Good news for future astronauts: scientists are closer to being able to predict when global dust storms will strike the Red Planet. The winds there don't carry nearly the same force that was shown in the movie "The Martian," but the dust lofted by storms can still wreak havoc on people and machines, as well as reduce available solar energy. Recent studies indicate a big storm may be brewing during the next few months.
+ Get the full forecast
Our Opportunity Mars rover will drive down an ancient gully that may have been carved by liquid water. Several spacecraft at Mars have observed such channels from a distance, but this will be the first up-close exploration. Opportunity will also, for the first time, enter the interior of Endeavour Crater, where it has worked for the last five years. All this is part of a two-year extended mission that began Oct. 1, the latest in a series of extensions going back to the end of Opportunity's prime mission in April 2004. Opportunity landed on Mars in January of that year, on a mission planned to last 90 Martian days (92.4 Earth days). More than 12 Earth years later, it's still rolling.
+ Follow along + See other recent pictures from Endeavour Crater
Opportunity isn't the only NASA Mars rover getting a mission extension. On the other side of the planet, the Curiosity rover is driving and collecting samples amid some of the most scenic landscapes ever visited on Mars. Curiosity's two-year mission extension also began Oct. 1. It's driving toward uphill destinations, including a ridge capped with material rich in the iron-oxide mineral hematite, about a mile-and-a-half (two-and-a-half kilometers) ahead. Beyond that, there's an exposure of clay-rich bedrock. These are key exploration sites on lower Mount Sharp, which is a layered, Mount-Rainier-size mound where Curiosity is investigating evidence of ancient, water-rich environments that contrast with the harsh, dry conditions on the surface of Mars today.
+ Learn more
Meanwhile, the Mars Reconnaissance Orbiter continues its watch on the Red Planet from above. The mission team has just released a massive new collection of super-high-resolution images of the Martian surface.
+ Take a look
In the year 2020, Opportunity and Curiosity will be joined by a new mobile laboratory on Mars. In the past week, we tested new "eyes" for that mission. The Mars 2020 rover's Lander Vision System helped guide the rocket to a precise landing at a predesignated target. The system can direct the craft toward a safe landing at its primary target site or divert touchdown toward better terrain if there are hazards in the approaching target area.
+ Get details
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Weather permitting, you can observe the Moon most nights, unless it's a new moon, when the lighted side of the Moon faces away from Earth. The Moon is by far the brightest object in the night sky and there's plenty to see. But this week is special...
...October 28 is International Observe the Moon Night (also known as InOMN).
Everyone on Earth is invited to join the celebration by hosting or attending an InOMN event and uniting on one day each year to look at and learn about the Moon together.
October's night skies are full of sights, from the first quarter Moon on InOMN to Saturn making a cameo appearance above the Moon October 23 and 24. Watch our What's Up video for details.
Hundreds of events are planned around the globe. Click the top link on this page for a handy map. You can also register your own event.
Here are some activities for enhanced Moon watching.
Download InOMN flyers and handouts, Moon maps and even some pre-made presentations. There's even a certificate to mark your participation.
Almost dead center on the Earth-facing side of the Moon is the Surveyor 6 robotic spacecraft impact side. Apollo 12 and 14 are a bit to the left. And Apollo 11 - the first steps on the moon - are to the right. This retro graphic tells the whole story.
NASA photographers have done some exceptional work capturing views of the Moon from Earth. Here are a few galleries:
You can't have a solar eclipse without the Moon.
The 2016 "Supermoon" was pretty spectacular.
The Moon gets eclipsed, too.
That IS a Moon - AND the International Space Station.
The Moon is always a great photo subject.
Some spooky shots of the 2014 "Supermoon."
And 2013.
Tips from a NASA pro for photographing the Moon.
Twelve human beings walked on the face of the Moon. Here are some of the best shots from the Apollo program.
Our Lunar Reconnaissance Orbiter is up there right now, mapping the moon and capturing some spectacular high-resolution shots.
Make our Moon portal your base for further lunar exploration.
Check out the full version of ‘Ten Things to Know This Week’ HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Solar and Heliospheric Observatory, SOHO for short, has captured the imagination of scientists and the public alike for two decades now. We teamed up with the European Space Agency (ESA) on SOHO, which observes the sun from space. It was launched 20 years ago this week, on Dec. 2, 1995, with the mission to study the internal structure of our neighborhood star, its atmosphere and the origin of the solar wind. SOHO sends spectacular data daily, and has led scientists to a wealth of understanding.
Here are the top 5 things you need to know about SOHO, the sun and other solar observation missions:
1. SOHO Set Out for Space with an Ambitious Mission
SOHO was designed to answer three fundamental scientific questions about the sun: What are the structure and dynamics of the solar interior? Why does the solar corona exist and how is it heated to such an extremely high temperature? Where is the solar wind produced and how is it accelerated? Clues about the solar interior come from studying seismic waves that appear as ripples on the sun's surface, a technique called helioseismology.
2. SOHO Enjoys a Great View
SOHO commands an uninterrupted view of the sun, while always staying within easy communication range of controllers at home. The space-based observatory moves around the sun in step with the Earth, by slowly orbiting around a unique point in space called the First Lagrangian Point (L1). There, the combined gravity of the Earth and sun keep SOHO in a position that's always between the sun and the Earth. The L1 point is about 1 million miles (about 1.5 million kilometers) away from Earth (about four times the distance to the Moon).
3. Bonus Discoveries: Lots of Comets
Besides watching the sun, SOHO has become the most prolific discoverer of comets in astronomical history. In September 2015, SOHO found its 3000th comet. Sometimes the spacecraft's instruments capture comets plunging to their death as they collide with the sun.
4. Extra Innings
SOHO was meant to operate until 1998, but it was so successful that ESA and NASA decided to prolong its life several times and endorsed several mission extensions. Because of this, the mission has been able to observe an entire 11-year solar cycle and much of the next.
5. Keep Your Eye (Safely) on the Sun
You can see what SOHO sees, almost in real time. The latest images from the spacecraft, updated several times daily, are available online. Take a look HERE.
Also, make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
NOAA’s GOES-R weather satellite will soon be launched into space – becoming our nation’s most advanced geostationary satellite to date. So what does that mean for you? Here are six reasons to be excited about GOES-R:
Perhaps you turn on the TV or radio, or check your favorite weather website or smartphone weather app to get the latest forecast. No matter the platform of your weather forecast, the data and information for those forecasts come from NOAA’s National Weather Service (NWS).
Weather satellites, like the GOES satellites, are the backbone of NWS forecasts. GOES-R will be more advanced than any other weather satellite of its kind and could make the answer to the question “What’s the weather going to be?” more detailed and accurate both in the near term and further out into the future.
Do you live in an inland state, a state with a coastline or a state with a mountain range? Great, that’s all of you! Data from the GOES-R satellite will be a game changer for forecasters in your area.
Here’s why: satellites are fitted with instruments that observe weather and collect measurements. The primary instrument on the new GOES-R satellite will collect three times more data and provide four times better resolution and more than five times faster coverage than current satellites! This means the satellite can scan Earth’s Western Hemisphere every five minutes and as often as every 30 seconds in areas where severe weather forms, as compared to approximately every 30 minutes with the current GOES satellites. Pretty cool, right?
This expedited data means that forecasts will be timelier, with more “real-time” information in them, allowing NWS to make those warnings and alerts that much faster, thereby potentially saving lives.
And a faster forecast is a big deal for our economy. Commercial shipping and aviation are just two examples of industries that rely on up-to-date weather data for critical decisions about how to route ships and safely divert planes around storms.
We all depend on a power grid for virtually every aspect of modern life. But power grids are vulnerable to bursts of energy from the sun that can affect us on Earth.
Luckily, GOES-R will be sitting over 22,000 miles above us, and in addition to measuring weather on Earth, it will monitor incoming space weather.
How different will GOES-R be? Imagine going from your classic black and white TV to a new high definition one. It will enable NOAA to gather data using three times more channels, four times the resolution, five times faster than the current GOES satellites.
This faster, more accurate data means better observations of developing storms and other severe weather.
6. GOES-R will be a continuing a legacy
GOES-R may be the first of its kind, but it is the heir to a rich tradition of geostationary earth observation.
In fact, NOAA has continuously operated a GOES satellite for over 40 years. Since 1975, GOES satellites have taken well over 3 million images!
The GOES-R satellite is scheduled to launch Saturday, Nov. 19 at 5:42 p.m. EST aboard a United Launch Alliance Atlas V rocket. Liftoff will occur from our Kennedy Space Center in Florida.
Learn more about the mission: https://www.nesdis.noaa.gov/GOES-R-Mission
Article Credit: NOAA
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We’re studying a new method of water recycling and carbon dioxide removal that relies on specific geometric shapes and fluid dynamics, rather than complex machinery, in an effort to help build better life support systems for spacecraft. The research could also teach us more about the water processing approaches we take on Earth. Here, NASA astronaut Jack Fischer, is working with the Capillary Structures for Exploration Life Support (Capillary Structures) investigation capillary sorbent hardware that is made up of 3D printed contractors that are supported by tubing, valves and a pump.
Learn more about how this highly interactive investigation works, and what we could learn from the results HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Hubble Space Telescope has been exploring the wonders of the universe for nearly 30 years, answering some of our deepest cosmic questions. Some of Hubble’s most exciting observations have been about black holes — places in space where gravity pulls so much that not even light can escape. As if black holes weren’t wild enough already, Hubble has helped us make discoveries that show us they’re even weirder than we thought!
First, these things are all over the place. If you look at any random galaxy in the universe, chances are it has a giant black hole lurking in its heart. And when we say giant, we’re talking as massive as millions or even billions of stars!
Hubble found that the mass of these black holes, hidden away in galactic cores, is linked to the mass of the host galaxy — the bigger the galaxy, the bigger the black hole. Scientists think this may mean that the black holes grew along with their galaxies, eating up some of the stuff nearby.
A globular cluster is a ball of old, very similar stars that are bound together by gravity. They’re fairly common — our galaxy has at least 150 of them — but Hubble has found some black sheep in the herd. Some of these clusters are way more massive than usual, have a wide variety of stars and may even harbor a black hole at the center. This suggests that at least some of the globular clusters in our galaxy may have once been dwarf galaxies that we absorbed.
While black holes themselves are invisible, sometimes they shoot out huge jets of energy as gas and dust fall into them. Since stars form from gas and dust, the jets affect star birth within the galaxy.
Sometimes they get rid of the fuel needed to keep making new stars, but Hubble saw that it can also keep star formation going at a slow and steady rate.
If you’ve ever spent some time stargazing, you know that staring up into a seemingly peaceful sea of stars can be very calming. But the truth is, it’s a hectic place out there in the cosmos! Entire galaxies — these colossal collections of gas, dust, and billions of stars with their planets — can merge together to form one supergalaxy. You might remember that most galaxies have a supermassive black hole at the center, so what happens to them when galaxies collide?
In 2018, Hubble unveiled the best view yet of close pairs of giant black holes in the act of merging together to form mega black holes!
What better way to spice up black holes than by throwing gravitational waves into the mix! Gravitational waves are ripples in space-time that can be created when two massive objects orbit each other.
In 2017, Hubble found a rogue black hole that is flying away from the center of its galaxy at over 1,300 miles per second (about 90 times faster than our Sun is traveling through the Milky Way). What booted the black hole out of the galaxy’s core? Gravitational waves! Scientists think that this is a case where two galaxies are in the late stages of merging together, which means their central black holes are probably merging too in a super chaotic process.
Want to learn about more of the highlights of Hubble’s exploration? Check out this page! https://www.nasa.gov/content/goddard/2017/highlights-of-hubble-s-exploration-of-the-universe
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
See that tiny blob of light, circled in red? Doesn’t look like much, does it? But that blob represents a feast big enough to feed a black hole around 30 million times the mass of our Sun! Scientists call these kinds of stellar meals tidal disruption events, and they’re some of the most dramatic happenings in the cosmos.
Sometimes, an unlucky star strays too close to a black hole. The black hole’s gravity pulls on the star, causing it to stretch in one direction and squeeze in another. Then the star pulls apart into a stream of gas. This is a tidal disruption event. (If you’re worried about this happening to our Sun – don’t. The nearest black hole we know about is over 1,000 light-years away. And black holes aren’t wild space vacuums. They don’t go zipping around sucking up random stars and planets. So we’re pretty safe from tidal disruption events!)
The trailing part of the stream gets flung out of the system. The rest of the gas loops back around the black hole, forming a disk. The material circling in the disk slowly drifts inward toward the black hole’s event horizon, the point at which nothing – not even light – can escape. The black hole consumes the gas and dust in its disk over many years.
Sometimes the black hole only munches on a passing star – we call this a partial tidal disruption event. The star loses some of its gas, but its own gravity pulls it back into shape before it passes the black hole again. Eventually, the black hole will have nibbled away enough material that the star can’t reform and gets destroyed.
We study tidal disruptions, both the full feasts and the partial snacks, using many kinds of telescopes. Usually, these events are spotted by ground-based telescopes like the Zwicky Transient Facility and the All-Sky Automated Survey for Supernovae network.
They alert other ground- and space-based telescopes – like our Neil Gehrels Swift Observatory (illustrated above) and the European Space Agency’s XMM-Newton – to follow up and collect more data using different wavelengths, from visible light to X-rays. Even our planet-hunting Transiting Exoplanet Survey Satellite has observed a few of these destructive wonders!
We’re also studying disruptions using multimessenger astronomy, where scientists use the information carried by light, particles, and space-time ripples to learn more about cosmic objects and occurrences.
But tidal disruptions are super rare. They only happen once every 10,000 to 100,000 years in a galaxy the size of our own Milky Way. Astronomers have only observed a few dozen events so far. By comparison, supernovae – the explosive deaths of stars – happen every 100 years or so in a galaxy like ours.
That’s why scientists make their own tidal disruptions using supercomputers, like the ones shown in the video here. Supercomputers allow researchers to build realistic models of stars. They can also include all of the physical effects they’d experience whipping ‘round a black hole, even those from Einstein’s theory of general relativity. They can alter features like how close the stars get and how massive the black holes are to see how it affects what happens to the stars. These simulations will help astronomers build better pictures of the events they observe in the night sky.
Keep up with what’s happening in the universe and how we study it by following NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!
Asteroids are the storytellers of our solar system’s youth. They are the closest we can get to the original material that makes up the sun, planets, and moons.
This week, our OSIRIS-REx spacecraft made history when it touched a pristine, ancient asteroid named Bennu to collect a sample from the surface. The intrepid spacecraft will now bring the asteroid sample – and its stories – back home to Earth.
Why is it that asteroid Bennu holds the history of our origins? Let’s go back to the beginning...
About 4.5 billion years ago, our solar system began as a spinning, swirling cloud made up of tiny bits of gaseous and rocky material. Most of that material – more than 99% of it – gathered in the center and went on to become the Sun.
The leftovers began to spin around the Sun, colliding into one another and forming larger and larger objects, eventually becoming planets, dwarf planets, and moons.
But asteroids didn't become part of planets or moons. So, while the material in planets and moons were superheated and altered during the formation of the solar system and weathered by geologic processes over time, asteroids remained pristine.
Each asteroid holds knowledge from that special time in our solar system’s history. Each one contains information about the chemicals, minerals, and molecules that were present when the solar system was just starting to form.
With missions like OSIRIS-REx, we are going on a journey to these ancient worlds, seeking to learn what they remember, seeking to expand our knowledge, and deepen our understanding of our origins.
Learn more about the OSIRIS-REx mission HERE, or follow the mission on Facebook, Twitter and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We’ve taken 10 of our top Instagram posts and put them here for your viewing pleasure. Now, your next 10 cell phone backgrounds can be found in one place.
10. Water on Mars
With 210,000 likes, this image is a favorite on Instagram. New findings from our Mars Reconnaissance Orbiter (MRO) provide the strongest evidence yet that liquid water flows intermittently on present-day Mars. Dark, narrow streaks on Martian slopes such as these at Hale Crater are inferred to be formed by seasonal flow of water on contemporary Mars. The streaks are roughly the length of a football field.
9. Smoke Ring for a Halo
With 210,000 likes, this image shined on Instagram. Two stars shine through the center of a ring of cascading dust in this image taken by the Hubble Space Telescope. The star system is named DI Cha, and while only two stars are apparent, it is actually a quadruple system containing two sets of binary stars. As this is a relatively young star system it is surrounded by dust.
8. Pluto’s Largest Moon, Charon
With 216,000 likes, a lot of people thought this image was interesting on Instagram. Our New Horizons spacecraft has returned the best color and the highest resolution images yet of Pluto's largest moon, Charon - and these pictures show a surprisingly complex and violent history. This high-resolution enhanced color view of Charon was captured just before closest approach on July 14. The image combines blue, red and infrared images; the colors are processed to best highlight the variation of surface properties across Charon.
7. Veil Nebula
With 220,000 likes, many people favorited this image on Instagram. This is the expanding remains of a massive star that exploded about 8,000 years ago. This view is a mosaic of six pictures from our Hubble Space Telescope of a small area roughly two light-years across, covering only a tiny fraction of the nebula's vast structure. This close-up look unveils wisps of gas, which are all that remain of what was once a star 20 times more massive than our sun.
6. Messier 94 Galaxy
With 234,000 likes, this image is a favorite on Instagram. This image shows the galaxy Messier 94, which lies in the small northern constellation of the Hunting Dogs, about 16 million light-years away. Within the bright ring or starburst ring around Messier 94, new stars are forming at a high rate and many young, bright stars are present within it.
5. Solar ‘Pumpkin’
With 247,000 likes, many followers enjoyed this image on Instagram. This photo was posted on Halloween and shows active regions on the sun combined to look something like a jack-o-lantern’s face. The image was captured by NASA's Solar Dynamics Observatory in October 2014, which watches the sun at all times from its orbit in space.
4. Italy from the International Space Station
With 251,000 likes, this image captivated many of you on Instagram. Before drifting off to sleep, NASA astronaut Scott Kelly (@stationcdrkelly) captured this images from the International Space Station and wrote, " Day 180. Moonlight over Italy. #BuonaNotte Good night from @ISS! #YearInSpace.”
3. Cosmic Archaeological Dig
With 286,000 likes, this image dazzled many of you on Instagram. Peering deep into the Milky Way's crowded central hub of stars, researchers using our Hubble Space Telescope have uncovered for the first time a population of ancient white dwarfs -- smoldering remnants of once-vibrant stars that inhabited the core. Finding these relics at last can yield clues to how our galaxy was built, long before Earth and our sun formed. This image is a small section of Hubble's view of the dense collection of stars crammed together in the galactic bulge.
2. Super Blood Moon
With 310,000 likes, this image was very popular on Instagram. It shows the Super Blood Moon behind the Washington Monument on Sunday, Sept. 27, in Washington, DC. The combination of a supermoon and total lunar eclipse last occurred in 1982 and will not happen again until 2033.
1. Pluto
With 363,000 likes, this image is one of our most popular pictures on Instagram. The dwarf planet sent a love note back to Earth via our New Horizons spacecraft, which traveled more than 9 years and 3+ billion miles. This was the last and most detailed image of Pluto sent to Earth before the moment of closest approach, which was at 7:49 a.m. EDT Tuesday, July 14 - about 7,750 miles above the surface -- roughly the same distance from New York to Mumbai, India - making it the first-ever space mission to explore a world so far from Earth.
For more pictures like these, follow us on Instagram: https://www.instagram.com/nasa/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today in the NASA Village… Can you Grow Cheese in Space?
Did you know there are several programs where students can apply to have their experiments flown on the International Space Station? The FISE (Foundation for International Space Education) encourages students of all ages to design and propose real experiments to fly in low Earth orbit. Thomas and Nick Hall are two brothers that participated in this program.
When asked what his greatest hurdle was with growing cheese in space, student researcher Thomas replied, “One of the biggest hurdles I face is just simply staying focused. Being a Student Experimenter is very difficult especially in between the ages of 14 and 18, mainly because those are most kids High School years and during these years many kids are either drowned with homework, hanging out with friends, or out partying.”
It is so important we get young students interested early in perusing topics that are out of this world. The experiments chosen are carried out by the astronauts on-board the space station. In the case of cheese balls, Karen Nyberg carried out the experiment and reported back the findings (apparently she was unable to grow the cheese).
When Nick Hall was asked about his experiment to grow toothpaste, he said the most inspiring part was, “Thomas Hall III. My brother was the most inspiring because he was also doing the experiment so he was helping me do the experiment.”
The story of the Hall brothers is a great reminder that experimentation is just that, trials and test of ideas, but ultimately reminds us of the importance of the relationships we have developed on the ground.
Do you have an idea for a research project in space? Do you have a student researcher in mind? Find out how to apply at Student Spaceflight Experiments Program (SSEP) and learn more about space station education opportunities at STEM on Station.
Next time on the NASA Village… The Latest Fashion Sucks.
Do you want more stories? Find our NASA Villagers here!
Credit: NASA/Bill Ingalls
The Perseids meteor shower is here! It's one of the biggest of the year, and will peak early in the morning on Thursday, August 12, 2021 and Friday, August 13, 2021. To spot them, find a dark area away from bright lights (yes, that includes your phone), and let your eyes acclimate to the night sky. But don't worry – if you can't get away from lights, join us on Facebook, Twitter, and YouTube for a meteor shower livestream hosted by our Marshall Space Flight Center's Meteoroid Environment Office. Get all the details on our Watch the Skies blog.
Make sure to follow us on Tumblr for your regular dose of space.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts