Innovation At 100

Innovation at 100

Air travel, spaceflight, robotic solar-system missions: science fiction to those alive at the turn of the 20th century became science fact to those living in the 21st. 

Innovation At 100

America’s aerospace future has been literally made at our Langley Research Center by the best and brightest the country can offer. Here are some of the many highlights from a century of ingenuity and invention.

Making the Modern Airplane

In times of peace and war, Langley helped to create a better airplane, including unique wing shapes, sturdier structures, the first engine cowlings, and drag cleanup that enabled the Allies to win World War II.

image

In 1938 Langley mounted the navy's Brewster XF2A-1 Buffalo in the Full-Scale Tunnel for drag reduction studies.

Wind Goes to Work

Langley broke new ground in aeronautical research with a suite of first-of-their-kind wind tunnels that led to numerous advances in commercial, military and vertical flight, such as helicopters and other rotorcraft. 

image

Airflow turning vanes in Langley’s 16-Foot Transonic Tunnel.

Aeronautics Breakthroughs

Aviation Hall of Famer Richard Whitcomb’s area rule made practical jet flight a reality and, thanks to his development of winglets and the supercritical wing, enabled jets to save fuel and fly more efficiently.

image

Richard Whitcomb examines a model aircraft incorporating his area rule.

Making Space

Langley researchers laid the foundation for the U.S. manned space program, played a critical role in the Mercury, Gemini and Apollo programs, and developed the lunar-orbit rendezvous concept that made the Moon landing possible.

image

Neil Armstrong trained for the historic Apollo 11 mission at the Lunar Landing Research Facility,

Safer Air Above and Below

Langley research into robust aircraft design and construction, runway safety grooving, wind shear, airspace management and lightning protection has aimed to minimize, even eliminate air-travel mishaps

image

NASA’s Boeing 737 as it approached a thunderstorm during microburst wind shear research in Colorado in 1992.

Tracking Earth from Aloft

Development by Langley of a variety of satellite-borne instrumentation has enabled real-time monitoring of planet-wide atmospheric chemistry, air quality, upper-atmosphere ozone concentrations, the effects of clouds and air-suspended particles on climate, and other conditions affecting Earth’s biosphere.

image

Crucial Shuttle Contributions

Among a number of vital contributions to the creation of the U.S. fleet of space shuttles, Langley developed preliminary shuttle designs and conducted 60,000 hours of wind tunnel tests to analyze aerodynamic forces affecting shuttle launch, flight and landing.

image

Space Shuttle model in the Langley wind tunnel.

Decidedly Digital

Helping aeronautics transition from analog to digital, Langley has worked on aircraft controls, glass cockpits, computer-aided synthetic vision and a variety of safety-enhancing onboard sensors to better monitor conditions while airborne and on the ground.

image

Aerospace research engineer Kyle Ellis uses computer-aided synthetic vision technology in a flight deck simulator.

Fast, Faster, Fastest

Langley continues to study ways to make higher-speed air travel a reality, from about twice the speed of sound – supersonic – to multiple times: hypersonic.

image

Langley continues to study ways to make higher-speed air travel a reality, from about twice the speed of sound – supersonic – to multiple times: hypersonic.

Safer Space Sojourns

Protecting astronauts from harm is the aim of Langley’s work on the Orion Launch Abort System, while its work on materials and structures for lightweight and affordable space transportation and habitation will keep future space travelers safe.

image

Unmasking the Red Planet

Beginning with its leadership role in Project Viking, Langley has helped to unmask Martian mysteries with a to-date involvement in seven Mars missions, with participation in more likely to come.

image

First image of Mars taken by Viking 1 Lander.

Touchdown Without Terror

Langley’s continued work on advanced entry, descent and landing systems aims to make touchdowns on future planetary missions routinely safe and secure.

image

Artist concept of NASA's Hypersonic Inflatable Aerodynamic Decelerator - an entry, descent and landing technology.

Going Green

Helping to create environmentally benign aeronautical technologies has been a focus of Langley research, including concepts to reduce drag, weight, fuel consumption, emissions, and lessen noise.

image

Intrepid Inventors

With a history developing next-generation composite structures and components, Langley innovators continue to garner awards for a variety of aerospace inventions with a wide array of terrestrial applications.

image

Boron Nitride Nanotubes: High performance, multi-use nanotube material.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

6 years ago

Five Technologies Taking Aeronautics into the Future

Martian helicopters? Electric planes? Quiet supersonic flight?

The flight technologies of tomorrow are today’s reality at NASA. We’re developing a number of innovations that promise to change the landscape (skyscape?) of aviation. Here are five incredible aeronautic technologies currently in development:

image

 1. The X-59 QueSST and Quiet Supersonic Technology

It might sound like an oxymoron, but ‘quiet boom’ technology is all the rage with our Aeronautics Mission Directorate. The X-59 QueSST is an experimental supersonic jet that hopes to reduce the sound of a supersonic boom to a gentle thump. We will gauge public reaction to this ‘sonic thump,’ evaluating its potential impact if brought into wider use. Ultimately, if the commercial sector incorporates this technology, the return of supersonic passenger flight may become a reality!

image

 2. The X-57 Electric Plane

Electric cars? Pfft. We’re working on an electric PLANE. Modified from an existing general aviation aircraft, the X-57 will be an all-electric X-plane, demonstrating a leap-forward in green aviation. The plane seeks to reach a goal of zero carbon emissions in flight, running on batteries fed by renewable energy sources!

image

3. Second-Generation Search and Rescue Beacons

Our Search and Rescue office develops technologies for distress beacons and the space systems that locate them. Their new constellation of medium-Earth orbit instruments can detect a distress call near-instantaneously, and their second-generation beacons, hitting shelves soon, are an order of magnitude more accurate than the previous generation!

(The Search and Rescue office also recently debuted a coloring book that doesn’t save lives but will keep your crayon game strong.)

image

4. Earth from the Air

Earth science? We got it.

We don’t just use satellite technology to monitor our changing planet. We have a number of missions that monitor Earth’s systems from land, sea and air. In the sky, we use flying laboratories to assess things like air pollution, greenhouse gasses, smoke from wildfires and so much more. Our planet may be changing, but we have you covered.

image

5. Icing Research

No. Not that icing.

image

Much better.

Though we at NASA are big fans of cake frosting, that’s not the icing we’re researching. Ice that forms on a plane mid-flight can disrupt the airflow around the plane and inside the engine, increasing drag, reducing lift and even causing loss of power. Ice can also harm a number of other things important to a safe flight. We’re developing tools and methods for evaluating and simulating the growth of ice on aircraft. This will help aid in designing future aircraft that are more resilient to icing, making aviation safer.

There you have it, five technologies taking aeronautics into the future, safely down to the ground and even to other planets! To stay up to date on the latest and greatest in science and technology, check out our website: www.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

Record-Shattering Global Warm Temperatures in 2015

Earth’s 2015 surface temperatures were the warmest since modern record keeping began in 1880, according to independent analyses by NASA and the National Oceanic and Atmospheric Administration (NOAA).

image

Globally-averaged temperatures in 2015 shattered the previous mark set in 2014 by 0.23 degrees Fahrenheit (0.13 Celsius). Only once before, in 1998, has the new record been greater than the old record by this much.

The 2015 temperatures continue a long-term warming trend, according to analyses by scientists at NASA’s Goddard Institute for Space Studies (GISS) in New York. NOAA scientists concur with the finding that 2015 was the warmest year on record based on separate, independent analyses of the data.

image

Since the late-19th century, the planet’s average surface temperature has risen about 1.8 degrees Fahrenheit. This change is largely driven by increased carbon dioxide and other human-made emissions into the atmosphere.

An important thing to remember when reading this information is that it reflects global temperature average. That means that specific regions or areas could have experienced colder weather than usual, but overall the global temperature has risen.

Record-Shattering Global Warm Temperatures In 2015

How do we know? Our analyses incorporate surface temperature measurements from 6,300 weather stations, ship-and buoy-based observations of sea surface temperatures, and temperature measurements from Antarctic research stations.

What about El Niño? Phenomena such as El Niño or La Niña, which warm or cool the tropical Pacific Ocean, can contribute to short-term variations in global average temperature. Last year’s temperatures had an assist from a warming El Niño, but it is the cumulative effect of the long-term trend that has resulted in the record warming that we’re seeing.

The full 2015 surface temperature data set and the complete methodology used to make the temperature calculation are available HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Astronaut Candidates Report for Duty

Fourteen new Astronaut Candidates have reported to our Johnson Space Center in Houston for duty on Monday, Aug. 21! Two astronauts from the Canadian Space Agency (CSA), along with our 12 new astronaut candidates arrived for their first day of work. We selected these 12 individuals from a record number of more than 18,000 applicants. 

Astronaut Candidates Report For Duty

This excited group of outstanding individuals will begin 2 years of training, along with 2 Canadian astronauts, in 5 key areas before being assigned to a mission.

What 5 areas? Let’s take a look...

1. Operate in T-38 Jets

image

Astronauts must be able to safely operate in the T-38 jets as either a pilot or back seater. 

2. Operate + Maintain the International Space Station

image

Astronauts learn to operate and maintain the complex systems aboard the International Space Station. Did you know they recycle their water there? Today’s coffee is...well, tomorrow’s coffee too. 

3. Learn How to Spacewalk

image

Or should we say waterwalk? Astronauts demonstrate the skills to complete complex spacewalk tasks in our Neutral Buoyancy Laboratory. This 6.2 million gallon pool contains a mockup of the space station and is a close simulation to microgravity.

4. Learn to Operate a Robot

image

Astronauts train in Canada for 2 weeks to learn how to capture visiting vehicles and more with the space station’s Canadarm 2 robotic arm. 

5. Learn a Foreign Language

image

Astronauts must be fluent in both English and Russian, the two official languages on the International Space Station. 

But before they begin all this training...they had to report for duty...

Astronaut Candidates Report For Duty

This group reported for Johnson Space Center on eclipse day and was sworn in as NASA’s Astronaut Candidate Class of 2017.

Astronaut Candidates Report For Duty

They even got to experience the partial solar eclipse together, what a great first day!

Astronaut Candidates Report For Duty

Follow their training journey online by following @NASA_Astronauts on Twitter. 

Get to know them better and watch their individual interviews here: go.nasa.gov/NewAstronauts. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What was the most fun you had in Mission Control?


Tags
8 years ago

10 People You Wish You Met from 100 Years of NASA’s Langley

Something happened 100 years ago that changed forever the way we fly. And then the way we explore space. And then how we study our home planet. That something was the establishment of what is now NASA Langley Research Center in Hampton, Virginia. Founded just three months after America's entry into World War I, Langley Memorial Aeronautical Laboratory was established as the nation's first civilian facility focused on aeronautical research. The goal was, simply, to "solve the fundamental problems of flight."

image

From the beginning, Langley engineers devised technologies for safer, higher, farther and faster air travel. Top-tier talent was hired. State-of-the-art wind tunnels and supporting infrastructure was built. Unique solutions were found.

Langley researchers developed the wing shapes still used today in airplane design. Better propellers, engine cowlings, all-metal airplanes, new kinds of rotorcraft and helicopters, faster-than-sound flight - these were among Langley's many groundbreaking aeronautical advances spanning its first decades.

image

By 1958, Langley's governing organization, the National Advisory Committee for Aeronautics, or NACA, would become NASA, and Langley's accomplishments would soar from air into space.

Here are 10 people you wish you met from the storied history of Langley:

image

Robert R. "Bob" Gilruth (1913–2000) 

Considered the father of the U.S. manned space program.

He helped organize the Manned Spacecraft Center – now the Johnson Space Center – in Houston, Texas. 

Gilruth managed 25 crewed spaceflights, including Alan Shepard's first Mercury flight in May 1961, the first lunar landing by Apollo 11 in July 1969, the dramatic rescue of Apollo 13 in 1970, and the Apollo 15 mission in July 1971.

image

Christopher C. "Chris" Kraft, Jr. (1924-) 

Created the concept and developed the organization, operational procedures and culture of NASA’s Mission Control.

Played a vital role in the success of the final Apollo missions, the first manned space station (Skylab), the first international space docking (Apollo-Soyuz Test Project), and the first space shuttle flights.

image

Maxime "Max" A. Faget (1921–2004) 

Devised many of the design concepts incorporated into all U.S.  manned spacecraft.

The author of papers and books that laid the engineering foundations for methods, procedures and approaches to spaceflight. 

An expert in safe atmospheric reentry, he developed the capsule design and operational plan for Project Mercury, and made major contributions to the Apollo Program’s basic command module configuration.

image

Caldwell Johnson (1919–2013) 

Worked for decades with Max Faget helping to design the earliest experimental spacecraft, addressing issues such as bodily restraint and mobility, personal hygiene, weight limits, and food and water supply. 

A key member of NASA’s spacecraft design team, Johnson established the basic layout and physical contours of America’s space capsules.

image

William H. “Hewitt” Phillips (1918–2009) 

Provided solutions to critical issues and problems associated with control of aircraft and spacecraft. 

Under his leadership, NASA Langley developed piloted astronaut simulators, ensuring the success of the Gemini and Apollo missions. Phillips personally conceived and successfully advocated for the 240-foot-high Langley Lunar Landing Facility used for moon-landing training, and later contributed to space shuttle development, Orion spacecraft splashdown capabilities and commercial crew programs.

image

Katherine Johnson (1918-) 

Was one of NASA Langley’s most notable “human computers,” calculating the trajectory analysis for Alan Shepard’s May 1961 mission, Freedom 7, America’s first human spaceflight. 

She verified the orbital equations controlling the capsule trajectory of John Glenn’s Friendship 7 mission from blastoff to splashdown, calculations that would help to sync Project Apollo’s lunar lander with the moon-orbiting command and service module. 

Johnson also worked on the space shuttle and the Earth Resources Satellite, and authored or coauthored 26 research reports.

image

Dorothy Vaughan (1910–2008) 

Was both a respected mathematician and NASA's first African-American manager, head of NASA Langley’s segregated West Area Computing Unit from 1949 until 1958. 

Once segregated facilities were abolished, she joined a racially and gender-integrated group on the frontier of electronic computing. 

Vaughan became an expert FORTRAN programmer, and contributed to the Scout Launch Vehicle Program.

10 People You Wish You Met From 100 Years Of NASA’s Langley

William E. Stoney Jr. (1925-) 

Oversaw the development of early rockets, and was manager of a NASA Langley-based project that created the Scout solid-propellant rocket. 

One of the most successful boosters in NASA history, Scout and its payloads led to critical advancements in atmospheric and space science. 

Stoney became chief of advanced space vehicle concepts at NASA headquarters in Washington, headed the advanced spacecraft technology division at the Manned Spacecraft Center in Houston, and was engineering director of the Apollo Program Office.

image

Israel Taback (1920–2008) 

Was chief engineer for NASA’s Lunar Orbiter program. Five Lunar Orbiters circled the moon, three taking photographs of potential Apollo landing sites and two mapping 99 percent of the lunar surface. 

Taback later became deputy project manager for the Mars Viking project. Seven years to the day of the first moon landing, on July 20, 1976, Viking 1 became NASA’s first Martian lander, touching down without incident in western Chryse Planitia in the planet’s northern equatorial region.

image

John C Houbolt (1919–2014) 

Forcefully advocated for the lunar-orbit-rendezvous concept that proved the vital link in the nation’s successful Apollo moon landing. 

In 1963, after the lunar-orbit-rendezvous technique was adopted, Houbolt left NASA for the private sector as an aeronautics, astronautics and advanced-technology consultant. 

He returned to Langley in 1976 to become its chief aeronautical scientist. During a decades-long career, Houbolt was the author of more than 120 technical publications.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

The Moon in Motion

Happy New Year! And happy supermoon! Tonight, the Moon will appear extra big and bright to welcome us into 2018 – about 6% bigger and 14% brighter than the average full Moon. And how do we know that? Well, each fall, our science visualizer Ernie Wright uses data from the Lunar Reconnaissance Orbiter (LRO) to render over a quarter of a million images of the Moon. He combines these images into an interactive visualization, Moon Phase and Libration, which depicts the Moon at every day and hour for the coming year. 

image

Want to see what the Moon will look like on your birthday this year? Just put in the date, and even the hour (in Universal Time) you were born to see your birthday Moon.

Our Moon is quite dynamic. In addition to Moon phases, our Moon appears to get bigger and smaller throughout the year, and it wobbles! Or at least it looks that way to us on Earth. This wobbling is called libration, from the Latin for ‘balance scale’ (libra). Wright relies on LRO maps of the Moon and NASA orbit calculations to create the most accurate depiction of the 6 ways our Moon moves from our perspective.

1. Phases

image

The Moon phases we see on Earth are caused by the changing positions of the Earth and Moon relative to the Sun. The Sun always illuminates half of the Moon, but we see changing shapes as the Moon revolves around the Earth. Wright uses a software library called SPICE to calculate the position and orientation of the Moon and Earth at every moment of the year. With his visualization, you can input any day and time of the year and see what the Moon will look like!

2. Shape of the Moon

image

Check out that crater detail! The Moon is not a smooth sphere. It’s covered in mountains and valleys and thanks to LRO, we know the shape of the Moon better than any other celestial body in the universe. To get the most accurate depiction possible of where the sunlight falls on the lunar surface throughout the month, Wright uses the same graphics software used by Hollywood design studios, including Pixar, and a method called ‘raytracing’ to calculate the intricate patterns of light and shadow on the Moon’s surface, and he checks the accuracy of his renders against photographs of the Moon he takes through his own telescope.

image

3. Apparent Size 

image

The Moon Phase and Libration visualization shows you the apparent size of the Moon. The Moon’s orbit is elliptical, instead of circular - so sometimes it is closer to the Earth and sometimes it is farther. You’ve probably heard the term “supermoon.” This describes a full Moon at or near perigee (the point when the Moon is closest to the Earth in its orbit). A supermoon can appear up to 14% bigger and brighter than a full Moon at apogee (the point when the Moon is farthest from the Earth in its orbit). 

Our supermoon tonight is a full Moon very close to perigee, and will appear to be about 14% bigger than the July 27 full Moon, the smallest full Moon of 2018, occurring at apogee. Input those dates into the Moon Phase and Libration visualization to see this difference in apparent size!

4. East-West Libration

Over a month, the Moon appears to nod, twist, and roll. The east-west motion, called ‘libration in longitude’, is another effect of the Moon’s elliptical orbital path. As the Moon travels around the Earth, it goes faster or slower, depending on how close it is to the Earth. When the Moon gets close to the Earth, it speeds up thanks to an additional pull from Earth’s gravity. Then it slows down, when it’s farther from the Earth. While this speed in orbital motion changes, the rotational speed of the Moon stays constant. 

This means that when the Moon moves faster around the Earth, the Moon itself doesn’t rotate quite enough to keep the same exact side facing us and we get to see a little more of the eastern side of the Moon. When the Moon moves more slowly around the Earth, its rotation gets a little ahead, and we see a bit more of its western side.

5. North-South Libration

image

The Moon also appears to nod, as if it were saying “yes,” a motion called ‘libration in latitude’. This is caused by the 5 degree tilt of the Moon’s orbit around the Earth. Sometimes the Moon is above the Earth’s northern hemisphere and sometimes it’s below the Earth’s southern hemisphere, and this lets us occasionally see slightly more of the northern or southern hemispheres of the Moon! 

6. Axis Angle

image

Finally, the Moon appears to tilt back and forth like a metronome. The tilt of the Moon’s orbit contributes to this, but it’s mostly because of the 23.5 degree tilt of our own observing platform, the Earth. Imagine standing sideways on a ramp. Look left, and the ramp slopes up. Look right and the ramp slopes down. 

Now look in front of you. The horizon will look higher on the right, lower on the left (try this by tilting your head left). But if you turn around, the horizon appears to tilt the opposite way (tilt your head to the right). The tilted platform of the Earth works the same way as we watch the Moon. Every two weeks we have to look in the opposite direction to see the Moon, and the ground beneath our feet is then tilted the opposite way as well.

So put this all together, and you get this:

Beautiful isn’t it? See if you can notice these phenomena when you observe the Moon. And keep coming back all year to check on the Moon’s changing appearance and help plan your observing sessions.

Follow @NASAMoon on Twitter to keep up with the latest lunar updates. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago
Image Credit:NASA/JPL-Caltech⁣
Image Credit:NASA/JPL-Caltech⁣

Image Credit:NASA/JPL-Caltech⁣

In this large celestial mosaic, our Spitzer Space Telescope captured a stellar family portrait! You can find infants, parents and grandparents of star-forming regions all in this generational photo.  ⁣ There’s a lot to see in this image, including multiple clusters of stars born from the same dense clumps of gas and dust – some older and more evolved than others. Dive deeper into its intricacies by visiting https://go.nasa.gov/2XpiWLf ⁣

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

5 years ago

When you first saw Earth from all the way up in space, what were your first thoughts? Did it change the way you viewed things?


Tags
8 years ago

Space Station Research: Air and Space Science

Each month, we highlight a different research topic on the International Space Station. In June, our focus is Air and Space Science.

image

How is the space station being used to study space? Studies in fundamental physics address space, time, energy and the building blocks of matter. Recent astronomical observation and cosmological models strongly suggest that dark matter and dark energy, which are entities not directly observed and completely understood, dominate these interactions at the largest scales.

image

The space station provides a modern and well-equipped orbiting laboratory for a set of fundamental physics experiments with regimes and precision not achievable on the ground. 

For example, the CALorimetric Electron Telescope (CALET) is an astrophysics mission that searches for signatures of dark matter (pictured above). It can observe discrete sources of high energy particle acceleration in our local region of the galaxy. 

How is the space station contributing to aeronautics? It provides a long-duration spaceflight environment for conducting microgravity physical science research. This environment greatly reduces buoyancy-driven convection and sedimentation in fluids. By eliminating gravity, space station allows scientists to advance our knowledge in fluid physics and materials science that could lead to better designated air and space engines; stronger, lighter alloys; and combustion processes that can lead to more energy-efficient systems.

image

How is the space station used to study air? The Cloud-Aerosol Transport System (CATS) is a laster remote-sensing instrument, or lidar, that measures clouds and tiny aerosol particles in the atmosphere such as pollution, mineral dust and smoke. These atmospheric components play a critical part in understanding how human activities such as fossil fuel burning contribute to climate change.

image

The ISS-RapidScat is an instrument that monitors winds for climate research, weather predictions and hurricane monitoring from the International Space Station.

image

For more information on space station research, follow @ISS_Research on Twitter!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago
A group of people wearing white clean room suits with hoods and blue gloves work in a circle at the base of a tall, silver-and-gold structure laced with wiring. Behind them, on the right, is an eight-story white wall with blue stripes and a glass window. The left, far wall is covered in pale, square filters. Credit: NASA/Chris Gunn

The Nancy Grace Roman Space Telescope’s flight harness is transferred from the mock-up structure to the spacecraft flight structure.

Your Body is Wired Like a NASA Space Telescope. Sort Of.

If our Nancy Grace Roman Space Telescope were alive, its nervous system would be the intricate wiring, or “harness,” that helps different parts of the observatory communicate with one another. Just like the human body sends information through nerves to function, Roman will send commands through this special harness to help achieve its mission: answering longstanding questions about dark energy, dark matter, and exoplanets, among other mind-bending cosmic queries. 

Roman’s harness weighs around 1,000 pounds and is made of about 32,000 wires and 900 connectors. If those parts were laid out end-to-end, they would be 45 miles long from start to finish. Coincidentally, the human body’s nerves would span the same distance if lined up. That’s far enough to reach nearly three-fourths of the way to space, twice as far as a marathon, or eight times taller than Mount Everest! 

Seen from above, two individuals wearing white clean room suits with hoods and blue gloves work inside of a large, silvery metal structure with a hexagonal shape and a large cylindrical hole, covered in a diamond-patterned texture. Red and white wire bundles of cables drape across the top of the structure like strands of spaghetti. Credit: NASA/Chris Gunn 

An aerial view of the harness technicians working to secure Roman’s harness to the spacecraft flight structure.

Over a span of two years, 11 technicians spent time at the workbench and perched on ladders, cutting wire to length, carefully cleaning each component, and repeatedly connecting everything together.  

Space is usually freezing cold, but spacecraft that are in direct sunlight can get incredibly hot. Roman’s harness went through the Space Environment Simulator – a massive thermal vacuum chamber – to expose the components to the temperatures they’ll experience in space. Technicians “baked” vapors out of the harness to make sure they won’t cause problems later in orbit.  

Seen from below, two individuals wearing white clean room suits with hoods and blue gloves work inside of a silvery cylindrical metal structure. Seven bright lights mounted to the ceiling shine down onto them. Credit: NASA/Chris Gunn

Technicians work to secure Roman’s harness to the interior of the spacecraft flight structure. They are standing in the portion of the spacecraft bus where the propellant tanks will be mounted.  

The next step is for engineers to weave the harness through the flight structure in Goddard’s big clean room, a space almost perfectly free of dust and other particles. This process will be ongoing until most of the spacecraft components are assembled. The Roman Space Telescope is set to launch by May 2027. 

Learn more about the exciting science this mission will investigate on X and Facebook. 

Make sure to follow us on Tumblr for your regular dose of space! 


Tags
Loading...
End of content
No more pages to load
  • freemantraffic
    freemantraffic liked this · 4 years ago
  • anxvu
    anxvu reblogged this · 4 years ago
  • anxvu
    anxvu liked this · 4 years ago
  • elfo8792
    elfo8792 liked this · 4 years ago
  • bexhudson-blog
    bexhudson-blog reblogged this · 5 years ago
  • snowleapord573
    snowleapord573 liked this · 5 years ago
  • heywhatsupjustwannamakesureurok
    heywhatsupjustwannamakesureurok liked this · 5 years ago
  • michelangelina
    michelangelina reblogged this · 5 years ago
  • fuzzydreamhorsepalace
    fuzzydreamhorsepalace liked this · 5 years ago
  • bluestarfantasy
    bluestarfantasy reblogged this · 6 years ago
  • larous-alla-eddine
    larous-alla-eddine liked this · 6 years ago
  • unabashedfarmpicklespy-blog
    unabashedfarmpicklespy-blog reblogged this · 6 years ago
  • astriwidyac
    astriwidyac reblogged this · 6 years ago
  • space-shit
    space-shit reblogged this · 6 years ago
  • onyxtec
    onyxtec reblogged this · 6 years ago
  • arrws-annmus
    arrws-annmus liked this · 6 years ago
  • oshmondogy
    oshmondogy reblogged this · 6 years ago
  • oshmondogy
    oshmondogy liked this · 6 years ago
  • ennovationclub-blog
    ennovationclub-blog liked this · 6 years ago
  • avionicstek
    avionicstek liked this · 7 years ago
  • fvtsshuttle
    fvtsshuttle reblogged this · 7 years ago
  • tumblerhasfun
    tumblerhasfun liked this · 7 years ago
  • aerinelleeeeeee
    aerinelleeeeeee reblogged this · 7 years ago
  • ekvinfigueroa
    ekvinfigueroa reblogged this · 7 years ago
  • le-zigui
    le-zigui liked this · 7 years ago
  • bitchofthewinchesters
    bitchofthewinchesters liked this · 7 years ago
  • idreamilyatomiccollector
    idreamilyatomiccollector liked this · 7 years ago
  • dodool-tala
    dodool-tala reblogged this · 7 years ago
  • c0eus-blog1
    c0eus-blog1 reblogged this · 7 years ago
  • this-is-rocket-science-blog
    this-is-rocket-science-blog liked this · 7 years ago
  • chrisjcl
    chrisjcl liked this · 7 years ago
  • industrie-discount
    industrie-discount liked this · 7 years ago
  • fleurdebach5-blog
    fleurdebach5-blog liked this · 7 years ago
  • wddavis
    wddavis liked this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags