Since 2000, humans have continuously lived and worked on the International Space Station. That means plenty of crew members have celebrated holidays off the Earth.
Although they’re observing the same holidays, they do so in a slightly different way because of the unique environment 250 miles above the Earth.
Consider the differences of living on Earth and in space…
Food scientists must develop foods that will be easier to handle and consume in an environment without gravity. The food must not require refrigeration and also provide the nutrition humans need to remain healthy.
Freeze drying food allows it to remain stable at room temperature, while also significantly reducing its weight.
Did you know that all the food sent to the space station is precooked? Sending precooked food means that it requires no refrigeration and is either ready to eat or can be prepared by simply adding water or by heating.
The only exception are the fruit and vegetables stowed in the fresh food locker. The food comes in either freeze-dried containers or thermostabilized pouches. If freeze-dried in a vacuum sealed package, the astronauts have a rehydration system in-flight, which they use restore moisture in their food. If thermostabilized, the packaging is designed to preserve the food similar to canned products, but instead in a flexible, multi-layered pouch.
So what will the space station crew eat this year (2016) for Thanksgiving?
Turkey
Cherry/Blueberry Cobbler
Candied Yams
Rehydratable Cornbread Dressing
Rehydratable Green Beans and Mushrooms
Rehydratable Mashed Potatoes
What are you bringing to Thanksgiving on Earth this year? Treat your family and friends astronaut-style with this cornbread dressing recipe straight out of our Space Food Systems Laboratory…no freeze drying required!
For spaceflight preparation:
Baked dressing is transferred to metal tray and freeze-dried accordingly. One serving of cornbread dressing shall weigh approximately 145 g prior to freeze-drying and 50 g after freeze-drying.
Learn more about our Food Systems Laboratory in this Facebook Live video: https://www.facebook.com/ISS/videos/1359709837395277/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, so let us break it down for you. Here are 5 things to know this week:
1. Letting the Air Out
The atmosphere on Mars is whisper-thin and drier than bone--but it wasn't always that way. For the past year, the MAVEN mission has been orbiting the planet, piecing together clues about what happened to all the air on Mars. At 2 p.m. EST on Nov. 5, we will hold a briefing on some new findings about the Martian atmosphere. Make sure to tune in on NASA Television.
2. How Much Juno about Jupiter?
We're all going to know a lot more about the king of planets soon, thanks to the Juno mission. Juno's project scientist will be giving a live lecture on Nov. 5 and 6 to explain what discoveries might await and how the spacecraft is expected to survive Jupiter's dangerous radiation environment for over a year, long enough to make over 30 close polar passes. Watch the live lecture HERE.
3. Excitement at Enceladus
Our Cassini spacecraft has returned stunning images from its ultra-close flyby of Saturn's active moon Enceladus on Oct. 28. The photos are providing a quick look at Enceladus and its plume of icy vapor from the moon's geysers. But some of the most exciting science is yet to come, as scientists will be poring over data from Cassini's instruments to see what they detected as they flew through the plume.
4. A New Dimension in Lunar Landscapes
The Lunar Reconnaissance Orbiter maps the moon in boulder-by-boulder detail daily. The team that operates the spacecraft's most powerful camera has been releasing 3D versions of its high-resolution looks at the surface. You can see depth and detail in the pictures if you can get or make some red-blue glasses.
5. Pluto in Perspective
The New Horizons spacecraft has fired its engines again as it carries out a series of four maneuvers propelling it toward an encounter with the ancient Kuiper Belt object 2014 MU69, a billion miles farther from the sun than Pluto. Meanwhile, it continues the ongoing download of data from the Pluto encounter, including this recent stunner.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This Hubble Space Telescope image shows a young, open star cluster known as NGC 4755 or the Jewel Box. Just like old school friends that drift apart after graduation, the stars in open clusters only remain together for a limited time. They disperse into space over the course of a few hundred million years, pulled away by the gravitational tugs of other passing clusters and clouds of gas.
The Jewel Box is a spartan collection of just over 100 stars. The cluster is about 6,500 light-years away from Earth, which means that the light we see from it today was emitted before the Great Pyramids in Egypt were built.
Head outside and you can see it for yourself! The Jewel Box is visible to the naked eye, but will masquerade as a single star. Grab a pair of binoculars if you want to see more of the cluster’s sparkling stellar population. It is located in the southern constellation of the cross (Crux).
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Today we successfully tested one of our RS-25 engines, four of which will help power our Space Launch System (SLS) to deep space destinations, like Mars! This 500-second engine test concludes a summer of successful hot fire testing for flight controllers at our Stennis Space Center near Bay St. Louis, Mississippi.
The controller serves as the “brain” of the engine, communicating with SLS flight computers to ensure engines are performing at needed levels. The test marked another step toward the nation’s return to human deep-space exploration missions.
We launched a series of summer tests with a second flight controller unit hot fire at the end of May, then followed up with three additional tests. The flight controller tests are critical preparation for upcoming SLS flights to deep space– the uncrewed Exploration Mission-1 (EM-1), which will serve as the first flight for the new rocket carrying an uncrewed Orion spacecraft, and EM-2, which will transport a crew of astronauts aboard the Orion spacecraft.
Each SLS rocket is powered at launch by four RS-25 engines firing simultaneously and working in conjunction with a pair of solid rocket boosters. The engines generate a combined 2 million pounds of thrust at liftoff. With the boosters, total thrust at liftoff will exceed 8 million pounds!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
It’s International Asteroid Day, and today we’re talking about everything asteroids! Although there are no known threats for the next 100 years, our Planetary Defense experts are constantly finding, tracking, and monitoring near-Earth objects to protect our home planet.
Asteroids are rocky remnants from the beginning of our solar system, and as of today, 26,110 near-Earth asteroids have been discovered!
So how do we spot these near-Earth objects? Let’s watch and see:
In addition to tracking and monitoring asteroids, we are also launching several missions to study these rocky relics. By studying asteroids, we can better understand the formation of our solar system. Here are some exciting missions you can look forward to:
Last year, our OSIRIS-REx mission successfully captured a sample of asteroid Bennu, a 4.5-billion-year-old asteroid the size of the empire state building.
Currently, OSISRIS-REx is making its long journey home carrying this sample as it returns to Earth in 2023.
Our Psyche mission will journey to a unique metal asteroid orbiting the Sun between Jupiter and Mars.
What makes the asteroid Psyche unique is that it appears to be the exposed nickel-iron core of an early planet, one of the building blocks of our solar system. Deep within rocky, terrestrial planets - including Earth - scientists infer the presence of metallic cores, but these lie unreachably far below the planets' rocky mantles and crusts. Because we cannot see or measure Earth's core directly, Psyche offers a unique window into the violent history of collisions and accretion that created terrestrial planets.
Launching this year, our Lucy mission will be the first mission to study the Trojans, a group of asteroids that share Jupiter’s orbit around the Sun. Time capsules from the birth of our Solar System more than 4 billion years ago, the swarms of Trojan asteroids associated with Jupiter are thought to be remnants of the primordial material that formed the outer planets.
The mission takes its name from the fossilized human ancestor (called “Lucy” by her discoverers) whose skeleton provided unique insight into humanity's evolution. Likewise, the Lucy mission will revolutionize our knowledge of planetary origins and the formation of the solar system.
Launching this year, our DART mission is a planetary defense driven test of technologies and will be the first demonstration of a technique to change the motion of an asteroid in space.
The destination of this mission is the small asteroid Dimorphos, which orbits slowly around its larger companion Didymos. Dimorphos is referred to as a moonlet since it orbits a larger asteroid.
The DART spacecraft will achieve the kinetic impact deflection by deliberately crashing itself into the moonlet. The collision will change the speed of the moonlet in its orbit around the main body by a fraction of one percent, but this will change the orbital period of the moonlet by several minutes - enough to be observed and measured using telescopes on Earth.
At NASA, every day is asteroid day, as we have missions exploring these time capsules of our solar system and surveying the sky daily to find potential hazards. We, along with our partners are watching the skies 24/7/365, so rest assured! We're always looking up.
Make sure to follow us on Tumblr for your regular dose of space!
What does it feel like to be up there and look down at the Earth? I've always imagined it would send me into a moment where I feel so small compared to the expanse and beauty of Earth.
Which do you think you'll miss more after your first trip? Space when you're back on Earth or Earth when you're up in Space?
I think that I will miss space when I’m back on Earth. One astronaut when she returned said that gravity sucks, so I’m looking forward to finding out what that’s like.
The total solar eclipse is coming! Here’s your chance to ask an eclipse scientist your questions! Have questions about the upcoming total solar eclipse on August 21? Join our Tumblr Answer Time session on Thursday, August 17 from 3:00 – 4:00 p.m. EDT/12:00 - 1:00 p.m. PDT. here on NASA’s Tumblr, where space physics researcher Alexa Halford will answer them. Make sure to ask your questions now by visiting: https://nasa.tumblr.com/ask!
Alexa Halford is a space physics researcher at our Goddard Space Flight Center and Dartmouth College. She started researching waves in Earth's magnetosphere as an undergraduate at Augsburg College with Mark Engebretson using ground based magnetometers in the Arctic and Antarctic. She moved away from waves to focus on geomagnetic storms and substorms during her masters at the University of Colorado Boulder with Dan Baker but returned once more to waves with her PhD at University of Newcastle NSW Australia. Her PhD thesis was on Electromagnetic Ion Cyclotron (EMIC) waves during the CRRES mission and their relationship to the plasmasphere and radiation belts.
She is member of the scientific team for a NASA-funded scientific balloon experiment project called BARREL (Balloon Array for RBSP Relativistic Electron Losses) where she looks at the population of particles lost due to these interactions. She is now currently a contractor at NASA Goddard continuing work the BARREL and NASA Van Allen Probes satellite missions.
To get more information about the eclipse, visit: https://eclipse2017.nasa.gov/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Have you seen Hidden Figures? What did you think
I have seen Hidden Figures, and I was very proud that NASA supported the telling of the story. Despite the circumstances of the time, it shows that we worked well together to get a human being in space.
Gelatin in space! Looks a bit like a tadpole when it is floating around, but I promise it was a tasty treat for us on the Space Station. The food lab prepared drink bags with gelatin mix inside, and I made gelatin for the crew. It is very tempting to play with your food when it floats.
Just as gravity is one key to how things move on Earth, a process called magnetic reconnection is key to how electrically-charged particles speed through space. Now, our Magnetospheric Multiscale mission, or MMS, has discovered magnetic reconnection – a process by which magnetic field lines explosively reconfigure – occurring in a new and surprising way near Earth.
Invisible to the eye, a vast network of magnetic energy and particles surround our planet — a dynamic system that influences our satellites and technology. The more we understand the way those particles move, the more we can protect our spacecraft and astronauts both near Earth and as we explore deeper into the solar system.
Earth’s magnetic field creates a protective bubble that shields us from highly energetic particles that stream in both from the Sun and interstellar space. As this solar wind bathes our planet, Earth’s magnetic field lines get stretched. Like elastic bands, they eventually release energy by snapping and flinging particles in their path to supersonic speeds.
That burst of energy is generated by magnetic reconnection. It’s pervasive throughout the universe — it happens on the Sun, in the space near Earth and even near black holes.
Scientists have observed this phenomenon many times in Earth’s vast magnetic environment, the magnetosphere. Now, a new study of data from our MMS mission caught the process occurring in a new and unexpected region of near-Earth space. For the first time, magnetic reconnection was seen in the magnetosheath — the boundary between our magnetosphere and the solar wind that flows throughout the solar system and one of the most turbulent regions in near-Earth space.
The four identical MMS spacecraft — flying through this region in a tight pyramid formation — saw the event in 3D. The arrows in the data visualization below show the hundreds of observations MMS took to measure the changes in particle motion and the magnetic field.
The data show that this event is unlike the magnetic reconnection we’ve observed before. If we think of these magnetic field lines as elastic bands, the ones in this region are much smaller and stretchier than elsewhere in near-Earth space — meaning that this process accelerates particles 40 times faster than typical magnetic reconnection near Earth. In short, MMS spotted a completely new magnetic process that is much faster than what we’ve seen before.
What’s more, this observation holds clues to what’s happening at smaller spatial scales, where turbulence takes over the process of mixing and accelerating particles. Turbulence in space moves in random ways and creates vortices, much like when you mix milk into coffee. The process by which turbulence energizes particles in space is still a big area of research, and linking this new discovery to turbulence research may give insights into how magnetic energy powers particle jets in space.
Keep up with the latest discoveries from the MMS mission: @NASASun on Twitter and Facebook.com/NASASunScience.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts