milestone:
From testing individual bracket strength to space flight tests, the Orion team is testing every component and subsystem of the spacecraft to ensure crew safety, operational reliability and backup systems are built into the spacecraft from the ground up. To date, hundreds of tests have been conducted across the program to verify and validate that Orion’s design, manufacturing and systems integration meet the rigorous requirements for safe human space exploration.
Orion engineers have subjected the spacecraft to deafening sound blasts, Earthquake-like vibrations and hurricane-force winds in preparation for Orion’s next flight. Large structures such as Orion’s crew and service modules were tested at Lockheed Martin’s Waterton Facility in Littleton, Colorado, and our Glenn Research Center’s Plum Brook Station in Sandusky, Ohio. Motor and engine tests have been conducted at Aerojet Rocketdyne’s facility in Sacramento, California, and Orbital ATK’s facilities in Promontory, Utah, and Elkton, Maryland.
Water impact testing of Orion’s landing capabilities were conducted at our Langley Research Center in Hampton, Virginia, and the capsule’s massive parachute system has been tested in various landing scenarios at the U.S. Army’s Yuma Proving Ground in Arizona. Final assembly, integration and pre-flight testing will take place at our Kennedy Space Center in Florida.
Towering more than 320 feet, the Space Launch System will be the world’s most powerful rocket. Consisting of a core stage and two boosters, RS-25 engines, and the software to power it all, the initial configuration will provide 15 percent more thrust at launch than the Saturn V rocket and carry more than three times the mass of the Space Shuttle. When complete, we’ll be ready to fire up the largest and most powerful rocket ever built on it’s inaugural launch.
At our Michoud Assembly Facility in New Orleans, a talented crew of humans with the latest in machinery is building SLS’s core stage. The core stage is the structural backbone of SLS that stores cryogenic liquid hydrogen and liquid oxygen that feed the vehicle’s four RS-25 engines.
For two monumental minutes in June, the SLS solid rocket boosters fired up in an amazing display of power as engineers verified their designs in the last full-scale test before SLS’s first flight. The smoke and fire may last only two minutes, but engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Orbital ATK in Promontory, Utah, prepared weeks — even months — in advance for that test.
At our Kennedy Space Center in Florida, teams are hard at work transforming the historic Vehicle Assembly Building for the launches of tomorrow. Like a stairway to the heavens, these upgrades include the building and installation of platforms to access the new Space Launch System rocket.
Before SLS roars into deep space from Launch Pad 39B, our Ground Systems program continues making significant upgrades and modifications to the historic launch pad to accommodate the new rocket’s shape and size.
To make room for this new generation of rockets, workers took down the gantry that stood in support of the Space Shuttle program for 30 years and replaced it with, well, not much really. But that was the idea. Whenever SLS heads out to the pad in the future, it's going to bring its support structure with it. With that in mind, Pad 39B will provide all the fluids, electrical, and communications services to the launch platform.
All of this work is essential to get SLS flight ready before it’s maiden voyage and is an important step on our Journey to Mars.
The work happening across the country is preparing us for the first flight of SLS and Orion in 2018. That first, uncrewed test flight is critical to paving the way for future flights that will carry astronauts to deep space, including on a journey to Mars.
Ultimately, the SLS maiden flight will help us prepare for future human missions. During this flight, currently designated Exploration Mission-1, the spacecraft will travel thousands of miles beyond the moon over the course of about a three-week mission.
It will launch on the most powerful rocket in the world and fly farther than any spacecraft built for humans has ever flown. Orion will stay in space longer than any ship for astronauts has done without docking to a space station and return home faster and hotter than ever before.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Hello. As the moon is moving farther from the earth, we will some day have no more solar eclipses. When will this happen?
Yup someday (I believe in about 650 million years) the moon will be too far away for solar eclipses to occur. We’re actually quite lucky that we get to see them at all. Not all planets get to experience eclipses.
Our newest communications satellite, named the Tracking and Data Relay Satellite-M or TDRS-M, launches Aug. 18 aboard an Atlas V rocket from our Kennedy Space Center in Florida. It will be the 13th TDRS satellite and will replenish the fleet of satellites supporting the Space Network, which provides nearly continuous global communications services to more than 40 of our missions.
Communicating from space wasn’t always so easy. During our third attempt to land on the moon in 1970, the Apollo 13 crew had to abort their mission when the spacecraft’s oxygen tank suddenly exploded and destroyed much of the essential equipment onboard. Made famous in the movie ‘Apollo 13’ by Ron Howard and starring Tom Hanks, our NASA engineers on the ground talked to the crew and fixed the issue. Back in 1970 our ground crew could only communicate with their ground teams for 15 percent of their orbit – adding yet another challenge to the crew. Thankfully, our Apollo 13 astronauts survived and safely returned to Earth.
Now, our astronauts don’t have to worry about being disconnected from their teams! With the creation of the TDRS program in 1973, space communications coverage increased rapidly from 15 percent coverage to 85 percent coverage. And as we’ve continued to add TDRS spacecraft, coverage zoomed to over 98 percent!
TDRS is a fleet of satellites that beam data from low-Earth-orbiting space missions to scientists on the ground. These data range from cool galaxy images from the Hubble Space Telescope to high-def videos from astronauts on the International Space Station! TDRS is operated by our Space Network, and it is thanks to these hardworking engineers and scientists that we can continuously advance our knowledge about the universe!
What’s up next in space comm? Only the coolest stuff ever! LASER BEAMS. Our scientists are creating ways to communicate space data from missions through lasers, which have the ability to transfer more data per minute than typical radio-frequency systems. Both radio-frequency and laser comm systems send data at the speed of light, but with laser comm’s ability to send more data at a time through infrared waves, we can receive more information and further our knowledge of space.
How are we initiating laser comm? Our Laser Communications Relay Demonstration is launching in 2019! We’re only two short years away from beaming space data through lasers! This laser communications demo is the next step to strengthen this technology, which uses less power and takes up less space on a spacecraft, leaving more power and room for science instruments.
Watch the TDRS launch live online at 8:03 a.m. EDT on Aug. 18: https://www.nasa.gov/nasalive
Join the conversation on Twitter: @NASA_TDRS and @NASALasercomm!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
For the first time in history, a spacecraft has touched the Sun. Our Parker Solar Probe flew right through the Sun’s atmosphere, the corona. (That’s the part of the Sun that we can see during a total solar eclipse.)
This marks one great step for Parker Solar Probe and one giant leap for solar science! Landing on the Moon helped scientists better understand how it was formed. Now, touching the Sun will help scientists understand our star and how it influences worlds across the solar system.
Unlike Earth, the Sun doesn’t have a solid surface (it’s a giant ball of seething, boiling gases). But the Sun does have a superheated atmosphere. Heat and pressure push solar material away from the Sun. Eventually, some of that material escapes the pull of the Sun’s gravity and magnetism and becomes the solar wind, which gusts through the entire solar system.
But where exactly does the Sun’s atmosphere end and the solar wind begin? We’ve never known for sure. Until now!
In April 2021, Parker Solar Probe swooped near the Sun. It passed through a massive plume of solar material in the corona. This was like flying into the eye of a hurricane. That flow of solar stuff — usually a powerful stream of particles — hit the brakes and went into slow-motion.
For the first time, Parker Solar Probe found itself in a place where the Sun’s magnetism and gravity were strong enough to stop solar material from escaping. That told scientists Parker Solar Probe had passed the boundary: On one side, space filled with solar wind, on the other, the Sun’s atmosphere.
Parker Solar Probe’s proximity to the Sun has led to another big discovery: the origin of switchbacks, zig-zag-shaped magnetic kinks in the solar wind.
These bizarre shapes were first observed in the 1990s. Then, in 2019, Parker Solar Probe revealed they were much more common than scientists first realized. But they still had questions, like where the switchbacks come from and how the Sun makes them.
Recently, Parker Solar Probe dug up two important clues. First, switchbacks tend to have lots of helium, which scientists know comes from the solar surface. And they come in patches.
Those patches lined up just right with magnetic funnels that appear on the Sun’s surface. Matching these clues up like puzzle pieces, scientists realized switchbacks must come from near the surface of the Sun.
Figuring out where switchbacks come from and how they form will help scientists understand how the Sun produces the solar wind. And that could clue us into one of the Sun’s biggest mysteries: why the Sun’s atmosphere is much, much hotter than the surface below.
Parker Solar Probe will fly closer and closer to the Sun. Who knows what else we’ll discover?
Make sure to follow us on Tumblr for your regular dose of space!
Do you ever get to work along side people you use to look up to?
I did get a chance to work with some people that I really looked up to, and I was surprised by their generosity and giving me great advice. They’re busy people, and they spent hours giving me great advice.
In the latest installment of our First Woman graphic novel series, we see Commander Callie Rodriguez embark on the next phase of her trailblazing journey, as she leaves the Moon to take the helm at Mission Control.
Flight directors work in Mission Control to oversee operations of the International Space Station and Artemis missions to the Moon. They have a unique, overarching perspective focused on integration between all the systems that make a mission a success – flight directors have to learn a little about a lot.
Diane Dailey and Chloe Mehring were selected as flight directors in 2021. They’ll be taking your questions about what it’s like to lead teams of flight controllers, engineers, and countless professionals, both agencywide and internationally, in an Answer Time session on Nov. 28, 2023, from noon to 1 p.m. EST (9-10 a.m. PST) here on our Tumblr!
Like Callie, how did their unique backgrounds and previous experience, prepare them for this role? What are they excited about as we return to the Moon?
🚨 Ask your questions now by visiting https://nasa.tumblr.com/ask.
Diane Dailey started her career at NASA in 2006 in the space station Environmental Control and Life Support Systems (ECLSS) group. As an ECLSS flight controller, she logged more than 1,700 hours of console time, supported 10 space shuttle missions, and led the ECLSS team. She transitioned to the Integration and System Engineering (ISE) group, where she was the lead flight controller for the 10th and 21st Commercial Resupply Services missions for SpaceX. In addition, she was the ISE lead for NASA’s SpaceX Demo-1 and Demo-2 crew spacecraft test flights. Dailey was also a capsule communicator (Capcom) controller and instructor.
She was selected as a flight director in 2021 and chose her call sign of “Horizon Flight” during her first shift in November of that year. She has since served as the Lead Flight director for the ISS Expedition 68, led the development of a contingency spacewalk, and led a spacewalk in June to install a new solar array on the space station. She is currently working on development of the upcoming Artemis II mission and the Human Lander Systems which will return humanity to the moon. Dailey was raised in Lubbock, Texas, and graduated from Texas A&M University in College Station with a bachelor’s degree in biomedical engineering. She is married and a mother of two. She enjoys cooking, traveling, and spending time outdoors.
Chloe Mehring started her NASA career in 2008 in the Flight Operations’ propulsion systems group and supported 11 space shuttle missions. She served as propulsion support officer for Exploration Flight Test-1, the first test flight of the Orion spacecraft that will be used for Artemis missions to the Moon. Mehring was also a lead NASA propulsion officer for SpaceX’s Crew Dragon spacecraft and served as backup lead for the Boeing Starliner spacecraft. She was accepted into the 2021 Flight Director class and worked her first shift in February 2022, taking on the call sign “Lion Flight”. Since becoming certified, she has worked over 100 shifts, lead the NG-17 cargo resupply mission team, and executed two United States spacewalks within 10 days of each other. She became certified as a Boeing Starliner Flight Director, sat console for the unmanned test flight in May 2022 (OFT-2) and will be leading the undock team for the first crewed mission on Starliner in the spring of next year. She originally is from Mifflinville, Pennsylvania, and graduated with a bachelor’s degree in aerospace engineering from The Pennsylvania State University in State College. She is a wife, a mom to one boy, and she enjoys fitness, cooking and gardening.
Our solar system is huge, so let us break it down for you. Here are 5 things to know this week:
1. Dancing with a Star
Our local star, better known as the sun, teems with activity. This month NASA has been tracking regions that burst with magnetic loops. The Solar Dynamics Observatory is one of several space-based assets that keep tabs on the sun daily, watching as charged particles trace the magnetic field, forming bright lines as they emit light in ultraviolet wavelengths.
2. An Idyll for Ida
On Nov. 24, the asteroid Ida makes its closest approach to Earth (at a very safe distance). Ida is the first asteroid found to have its own moon, and the second ever visited by a spacecraft. Its close encounter happened in 1993 as Galileo flew by en route to Jupiter.
3. Moonshine
On Nov. 23, the Cassini spacecraft will fly near Saturn's icy moon Tethys. Several instruments aboard Cassini will collect data, including an eight-frame color image mosaic. Between Nov. 27 and Dec. 2, Cassini will have very limited communications with Earth, because Cassini will enter solar conjunction, when Cassini and Saturn are on the other side of the Sun from Earth.
4. The Moon Will Occult Aldebaran
That may sound ominous, but all it means is that Earth's moon will pass in front of the giant red star Aldebaran on Nov. 26. Aldebaran is the bright "eye" of the constellation Taurus. The event will only be visible in some parts of North America. Details can be found HERE.
5. One Wild Ride, One Year Later
What a year it's been for the Rosetta mission since the Philae lander came to rest on the surface of Comet 67P/Churyumov-Gerasimenko in November 2014. A steady flow of data from the orbiter, together with several days of information sent from the lander, is providing a detailed picture of this remnant from the creation of the solar system.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts