Dark Spot And Jovian 'Galaxy' - This Enhanced-color Image Of A Mysterious Dark Spot On Jupiter Seems

Dark Spot And Jovian 'Galaxy' - This Enhanced-color Image Of A Mysterious Dark Spot On Jupiter Seems

Dark Spot and Jovian 'Galaxy' - This enhanced-color image of a mysterious dark spot on Jupiter seems to reveal a Jovian "galaxy" of swirling storms. Juno acquired this JunoCam image on Feb. 2, 2017, at an altitude of 9,000 miles (14,500 kilometers) above the giant planet's cloud tops. This publicly selected target was simply titled "Dark Spot." In ground-based images it was difficult to tell that it is a dark storm. Citizen scientist Roman Tkachenko enhanced the color to bring out the rich detail in the storm and surrounding clouds. Just south of the dark storm is a bright, oval-shaped storm with high, bright, white clouds, reminiscent of a swirling galaxy. As a final touch, he rotated the image 90 degrees, turning the picture into a work of art. Credits: NASA/JPL-Caltech/SwRI/MSSS/Roman Tkachenko

More Posts from Nasa and Others

6 years ago

Build a Rover, Race a Rover!

image

Have you ever wanted to drive a rover across the surface of the Moon?

This weekend, students from around the world will get their chance to live out the experience on Earth! At the Human Exploration Rover Challenge, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama, high schoolers and college students operate human-powered rovers that they designed and built as they traverse a simulated world, making decisions and facing obstacles that replicate what the next generation of explorers will face in space.

image

Though the teams that build the rover can be a few people or a few dozen, in the end, two students (one male, one female) will end up navigating their rover through a custom-built course at the U.S. Space and Rocket Center. Each duo will push their rover to the limit, climbing up hills, bumping over rocky and gravelly grounds, and completing mission objectives (like retrieving soil samples and planting their team flag) for extra points -- all in less than seven minutes.

image

2019 will mark the 25th year of Rover Challenge, which started life as the Great Moonbuggy Race on July 16, 1994. Six teams braved the rain and terrain (without a time limit) in the Rocket City that first year -- and in the end, the University of New Hampshire emerged victorious, powering through the moon craters, boulder fields and other obstacles in eighteen minutes and fifty-five seconds.

image

When it came time to present that year's design awards, though, the honors went to the University of Puerto Rico at Humacao, who have since become the only school to compete in every Great Moonbuggy Race and Rover Challenge hosted by NASA Marshall. The second-place finishers in 1994, the hometown University of Alabama in Huntsville, are the only other school to compete in both the first race and the 25th anniversary race in 2019.

image

Since that first expedition, the competition has only grown: the race was officially renamed the Human Exploration Rover Challenge for 2014, requiring teams to build even more of their rover from the wheels up, and last year, new challenges and tasks were added to better reflect the experience of completing a NASA mission on another planet. This year, almost 100 teams will be competing in Rover Challenge, hailing from 24 states, Washington, D.C., Puerto Rico, and countries from Bolivia to Bangladesh.

image

Rover Challenge honors the legacy of the NASA Lunar Roving Vehicle, which made its first excursion on the moon in 1971, driven by astronauts David Scott and James Irwin on Apollo 15. Given the competition's space race inspiration, it's only appropriate that the 25th year of Rover Challenge is happening in 2019, the 50th anniversary of Neil Armstrong and Buzz Aldrin's historic Apollo 11 moon landing.

image

Interested in learning more about Rover Challenge? Get the details on the NASA Rover Challenge site -- then join us at the U.S. Space and Rocket Center (entrance is free) or watch live on the Rover Challenge Facebook Page starting at 7 AM CT, this Friday, April 12 and Saturday, April 13. Happy roving!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com  


Tags
6 years ago

People of OSIRIS-REx

As OSIRIS-REx closes in on its target destination—asteroid Bennu—anticipation is building for the first-ever, close-up glimpse of this small world. It took thousands of people to come this far. Get to know a few members of the team:

People Of OSIRIS-REx

1. Carl Hergenrother, Astronomy Working Group Lead & Strategic and Tactical Scientist

Job Location: University of Arizona, Tucson Expertise: Asteroids & Comets Time on mission: Since before there was a mission Age: 45 Hometown: Oakland, New Jersey

“When you’re observing Bennu with a telescope, you see it as a dot. … So when it actually becomes its own little world, it’s really exciting—and almost a little sad. Up until that point, it can be anything. And now, there it is and that’s it.”

People Of OSIRIS-REx

2. Heather Roper, Graphic Designer

Job Location: University of Arizona, Tucson Job Title: Graphic Designer Expertise: Visual Communications Time on mission: 5 years Age: 25 Hometown: Tucson, Arizona

“I really like the challenge of visually depicting the science of the mission and getting to show people things that we can’t see.”

People Of OSIRIS-REx

3. Jason Dworkin, Project Scientist

Job Location: NASA’s Goddard Space Flight Center, Greenbelt, Maryland Expertise: Origin-of-life Chemistry Time on mission: Since before there was a mission Age: 49 Hometown: Houston, Texas

"In 10th grade, I had to do a science fair project for biology class. … I wanted to expand on chemistry experiments from old journal papers; but that could have been dangerous. I got in touch with … a pioneering scientist in origin-of-life research and asked for advice. He was worried that I would accidentally injure myself, so he invited me into his lab . . . that helped set my career.”

People Of OSIRIS-REx

4. Sara Balram Knutson, Science Operations Lead Engineer

Job Location: University of Arizona, Tucson Expertise: Aerospace Engineering Time on mission: 6 years Age: 31 Hometown: Vacaville, California

“My dad was in the Air Force, so I grew up being a bit of an airplane nerd. When I was in high school, I really liked math, science, and anything having to do with flight. I looked for a field where I could combine all those interests and I found aerospace engineering.”

People Of OSIRIS-REx

5. Nancy Neal Jones, Public Affairs Lead

Job Location: NASA’s Goddard Space Flight Center, Greenbelt, Maryland Expertise: Science Communications Time on mission: 7 years Age: 51 Hometown: New York, New York

“We’re going to a pristine asteroid to take a sample to bring to Earth. This means that my children and grandchildren, if they decide to go into the sciences, may have an opportunity analyze the Bennu samples.”

People Of OSIRIS-REx

6. Javier Cerna, Communications System Engineer

Job Location: Lockheed Martin Corporation, Littleton, Colorado Expertise: Electrical Engineering Time on mission: Since before there was a mission Age: 37 Hometown: Born in Mexico City, and raised in Los Angeles, and Las Cruces, New Mexico

“One thing we do is evaluate how strong the signal from the spacecraft is—kind of like checking the strength of the WiFi connection. Basically, we’re ensuring that the link from the spacecraft to the ground, and vice versa, stays strong.”

People Of OSIRIS-REx

7. Jamie Moore, Contamination Control Engineer

Job Location: Lockheed Martin Corporation, Littleton, Colorado Expertise: Chemistry Time on mission: 5 years Age: 32 Hometown: Apple Valley, Minnesota & Orlando, Florida

“I was there for just about every deployment of the sampling hardware to make sure it was kept clean and to evaluate the tools engineers were using. I even went to Florida with the spacecraft to make sure it stayed clean until launch.”

People Of OSIRIS-REx

8. Mike Moreau, Flight Dynamics System Manager

Job Location: NASA’s Goddard Space Flight Center, Greenbelt, Maryland; Littleton, Colorado Expertise: Mechanical and aerospace engineering Time on mission: 5 years Age: 47 Hometown: Swanton, Vermont

“I grew up on a dairy farm in Vermont, which is a world away from working for NASA. But I can trace a lot of my success as an engineer and a leader back to things that I learned on my dad’s farm.”

People Of OSIRIS-REx

9. Johnna L. McDaniel, Contamination Control Specialist

Job Location: NASA’s Kennedy Space Center, Florida Expertise: Anti-Contamination Cleaning Time on Mission: 4 months Age: 53 Hometown: Cocoa, Florida

“The clothing requirements depend on the payload. With OSIRIS-Rex, we could not wear any items made with nylon. This was because they have amino acid-based polymers in them and would have contaminated the spacecraft. I even had a special bucket for mopping.”

People Of OSIRIS-REx

10. Annie Hasten, Senior Financial Analyst

Job Location: Lockheed Martin Corporation, Steamboat Springs, Colorado Expertise: Business Time on Mission: 1.5 years Age: 30 Hometown: Littleton, Colorado

“I think it’s a pleasure to work with people who are so intensely passionate about their jobs. These engineers are doing their dream jobs, so you feed off of that positive energy.”

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago

You Are Made of Stardust

Though the billions of people on Earth may come from different areas, we share a common heritage: we are all made of stardust! From the carbon in our DNA to the calcium in our bones, nearly all of the elements in our bodies were forged in the fiery hearts and death throes of stars.

You Are Made Of Stardust

The building blocks for humans, and even our planet, wouldn’t exist if it weren’t for stars. If we could rewind the universe back almost to the very beginning, we would just see a sea of hydrogen, helium, and a tiny bit of lithium.

The first generation of stars formed from this material. There’s so much heat and pressure in a star’s core that they can fuse atoms together, forming new elements. Our DNA is made up of carbon, hydrogen, oxygen, nitrogen, and phosphorus. All those elements (except hydrogen, which has existed since shortly after the big bang) are made by stars and released into the cosmos when the stars die.

You Are Made Of Stardust

Each star comes with a limited fuel supply. When a medium-mass star runs out of fuel, it will swell up and shrug off its outer layers. Only a small, hot core called a white dwarf is left behind. The star’s cast-off debris includes elements like carbon and nitrogen. It expands out into the cosmos, possibly destined to be recycled into later generations of stars and planets. New life may be born from the ashes of stars.

You Are Made Of Stardust

Massive stars are doomed to a more violent fate. For most of their lives, stars are balanced between the outward pressure created by nuclear fusion and the inward pull of gravity. When a massive star runs out of fuel and its nuclear processes die down, it completely throws the star out of balance. The result? An explosion!

Supernova explosions create such intense conditions that even more elements can form. The oxygen we breathe and essential minerals like magnesium and potassium are flung into space by these supernovas.

You Are Made Of Stardust

Supernovas can also occur another way in binary, or double-star, systems. When a white dwarf steals material from its companion, it can throw everything off balance too and lead to another kind of cataclysmic supernova. Our Nancy Grace Roman Space Telescope will study these stellar explosions to figure out what’s speeding up the universe’s expansion. 

This kind of explosion creates calcium – the mineral we need most in our bodies – and trace minerals that we only need a little of, like zinc and manganese. It also produces iron, which is found in our blood and also makes up the bulk of our planet’s mass!

You Are Made Of Stardust

A supernova will either leave behind a black hole or a neutron star – the superdense core of an exploded star. When two neutron stars collide, it showers the cosmos in elements like silver, gold, iodine, uranium, and plutonium.

You Are Made Of Stardust

Some elements only come from stars indirectly. Cosmic rays are nuclei (the central parts of atoms) that have been boosted to high speed by the most energetic events in the universe. When they collide with atoms, the impact can break them apart, forming simpler elements. That’s how we get boron and beryllium – from breaking star-made atoms into smaller ones.

Half a dozen other elements are created by radioactive decay. Some elements are radioactive, which means their nuclei are unstable. They naturally break down to form simpler elements by emitting radiation and particles. That’s how we get elements like radium. The rest are made by humans in labs by slamming atoms of lighter elements together at super high speeds to form heavier ones. We can fuse together elements made by stars to create exotic, short-lived elements like seaborgium and einsteinium.

You Are Made Of Stardust

From some of the most cataclysmic events in the cosmos comes all of the beauty we see here on Earth. Life, and even our planet, wouldn’t have formed without them! But we still have lots of questions about these stellar factories. 

In 2006, our Stardust spacecraft returned to Earth containing tiny particles of interstellar dust that originated in distant stars, light-years away – the first star dust to ever be collected from space and returned for study. You can help us identify and study the composition of these tiny, elusive particles through our Stardust@Home Citizen Science project.

Our upcoming Roman Space Telescope will help us learn more about how elements were created and distributed throughout galaxies, all while exploring many other cosmic questions. Learn more about the exciting science this mission will investigate on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

High (Like 240,000 Miles) Fashion: What Astronauts Wear to the Moon

High (Like 240,000 Miles) Fashion: What Astronauts Wear To The Moon

We call it a spacesuit, almost as if it’s something an astronaut pulls out of the closet. It’s more accurate to think of it as an astronaut’s personal spacecraft: self-contained and functional, with a design focused on letting astronauts work safely in space. Just as we’ve been able to improve rockets, satellites and data systems over 60 years, we’ve made great improvements to spacesuits.

High (Like 240,000 Miles) Fashion: What Astronauts Wear To The Moon

When the first woman and next man step foot on the Moon in 2024, they will be wearing the next generation of spacesuit, called the Exploration Extravehicular Mobility Unit, or xEMU for short. The new suit can be used under different conditions for various tasks, including walking, driving rovers or collecting samples. The design will also allow the suits to be used for spacewalks on the space station, or Gateway – our upcoming spaceship that will orbit the Moon. Future missions to Mars can build on the core suit technologies with additional upgrades for use in the Martian atmosphere and greater gravity.

60 Years of Improvements

image

Even before we had astronauts, pilots were using pressurized suits to fly at high speeds at altitudes where the air was too thin to breathe. Our first spacesuits – shown here worn by the first NASA astronauts in 1959 – were variations of the suit used by Navy test pilots.

image

The Gemini spacesuit – shown here in a photo of astronaut Ed White making the first American spacewalk in 1965  – added a line that could connect the astronaut to the spacecraft for oxygen, and which also served as a tether when they left the capsule for a spacewalk.

image

The Apollo astronauts had to completely separate themselves from the lunar module, so we added a portable life support unit, which the astronauts carried on their backs. The photo above shows the life support system on the suit of Apollo 11 astronaut Buzz Aldrin as he deploys lunar experiments in 1969.

Though the bulky suits weren’t exactly easy to maneuver, astronauts still managed to get their jobs done and enjoy themselves doing it.

A Great Moment in Spacesuit History: Singing on the Moon

What, you wouldn’t sing if you were on the moon?

Different Suits for Different Functions

image

We have used different suits for different purposes. During the Space Shuttle program, astronauts inside the shuttle wore these orange “pumpkin” suits, which were designed to be worn within the cabin. 

image

On spacewalks, special suits – made to be worn only outside the spacecraft – provided high mobility, more flexibility and life support as the astronauts worked in zero gravity.

image

During construction of the International Space Station, we should have issued a hard hat and a pair of steel-toed boots with each suit. Astronauts conducted more than 200 spacewalks as part of building the station, which took place from 1998 until 2011. Above, an astronaut at the end of the shuttle’s robotic arm is maneuvered back into the shuttle’s payload bay with a failed pump during the shuttle’s final flight in 2011.

#MissionAccomplished

image

Spacesuits are rarely the story themselves, but they make it possible for our astronauts to get their jobs done, even when they have to improvise. In the picture above, astronauts on a 1992 space shuttle mission are conducting a spacewalk they hadn’t originally planned on. The crew was originally supposed to use a specially designed grab bar to capture the INTELSAT VI satellite. Two attempts to use the grab bar on two-person spacewalks failed, so we improvised a plan to add a third spacewalker and have all three go outside and literally grab the satellite.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
3 years ago

Who's ready to #UnfoldTheUniverse? The James Webb Space Telescope Answer Time with expert Dr. Naomi Rowe-Gurney is LIVE! Stay tuned for talks about the science goals, capabilities, and hopes for the world's most powerful telescope. View ALL the answers HERE.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
7 years ago

SpaceX Sends Super Science to Space Station!

SpaceX is scheduled to launch its Dragon spacecraft PACKED with super cool research and technology to the International Space Station June 1 from Kennedy Space Center in Florida. New solar panels, investigations that study neutron stars and even fruit flies are on the cargo list. Let’s take a look at what other bits of science are making their way to the orbiting laboratory 250 miles above the Earth…

image

New solar panels to test concept for more efficient power source

Solar panels generate power well, but they can be delicate and large when used to power a spacecraft or satellites. This technology demonstration is a solar panel concept that is lighter and stores more compactly for launch than the solar panels currently in use. 

SpaceX Sends Super Science To Space Station!

Roll-Out Solar Array (ROSA) has solar cells on a flexible blanket and a framework that rolls out like a tape measure and snap into place, and could be used to power future space vehicles.  

Investigation to Study Composition of Neutron Stars

Neutron stars, the glowing cinders left behind when massive stars explode as supernovas, contain exotic states of matter that are impossible to replicate in any lab. NICER studies the makeup of these stars, and could provide new insight into their nature and super weird behavior.

image

Neutron stars emit X-ray radiation, enabling the NICER technology to observe and record information about its structure, dynamics and energetics. 

Experiment to Study Effect of New Drug on Bone Loss

When people and animals spend lots of space, they experience bone density loss. In-flight exercise can prevent it from getting worse, but there isn’t a therapy on Earth or in space that can restore bone that is already lost.

image

The Systemic Therapy of NELL-1 for osteoporosis (Rodent Research-5) investigation tests a new drug that can both rebuild bone and block further bone loss, improving health for crew members.

Research to Understand Cardiovascular Changes

Exposure to reduced gravity environments can result in cardiovascular changes such as fluid shifts, changes in total blood volume, heartbeat and heart rhythm irregularities, and diminished aerobic capacity.

image

The Fruit Fly Lab-02 study will use the fruit fly (Drosophila melanogaster) to better understand the underlying mechanisms responsible for the adverse effects of prolonged exposure to microgravity on the heart. Fruit flies are effective model organisms, and we don’t mean on the fashion runway. Want to see how 1,000 bottles of fruit flies were prepared to go to space? Check THIS out.

Space Life-Support Investigation

Currently, the life-support systems aboard the space station require special equipment to separate liquids and gases. This technology utilizes rotating and moving parts that, if broken or otherwise compromised, could cause contamination aboard the station. 

SpaceX Sends Super Science To Space Station!

The Capillary Structures investigation studies a new method of water recycling and carbon dioxide removal using structures designed in specific shapes to manage fluid and gas mixtures. 

Earth-Observation Tools

Orbiting approximately 250 miles above the Earth’s surface, the space station provides pretty amazing views of the Earth. The Multiple User System for Earth Sensing (MUSES) facility hosts Earth-viewing instruments such as high-resolution digital cameras, hyperspectral imagers, and provides precision pointing and other accommodations.

image

This investigation can produce data that could be used for maritime domain awareness, agricultural awareness, food security, disaster response, air quality, oil and gas exploration and fire detection. 

Watch the launch live HERE! For all things space station science, follow @ISS_Research on Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

7 Things to Know About Spacewalks

On Wednesday, Oct. 28 and Friday, Nov. 6, Commander Scott Kelly and Flight Engineer Kjell Lindgren will perform spacewalks in support of space station assembly and maintenance. You can watch both of these events live on NASA Television. But, before you do, here are 7 things to know:

1. What’s the Point of a Spacewalk?

image

Spacewalks are important events where crew members repair, maintain and upgrade parts of the International Space Station. Spacewalks can also be referred to as an EVA – Extravehicular Activity. On Wednesday, Oct. 28, Commander Scott Kelly and Flight Engineer Kjell Lindgren will complete a spacewalk. During this time they will service the Canadarm2 robotic arm, route cables for a future docking port, and place a thermal cover over a dark matter detection experiment, which is a state-of-the-art particles physics detector that has been attached to the station since 2011.

2. What Do They Wear?

image

The Extravehicular Mobility Unit (EMU) spacewalking suit weighs around 350 pounds. It’s weightless in space, but mass is still very real. The EMU provides a crew member with life support and an enclosure that enables them to work outside the space station. The suit provides atmospheric containment, thermal insulation, cooling, solar radiation protection and micrometeoroid/orbital debris protection.

3. How Long Are Spacewalks?

image

Spacewalks typically last around 6 1/2 hours, but can be extended to 7 or 8 hours, if necessary. The timeline is designed to accommodate as many tasks as possible, as spacewalks require an enormous amount of work to prepare.

4. What About Eating and Drinking?

image

Before a spacewalk astronauts eat light, usually something like a protein bar. The spacesuits also have a drink bag inside, and there is a bite valve that allows ready access to water.

5. What About Communication?

image

Spacewalkers wear a ‘comm’ cap that allows them to constantly communicate with astronauts inside the space station that are helping with the walk, and with mission control. Astronauts also wear a checklist on their left wrist called a “cuff checklist”. This list contains emergency procedures.

6. What About Light?

image

Something that most people don’t realize about spacewalks is that the crew will experience a sunrise/sunset every 45 minutes. Luckily, their spacesuits are equipped with lights that allow them to see in times of darkness.

7. How Do They Stay Safe?

image

When on a spacewalk, astronauts use safety tethers to stay close to their spacecraft. One end of the tether is hooked to the spacewalker, while the other end is connected to the vehicle. Another way astronauts stay safe is by wearing a SAFER, which is a Simplified Aid for EVA Rescue. This device is worn like a backpack and uses small jet thrusters to let an astronaut move around in space.

You can watch both of the upcoming spacewalks live on: NASA Television or the NASA App, or follow along on @Space_Station Twitter.

Wednesday, Oct. 28: Coverage begins at 6:30 a.m. EDT. Spacewalk begins at 8:10 a.m.

Friday, Nov. 6: Coverage begins at 5:45 a.m. EDT. Spacewalk begins at 7:15 a.m.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 

7 years ago
Thanks To The Twin Voyager Spacecraft, Music Is Truly Universal: Each Carries A Golden Record With Sights,

Thanks to the twin Voyager spacecraft, music is truly universal: Each carries a Golden Record with sights, sounds and songs from Earth as it sails on through the Milky Way. Recalling the classic rock era of the late 1970s when the Voyagers launched, this poster is an homage to the mission’s greatest hits. Some of the most extraordinary discoveries of the probes’ first 40 years include the volcanoes on Jupiter’s moon Io, the hazy nitrogen atmosphere of Saturn’s moon Titan and the cold geysers on Neptune’s moon Triton. Voyager 1 is also the first spacecraft to deliver a portrait of our planets from beyond Neptune, depicting Earth as a ‘pale blue dot,’ as of Aug. 25, 2012, to enter interstellar space. Voyager 2 is expected to enter interstellar space in the coming years. Even after 40 years, the Voyagers’ hits just keep on coming.  

Enjoy this and other Voyager anniversary posters. Download them for free here: https://voyager.jpl.nasa.gov/downloads/

Credit: NASA/JPL-Caltech

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Astronaut Journal Entry - To Touch the Stars

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

Astronaut Journal Entry - To Touch The Stars

This is my last entry into the Captain’s Log. Drew Feustel, Ricky Arnold and Oleg Artymyev are now in charge after an excellent change of command ceremony where Drew took command of the International Space Station (ISS). We, the crew of the Soyuz MS-07 spacecraft, will undock from the International Space Station on Sunday morning (3 June), reenter the earth’s atmosphere and land on the steppe of Kazakhstan. I will be reunited with my family 24 hours later in Houston, and then begin recovery for living on Earth….with gravity….ugh.  

Astronaut Journal Entry - To Touch The Stars

I would like to thank all of you for following along on this incredible adventure, an adventure that started for me many years ago, and a journey that you have supported each step of the way.

To our Lead Flight Director, Gary Horlacher (Houston) and our Lead Payload Operations Director Patricia Patterson (Huntsville) – what an amazing job. Endless hours, minimal sleep, and herding a cast of thousands to establish the priorities that would define success for our Expedition. Thank you for your service, and for your outstanding leadership.

Astronaut Journal Entry - To Touch The Stars

To our incredibly talented team supporting from Mission Control at all of our centers – Houston, Huntsville, Tsukuba, Cologne, and Moscow – you are incredible professionals without which our human spaceflight program could not exist. Thank you for your dedication, service and professionalism.

Astronaut Journal Entry - To Touch The Stars

My life has been driven by dreams and goals. One of my concerns has always been that following my heart to achieve my dreams would have a deep impact on my family and friends. In the Navy, we endured multiple extended deployments onboard aircraft carriers, constant training cycles in locations away from home, and long days and weekends of training and work when we finally had some time at home. 

In the space program, operational requirements demand the same attention and focus. I have moved my family 12 times in 30 years to make myself available for opportunities to serve that I would have otherwise not been afforded. I have always asked myself – is this worth it? I always assumed “yes”, but could not say definitively in the midst of the journey. My journey has brought my family to several new communities where we needed to learn, adjust, adapt and thrive. We are good at it. My family knows what it is like to live on the East Coast, the West Coast, the desert, the Midwest and the South. My family does not consider varying locations or diverse cultures as barriers to their success, but as opportunities to grow and excel. My children are embarking on their own dreams now, with an energy and focus even greater than I had at their age. My family maintains relationships with lifelong friends all over the country, and now the world. My family believes that dreams are attainable, and that the journey towards their dreams is where the value is found. 

Astronaut Journal Entry - To Touch The Stars

I am very lucky that I have lifelong friends that understand what it was that took me away from my childhood home. I am very lucky to have a family that “gets it”. My wife, Raynette, is amazing at being patient, and at making things work amidst unimaginable chaos. I am very proud of my military family for enduring all that they have over the years. Throughout the sacrifice and endurance, they decided to thrive – typical of our country’s incredible military families. My son, Sean Tingle, wrote and produced the song “To Touch the Stars” in honor of our journey that reached another level of success during ISS Expeditions 54 and 55. After hearing this song, I can definitively say, “Yes, it was worth it”.

To my family, friends and colleagues - THANK YOU for a LIFETIME OF INSPIRATION!

Now, it’s time to get busy again - chop chop hubba bubba!

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
1 year ago
Vibrantly hued shapes speckle an image with a black background. Orbs glowing red, yellow, and blue are strewn across the frame, and a large, translucent blue haze dominates most of the center. Credit: NASA, ESA, and M. Brodwin (University of Missouri)

Astronomers used three of NASA's Great Observatories to capture this multiwavelength image showing galaxy cluster IDCS J1426.5+3508. It includes X-rays recorded by the Chandra X-ray Observatory in blue, visible light observed by the Hubble Space Telescope in green, and infrared light from the Spitzer Space Telescope in red. This rare galaxy cluster has important implications for understanding how these megastructures formed and evolved early in the universe.

How Astronomers Time Travel

Let’s add another item to your travel bucket list: the early universe! You don’t need the type of time machine you see in sci-fi movies, and you don’t have to worry about getting trapped in the past. You don’t even need to leave the comfort of your home! All you need is a powerful space-based telescope.

But let’s start small and work our way up to the farthest reaches of space. We’ll explain how it all works along the way.

This animation shows a small, blue planet Earth at the left of the frame and an even smaller white dot representing the Moon at the right. The background is black. A beam of light travels back and forth between them. The graphic is labeled “Earth and Moon to scale, Speed of light in real-time, surface-to-surface in 1.255 seconds, average distance 384,400 km.” Credit: James O'Donoghue, used with permission

This animation illustrates how fast light travels between Earth and the Moon. The farther light has to travel, the more noticeable its speed limit becomes.

The speed of light is superfast, but it isn’t infinite. It travels at about 186,000 miles (300 million meters) per second. That means that it takes time for the light from any object to reach our eyes. The farther it is, the more time it takes.

You can see nearby things basically in real time because the light travel time isn’t long enough to make a difference. Even if an object is 100 miles (161 kilometers) away, it takes just 0.0005 seconds for light to travel that far. But on astronomical scales, the effects become noticeable.

The Sun and planets are lined up along the center of the frame with distances shown to scale. The title is “The Solar System: with real-time speed of light.” Earth is labeled 1 AU, 8 minutes 17 seconds; Jupiter is 5.2 AU, 43 minutes 17 seconds; Saturn is 9.6 AU, 1 hour 20 minutes; Uranus is 19.2 AU, 2 hours 40 minutes; and Neptune is 30 AU, 4 hours 10 minutes. The bottom of the graphic says, “1 AU (astronomical unit) = 93 million miles, or 150 million kilometers.” Credit: James O'Donoghue, used with permission

This infographic shows how long it takes light to travel to different planets in our solar system.

Within our solar system, light’s speed limit means it can take a while to communicate back and forth between spacecraft and ground stations on Earth. We see the Moon, Sun, and planets as they were slightly in the past, but it's not usually far enough back to be scientifically interesting.

As we peer farther out into our galaxy, we use light-years to talk about distances. Smaller units like miles or kilometers would be too overwhelming and we’d lose a sense of their meaning. One light-year – the distance light travels in a year – is nearly 6 trillion miles (9.5 trillion kilometers). And that’s just a tiny baby step into the cosmos.

The Sun’s closest neighboring star, Proxima Centauri, is 4.2 light-years away. That means we see it as it was about four years ago. Betelgeuse, a more distant (and more volatile) stellar neighbor, is around 700 light-years away. Because of light’s lag time, astronomers don’t know for sure whether this supergiant star is still there! It may have already blasted itself apart in a supernova explosion – but it probably has another 10,000 years or more to go.

An undulating, translucent star-forming region in the Carina Nebula, hued in ambers and blues. Foreground stars with diffraction spikes can be seen, as can a speckling of background points of light through the cloudy nebula. Credit: NASA, ESA, CSA, and STScI

What looks much like craggy mountains on a moonlit evening is actually the edge of a nearby, young, star-forming region NGC 3324 in the Carina Nebula. Captured in infrared light by the Near-Infrared Camera (NIRCam) on NASA’s James Webb Space Telescope, this image reveals previously obscured areas of star birth.

The Carina Nebula clocks in at 7,500 light-years away, which means the light we receive from it today began its journey about 3,000 years before the pyramids of Giza in Egypt were built! Many new stars there have undoubtedly been born by now, but their light may not reach Earth for thousands of years.

Glowing spiral arms are twisted around like a cosmic cinnamon roll. A bright yellow oval is diagonal in the center of the frame, and sprays of stars extend outward from it like tentacles. Pink, white, and blue stars speckle the spiral arms and dusty lanes lie in between. The glowing arms are streaked with smaller clumps of dust. Credit: NASA and Nick Risinger

An artist’s concept of our Milky Way galaxy, with rough locations for the Sun and Carina nebula marked.

If we zoom way out, you can see that 7,500 light-years away is still pretty much within our neighborhood. Let’s look further back in time…

Spiral galaxy NGC 5643 with a bright, barred center surrounded by an orange-y glow. Vaguely purplish swirling arms extend outward from the center and appear somewhat mottled as streams of dust block white and blue stars in the arms here and there. A few stars are each surrounded by many sharp diffraction spikes. Credit: ESA/Hubble and NASA, A. Riess et al.; acknowledgement: Mahdi Zamani

This stunning image by the NASA/ESA Hubble Space Telescope features the spiral galaxy NGC 5643. Looking this good isn’t easy; 30 different exposures, for a total of nine hours of observation time, together with Hubble’s high resolution and clarity, were needed to produce an image of such exquisite detail and beauty.

Peering outside our Milky Way galaxy transports us much further into the past. The Andromeda galaxy, our nearest large galactic neighbor, is about 2.5 million light-years away. And that’s still pretty close, as far as the universe goes. The image above shows the spiral galaxy NGC 5643, which is about 60 million light-years away! That means we see it as it was about 60 million years ago.

As telescopes look deeper into the universe, they capture snapshots in time from different cosmic eras. Astronomers can stitch those snapshots together to unravel things like galaxy evolution. The closest ones are more mature; we see them nearly as they truly are in the present day because their light doesn’t have to travel as far to reach us. We can’t rewind those galaxies (or our own), but we can get clues about how they likely developed. Looking at galaxies that are farther and farther away means seeing these star cities in ever earlier stages of development.

The farthest galaxies we can see are both old and young. They’re billions of years old now, and the light we receive from them is ancient since it took so long to traverse the cosmos. But since their light was emitted when the galaxies were young, it gives us a view of their infancy.

The animation begins with a tiny dot of purplish light which quickly explodes, with a flash of light blossoming out to cover the whole frame. The light subsides and the screen shows galaxies of smudgy or spiral shapes racing outward from the center of the frame. Credit: NASA’s Goddard Space Flight Center

This animation is an artist’s concept of the big bang, with representations of the early universe and its expansion.

Comparing how fast objects at different distances are moving away opened up the biggest mystery in modern astronomy: cosmic acceleration. The universe was already expanding as a result of the big bang, but astronomers expected it to slow down over time. Instead, it’s speeding up!

The universe’s expansion makes it tricky to talk about the distances of the farthest objects. We often use lookback time, which is the amount of time it took for an object’s light to reach us. That’s simpler than using a literal distance, because an object that was 10 billion light-years away when it emitted the light we received from it would actually be more than 16 billion light-years away right now, due to the expansion of space. We can even see objects that are presently over 30 billion light-years from Earth, even though the universe is only about 14 billion years old.

Hundreds of red, yellow, white, and blue galaxies are sprinkled across a black background, appearing as small, brightly colored smudges. The tiniest galaxies appear as mere dots, while larger ones are disk-shaped. One blue star with six diffraction spikes shines in the lower-left corner. Credit: NASA, ESA, CSA, and M. Zamani (ESA/Webb). Science: B. Robertson (UCSC), S. Tacchella (Cambridge), E. Curtis-Lake (Hertfordshire), S. Carniani (Scuola Normale Superiore), and the JADES Collaboration

This James Webb Space Telescope image shines with the light from galaxies that are more than 13.4 billion years old, dating back to less than 400 million years after the big bang.

Our James Webb Space Telescope has helped us time travel back more than 13.4 billion years, to when the universe was less than 400 million years old. When our Nancy Grace Roman Space Telescope launches in a few years, astronomers will pair its vast view of space with Webb’s zooming capabilities to study the early universe in better ways than ever before. And don’t worry – these telescopes will make plenty of pit stops along the way at other exciting cosmic destinations across space and time.

Learn more about the exciting science Roman will investigate on X and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
  • celibatevegan
    celibatevegan liked this · 4 years ago
  • epic-flight
    epic-flight reblogged this · 4 years ago
  • illuminatiblog
    illuminatiblog liked this · 4 years ago
  • esquizo-all-blog
    esquizo-all-blog liked this · 5 years ago
  • lolathimble
    lolathimble reblogged this · 5 years ago
  • lolathimble
    lolathimble liked this · 5 years ago
  • 221b-anarion
    221b-anarion reblogged this · 5 years ago
  • sinistralgem
    sinistralgem liked this · 5 years ago
  • dmisk
    dmisk liked this · 6 years ago
  • sonicsoundscapes
    sonicsoundscapes liked this · 6 years ago
  • redpillsfortheblues
    redpillsfortheblues liked this · 6 years ago
  • denisefoodesigner
    denisefoodesigner liked this · 6 years ago
  • kittensbeans
    kittensbeans liked this · 7 years ago
  • qwertzuiops-blog
    qwertzuiops-blog liked this · 7 years ago
  • annacaffeina
    annacaffeina liked this · 7 years ago
  • nadolsp-blog
    nadolsp-blog liked this · 7 years ago
  • fusiontorch
    fusiontorch reblogged this · 7 years ago
  • sergeantconker
    sergeantconker reblogged this · 7 years ago
  • extraordinaryheights
    extraordinaryheights liked this · 7 years ago
  • flowerstrickensunlight
    flowerstrickensunlight reblogged this · 7 years ago
  • puddleshine-blog
    puddleshine-blog liked this · 7 years ago
  • dungeonlust
    dungeonlust reblogged this · 7 years ago
  • eel-divinity
    eel-divinity liked this · 7 years ago
  • brendakrs
    brendakrs reblogged this · 7 years ago
  • studentface
    studentface liked this · 7 years ago
  • tinu001-blog
    tinu001-blog liked this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags