How much of a daily threat is "Space junk"?
Good question, as this is a serious issue and one which we must monitor constantly in order to avoid harmful impacts on the International Space Station with objects in space. For example, the US Space Command in Colorado is monitoring all objects bigger than a few inches in order to assess any potential impact with the Space Station. We categorize the chance of impact and if there is a high probability, we will actually use thrusters to slightly change the position of the Space Station to avoid the impact. If it is something that we are unable to avoid, we will have the astronauts shelter in place in their spacecrafts and in case of a catastrophic impact, they will return to Earth.
What's a SPOC? Isn't that a star trek character?
Is it at all possible to send a drone into a black hole and collect the data of what it’s like inside? If not, how close do you we are to possibly achieving that?
We could talk all day about how our satellite data is crucial for Earth science…tracking ocean currents, monitoring natural disasters, soil mapping – the list goes on and on.
Our satellite data can be used to build businesses and commercial products – but finding and using this data has been a daunting task for many potential users because it’s been stored across dozens of websites.
Until now.
Our Technology Transfer program has just released their solution to make finding data easier, called The NASA Remote Sensing Toolkit (RST).
RST offers an all-in-one approach to finding and using our Earth Science data, the tools needed to analyze it, and software to build your own tools.
Before, we had our petabytes on petabytes of information spread out across dozens of websites – not to mention the various software tools needed to interpret the data.
Now, RST helps users find everything they need while having only one browser open.
Feeling inspired to innovate with our data? Here are just a few examples of how other companies have taken satellite data and turned it into products, known as NASA spinoffs, that are helping our planet today.
1. Bringing Landscape into Focus
We have a number of imaging systems for locating fires, but none were capable of identifying small fires or indicating the flames’ intensity. Thanks to a series of Small Business Innovation Research (SBIR) contracts between our Ames Research Center and Xiomas Technologies LLC, the Wide Area Imager aerial scanner does just that. While we and the U.S. Forest Service use it for fire detection, the tool is also being used by municipalities for detailed aerial surveillance projects.
2. Monitoring the Nation’s Forests with the Help of Our Satellites
Have you ever thought about the long-term effects of natural disasters, such as hurricanes, on forest life? How about the big-time damage caused by little pests, like webworms?
Our Stennis Space Center did, along with multiple forest services and environmental threat assessment centers. They partnered to create an early warning system to identify, characterize, and track disturbances from potential forest threats using our satellite data. The result was ForWarn, which is now being used by federal and state forest and natural resource managers.
3. Informing Forecasts of Crop Growth
Want to hear a corny story?
Every year Stennis teams up with the U.S. Department of Agriculture to host a program called Ag 20/20 to utilize remote sensing technology for operational use in agricultural crop management practices at the level of individual farms. During Ag 20/20 in 2000, an engineering contractor developed models for using our satellite data to predict corn crop yield. The model was eventually sold to Genscape Inc., which has commercialized it as LandViewer. Sold under a subscription model, LandViewer software provides predictions of corn production to ethanol plants and grain traders.
4. Water Mapping Technology Rebuilds Lives in Arid Regions
No joking around here. Lives depend on the ability to find precious water in areas with little of it.
Using our Landsat satellite and other topographical data, Radar Technologies International developed an algorithm-based software program that can locate underground water sources. Working with international organizations and governments, the firm is helping to provide water for refugees and other people in drought-stricken regions such as Kenya, Sudan, and Afghanistan.
5. Satellite Maps Deliver More Realistic Gaming
Are you more of the creative type? This last entry used satellite data to help people really get into their gameplay.
When Electronic Arts (EA) decided to make SSX, a snowboarding video game, it faced challenges in creating realistic-looking mountains. The solution was our ASTER Global Digital Elevation Map, made available by our Jet Propulsion Laboratory, which EA used to create 28 real-life mountains from 9 different ranges for its award-winning game.
You can browse our Remote Sensing Toolkit at technology.nasa.gov.
Want to know more about future tutorial webinars on RST?
Follow our Technology Transfer Program on twitter @NASAsolutions for the latest updates.
Want to learn more about the products made by NASA technologies? Head over to spinoff.nasa.gov.
Sign up to receive updates about upcoming tutorials HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Just as the captains of the fictional 24th century Starfleet blazed a trail among the stars, the space shuttle Enterprise helped pave the way for future space exploration.
Fifty years ago, Star Trek debuted with the USS Enterprise as the main space-faring vessel used in much of the Star Trek universe. As such, the vessel holds a treasured place in the hearts of Star Trek fans and is as much of a character in the show as Kirk and Spock. Over three different series and a total of 14 seasons on TV and 13 feature films, the iterations of Enterprise have captured the imaginations and provided inspiration for its fans across the globe.
This brief history of the shuttle tells the tale of humanity's first reusable spacecraft. Space shuttles were first built in the late 1970s and were flown in space from 1981 to 2011. Their missions ranged from helping to build the International Space Station to repairing the Hubble Space Telescope.
It’s All In The Name
The first shuttle was originally to be named Constitution, celebrating the country’s bicentennial and was to be unveiled to the public on Constitution Day, Sept. 17, 1976. However, a massive letter-writing campaign by Star Trek fans prompted President Gerald Ford to suggest the change. In the above photo, we see the shuttle Enterprise rolled out in Palmdale, California, with cast members of Star Trek on Sept. 17, 1976.
To Boldly Go . . .
This circular red, white and blue emblem was the official insignia for the Space Shuttle Approach and Landing Test flights and became a model for future space shuttle mission patch designs, including placing the names of the crew on the patch . The four astronauts listed on the patch are:
Fred Haise., commander of the first crew
Charles Fullerton, pilot of the first crew
Joe Engle, commander of the second crew
Dick Truly, pilot of the second crew
First Impressions
In this image, Enterprise makes its first appearance mated to its boosters as it is slowly rolled to the huge Vehicle Assembly Building (VAB) at Kennedy Space Center. Although she never flew in space, shuttle Enterprise underwent a series of fit and function checks on the pad in preparation for the first launch of its sister craft, Columbia.
Not Meant To Be
Enterprise sits on Launch Complex 39 at Kennedy Space Center undergoing tests after completing its 3.5 mile journey from the VAB. Have you ever wondered why Enterprise never went into space? Converting Enterprise from a training vehicle to space-worthy one was too cost prohibitive, our engineers felt.
Engage
Commander Fred Haise and pilot Charles Fullerton are seen in the cockpit of Enterprise prior to the fifth and final Approach and Landing Test at Dryden Flight Research Center (Armstrong Flight Research Center). The tests were performed to learn about the landing characteristics of the shuttle.
It’s Been An Honor To Serve With You
The Enterprise’s two crews pose for a photo op at the Rockwell International Space Division's Orbiter assembly facility at Palmdale, California. They are (left to right) Charles Fullerton, Fred Haise, Joe Engle and Dick Truly.
Fair Winds And Following Seas
On July 6, 2012, the Enterprise, atop a barge, passes the Statue of Liberty on its way to the Intrepid Sea, Air and Space Museum, where is now permanently on display.
Learn more about Star Trek and NASA.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Orion is a key piece of NASA’s journey to Mars. The spacecraft, which was first tested in space last year, will enable crew to travel to deep space on the journey to the Red Planet and bring astronauts home safely. It’s a critical technology we’ll use to help NASA test, demonstrate and hone the skills and capabilities we need to operate farther and farther away from Earth.
Environmental Control and Life Support Systems
Water. Air. A temperate environment. A bathroom. These are some of the things astronauts need to survive the long journey back to Earth from Mars. NASA has developed an environmental control and life support system on the International Space Station and is designing such a system for Orion. The system can recycle carbon dioxide and make it back into useable air and process urine to make it into potable water, for example. Right now on the space station, engineers and astronauts are testing a filtering system for efficiency and reliability on long-duration missions. The investigation uses an amine-based chemical compound combined with the vacuum of space to filter and renew cabin air for breathing. When astronauts travel home from Mars, they won’t be able to count on the arrival of spare parts or extra supplies if something breaks or gets depleted, so engineers are hard at work developing reliable and robust technologies to keep crews alive and healthy in space.
Radiation protection
Astronauts traveling to and from Mars will be far away from the protective shield of Earth’s atmosphere and magnetic field, and their spacecraft and its systems will need to be able to protect against the full spectrum of space radiation. NASA is working now to develop protective methods.
Orion will use items already on board to protect the crew and create a temporary shelter in the aft bay of the spacecraft, which is the inside portion closest to the heat shield. This location minimizes the amount of equipment to move around while maximizing the amount of material that can be placed between the crew and the outside environment. The items that will be used include supplies, equipment and launch and re-entry seats as well as water and food. By using the items already on board, the astronauts benefit from additional shielding without adding to Orion’s mass.
Power and Propulsion
A spacecraft needs power and propulsion in space to refine its trajectory during the trip back to Earth. Orion will include a service module capable of helping the spacecraft make any necessary mid-course corrections. A service module provides power, heat rejection, in-space propulsion and water and air for crews, and NASA is working with ESA (European Space Agency) to provide Orion’s service module for its next mission in a partnership that will also bring international cooperation on the journey to Mars. The service module will provide propulsion, batteries and solar arrays to generate power and contain all the air, nitrogen and water for crews.
The ESA-provided element brings together new technology and lightweight materials while also taking advantage of spaceflight-proven hardware. For example, ESA is modeling several key components – like the solar arrays – from technology developed for its Automated Transfer Vehicle-series of cargo vessels, which delivered thousands of pounds of supplies to the space station during five missions between 2008 and 2015. NASA is providing ESA one of the Orbital Maneuvering System pods that allowed space shuttles to move in space to be upgraded and integrated into the service module.
Heat shield
When an uncrewed Orion was tested in space in 2014, the heat shield withstood temperatures of about 4,000 degrees Fahrenheit, or about twice as hot as molten lava. That heat was generated when the spacecraft, traveling at about 20,000 mph back toward our planet, made its way through Earth’s atmosphere, which acts as a braking mechanism to cause friction and slow down a returning spacecraft. Its speed was about 80 percent of what Orion will experience when it comes back from missions near the moon and will need to be even more robust for missions where return speeds, and therefore reentry temperatures, are higher.
Orion’s heat shield is built around a titanium skeleton and carbon fiber skin that provide structural support. A honeycomb structure fits over the skin with thousands of cells that are filled with a material called Avcoat. That layer is 1.6 inches at its thickest and erodes as Orion travels through Earth’s atmosphere.
Parachutes
A spacecraft bringing crews back to Earth after a long trip to Mars will need a parachute system to help it slow down from its high-speed reentry through the atmosphere to a relatively slow speed for splashdown in the ocean. While Earth’s atmosphere will initially slow Orion down from thousands of miles per hour to about 325 mph, its 11 parachutes will deploy in precise sequence to further slow the capsule’s descent. There are three forward bay cover parachutes that pull a protective cover off the top of the capsule, two drogue parachutes that deploy to stabilize the spacecraft, and three pilot parachutes that are used to pull out Orion’s three orange and white main parachutes that are charged with slowing the spacecraft to its final landing speed. The main parachutes are so big that the three of them together nearly cover an entire football field.
Engineers are currently building the Orion spacecraft that will launch on the world’s most powerful rocket, the Space Launch System, and will enable astronauts to travel farther into space than ever before on the journey to Mars.
Visit NASA on the Web for more information about Orion and NASA’s journey to Mars. http://www.nasa.gov/orion
The race to land astronauts on the Moon was getting tense 50 years ago this week. Apollo 6, the final uncrewed test flight of America’s powerful Moon rocket, launched on April 4, 1968. Several technical issues made for a less-than-perfect launch, but the test flight nonetheless convinced NASA managers that the rocket was up to the task of carrying humans. Less than two years remained to achieve President John F. Kennedy’s goal to put humans on the Moon before the decade was out, meaning the Saturn V rocket had to perform.
After the April 1968 Apollo 6 test flight (pictured above), the words of Deke Slayton (one of the original Mercury 7 astronauts) and intense competition with a rival team in the Soviet Union propelled a 12-member panel to unanimously vote for a Christmas 1968 crewed mission to orbit the Moon.
The Saturn V rocket stood about the height of a 36-story-tall building, and 60 feet (18 meters) taller than the Statue of Liberty. Fully fueled for liftoff, the Saturn V weighed 6.2 million pounds (2.8 million kilograms), or the weight of about 400 elephants.
Stand back, Ms. Frizzle. The Saturn V generated 7.6 million pounds (34.5 million newtons) of thrust at launch, creating more power than 85 Hoover Dams. It could launch about 130 tons (118,000 kilograms) into Earth orbit. That's about as much weight as 10 school buses. The Saturn V could launch about 50 tons (43,500 kilograms) to the Moon. That's about the same as four school buses.
On Christmas Eve 1968, the Saturn V delivered on engineers’ promises by hurling Frank Borman, Jim Lovell and Bill Anders into lunar orbit. The trio became the first human beings to orbit another world. The Apollo 8 crew broadcast a special holiday greeting from lunar orbit and also snapped the iconic earthrise image of our home planet rising over the lunar landscape.
The crew of Apollo 9 proved that they could pull the lunar module out of the top of the Saturn V’s third stage and maneuver it in space (in this case high above Earth). The crew named their command module “Gumdrop.” The Lunar Module was named “Spider.”
Saturn-V AS-505 provided the ride for the second dry run to the Moon in 1969. Tom Stafford, Gene Cernan and John Young rode Command Module “Charlie Brown” to lunar orbit and then took Lunar Module “Snoopy” on a test run in lunar orbit. Apollo 10 did everything but land on the Moon, setting the stage for the main event a few months later. Young and Cernan returned to walk on the Moon aboard Apollo 16 and 17 respectively. Cernan, who died in 2017, was the last human being (so far) to set foot on the Moon.
The launch of Apollo 11—the first mission to land humans on the Moon—provided another iconic visual as Saturn-V AS-506 roared to life on Launch Pad 39A at Kennedy Space Center in Florida. Three days later, Neil Armstrong and Buzz Aldrin made the first of many bootprints in the lunar dust (supported from orbit by Michael Collins).
Saturn V rockets carried 24 humans to the Moon, and 12 of them walked on its surface between 1969 and 1972. Thirteen are still alive today. The youngest, all in their early 80s, are moonwalkers Charles Duke (Apollo 16) and Harrison Schmitt (Apollo 17) and Command Module Pilot Ken Mattingly (Apollo 16, and also one of the heroes who helped rescue Apollo 13). There is no single image of all the humans who have visited the Moon.
The Saturn V’s swan song was to lay the groundwork for establishing a permanent human presence in space. Skylab, launched into Earth orbit in 1973, was America’s first space station, a precursor to the current International Space Station. Skylab’s ride to orbit was a Saturn IV-B 3rd stage, launched by a Saturn 1-C and SII Saturn V stages.
This was the last launch of a Saturn V, but you can still see the three remaining giant rockets at the visitor centers at Johnson Space Center in Texas and Kennedy Space Center in Florida and at the United States Space and Rocket Center in Alabama (near Marshall Space Flight Center, one of the birthplaces of the Saturn V).
The Saturn V was retired in 1973. Work is now underway on a fleet of rockets. We are planning an uncrewed flight test of Space Launch System (SLS) rocket to travel beyond the Moon called Exploration Mission-1 (EM-1). “This is a mission that truly will do what hasn’t been done and learn what isn’t known,” said Mike Sarafin, EM-1 mission manager at NASA Headquarters in Washington.
Read the web version of this 10 Things to Know article HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
View these celestial beauties taken by the Hubble Space Telescope and released as a set of views in a modern day "Messier Catalog."
Spotting comets was all the rage in the middle of the 18th century, and at the forefront of the comet hunt was a young French astronomer named Charles Messier. In 1774, in an effort to help fellow comet seekers steer clear of astronomical objects that were not comets (something that frustrated his own search for these elusive entities), Messier published the first version of his “Catalog of Nebulae and Star Clusters,” a collection of celestial objects that weren’t comets and should be avoided during comet hunting. Today, rather than avoiding these objects, many amateur astronomers actively seek them out as interesting targets to observe with backyard telescopes, binoculars or sometimes even with the naked eye.
Hubble’s version of the Messier catalog includes eight newly processed images never before released by NASA. The images were extracted from more than 1.3 million observations that now reside in the Hubble data archive. Some of these images represent the first Hubble views of the objects, while others include newer, higher resolution images taken with Hubble’s latest cameras.
Learn more: https://www.nasa.gov/content/goddard/hubble-s-messier-catalog
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On June 19, engineers on the ground remotely operated the International Space Station’s robotic arm to remove the Roll-Out Solar Array (ROSA) from the trunk of SpaceX’s Dragon cargo vehicle. Here, you see the experimental solar array unfurl as the station orbits Earth.
Solar panels are an efficient way to power satellites, but they are delicate and large, and must be unfolded when a satellite arrives in orbit. The Roll-Out Solar Array (ROSA) is a new type of solar panel that rolls open in space like a party favor and is more compact than current rigid panel designs.
ROSA is 20% lighter and 4x smaller in volume than rigid panel arrays!
This experiment remained attached to the robotic arm over seven days to test the effectiveness of the advanced, flexible solar array that rolls out like a tape measure. During that time, they also measured power produced by the array and monitored how the technology handled retraction.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What exactly did you do during your time as a flight surgeon? I guess im just trying to ask, what does that job include?
How exactly will it work? And whats the goal of the project?
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts