The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing their more-than-40-year journey since their 1977 launches, they each are much farther away from Earth and the Sun than Pluto.
The primary mission was the exploration of Jupiter and Saturn. After making a string of discoveries there – such as active volcanoes on Jupiter’s moon Io and intricacies of Saturn’s rings – the mission was extended.
Voyager 2 went on to explore Uranus and Neptune, and is still the only spacecraft to have visited those outer planets. The adventurers’ current mission, the Voyager Interstellar Mission (VIM), will explore the outermost edge of the Sun’s domain. And beyond.
‘BUS’ Housing Electronics
The basic structure of the spacecraft is called the “bus,” which carries the various engineering subsystems and scientific instruments. It is like a large ten-sided box. Each of the ten sides of the bus contains a compartment (a bay) that houses various electronic assemblies.
Cosmic Ray Subsystem (CRS)
The Cosmic Ray Subsystem (CRS) looks only for very energetic particles in plasma, and has the highest sensitivity of the three particle detectors on the spacecraft. Very energetic particles can often be found in the intense radiation fields surrounding some planets (like Jupiter). Particles with the highest-known energies come from other stars. The CRS looks for both.
High-Gain Antenna (HGA)
The High-Gain Antenna (HGA) transmits data to Earth on two frequency channels (the downlink). One at about 8.4 gigahertz, is the X-band channel and contains science and engineering data. For comparison, the FM radio band is centered around 100 megahertz.
Imaging Science Subsystem (ISS)
The Imaging Science Subsystem (ISS) is a modified version of the slow scan vidicon camera designed that were used in the earlier Mariner flights. The ISS consists of two television-type cameras, each with eight filters in a commandable Filter Wheel mounted in front of the vidicons. One has a low resolution 200 mm wide-angle lens, while the other uses a higher resolution 1500 mm narrow-angle lens.
Infrared Interferometer Spectrometer and Radiometer (IRIS)
The Infrared Interferometer Spectrometer and Radiometer (IRIS) actually acts as three separate instruments. First, it is a very sophisticated thermometer. It can determine the distribution of heat energy a body is emitting, allowing scientists to determine the temperature of that body or substance.
Second, the IRIS is a device that can determine when certain types of elements or compounds are present in an atmosphere or on a surface.
Third, it uses a separate radiometer to measure the total amount of sunlight reflected by a body at ultraviolet, visible and infrared frequencies.
Low-Energy Charged Particles (LECP)
The Low-Energy Charged Particles (LECP) looks for particles of higher energy than the Plasma Science instrument, and it overlaps with the Cosmic Ray Subsystem (CRS). It has the broadest energy range of the three sets of particle sensors.
The LECP can be imagined as a piece of wood, with the particles of interest playing the role of the bullets. The faster a bullet moves, the deeper it will penetrate the wood. Thus, the depth of penetration measures the speed of the particles. The number of “bullet holes” over time indicates how many particles there are in various places in the solar wind, and at the various outer planets. The orientation of the wood indicates the direction from which the particles came.
Magnetometer (MAG)
Although the Magnetometer (MAG) can detect some of the effects of the solar wind on the outer planets and moons, its primary job is to measure changes in the Sun’s magnetic field with distance and time, to determine if each of the outer planets has a magnetic field, and how the moons and rings of the outer planets interact with those magnetic fields.
Optical Calibration Target The target plate is a flat rectangle of known color and brightness, fixed to the spacecraft so the instruments on the movable scan platform (cameras, infrared instrument, etc.) can point to a predictable target for calibration purposes.
Photopolarimeter Subsystem (PPS)
The Photopolarimeter Subsystem (PPS) uses a 0.2 m telescope fitted with filters and polarization analyzers. The experiment is designed to determine the physical properties of particulate matter in the atmospheres of Jupiter, Saturn and the rings of Saturn by measuring the intensity and linear polarization of scattered sunlight at eight wavelengths.
The experiment also provided information on the texture and probable composition of the surfaces of the satellites of Jupiter and Saturn.
Planetary Radio Astronomy (PRA) and Plasma Wave Subsystem (PWS)
Two separate experiments, The Plasma Wave Subsystem and the Planetary Radio Astronomy experiment, share the two long antennas which stretch at right-angles to one another, forming a “V”.
Plasma Science (PLS)
The Plasma Science (PLS) instrument looks for the lowest-energy particles in plasma. It also has the ability to look for particles moving at particular speeds and, to a limited extent, to determine the direction from which they come.
The Plasma Subsystem studies the properties of very hot ionized gases that exist in interplanetary regions. One plasma detector points in the direction of the Earth and the other points at a right angle to the first.
Radioisotope Thermoelectric Generators (RTG)
Three RTG units, electrically parallel-connected, are the central power sources for the mission module. The RTGs are mounted in tandem (end-to-end) on a deployable boom. The heat source radioisotopic fuel is Plutonium-238 in the form of the oxide Pu02. In the isotopic decay process, alpha particles are released which bombard the inner surface of the container. The energy released is converted to heat and is the source of heat to the thermoelectric converter.
Ultraviolet Spectrometer (UVS)
The Ultraviolet Spectrometer (UVS) is a very specialized type of light meter that is sensitive to ultraviolet light. It determines when certain atoms or ions are present, or when certain physical processes are going on.
The instrument looks for specific colors of ultraviolet light that certain elements and compounds are known to emit.
Learn more about the Voyager 1 and 2 spacecraft HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Completely invisible, yet unbelievably influential. 💫
According to new research from our Stratospheric Observatory for Infrared Astronomy (SOFIA), spiral galaxies like the Milky Way are shaped by magnetic fields. These magnetic fields are invisible to the human eye.
However, by combining imagery from our Hubble Space Telescope, the Nuclear Spectroscopic Array and the Sloan Digital Sky Survey, the magnetic fields become apparent. In this image, scientists measured the magnetic fields along the spiral arms of the galaxy called NGC 1068. The fields are shown as streamlines that closely follow the circling arms.
Image Credit: NASA/SOFIA; NASA/JPL-Caltech/Roma Tre Univ.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
As we gear up for our Artemis I mission to the Moon — the mission that will prepare us to send the first woman and the first person of color to the lunar surface — we have an important task for you (yes, you!). Artemis I will be the first integrated test flight of the Space Launch System (SLS) rocket and the Orion crew capsule. Although there won’t be any humans aboard Orion, there will be a very important crewmember: the Moonikin!
The Moonikin is a manikin, or anatomical human model, that will be used to gather data on the vibrations that human crewmembers will experience during future Artemis missions. But the Moonikin is currently missing something incredibly important — a name!
There are eight names in the running, and each one reflects an important piece of NASA’s past or a reference to the Artemis program:
ACE stands for Artemis Crew Explorer. This is a very practical name, as the Moonikin will be a member of the first official “crew” aboard Artemis I.
The Moonikin will occupy the commander’s seat inside Orion, be equipped with two radiation sensors, and wear a first-generation Orion Crew Survival System suit—a spacesuit astronauts will wear during launch, entry, and other dynamic phases of their missions. The Moonikin will also be accompanied by phantoms, which are manikins without arms or legs: Zohar from the Israel Space Agency and Helga from the German Aerospace Center. Zohar and Helga will be participating in an investigation called the Matroshka AstroRad Radiation Experiment, which will provide valuable data on radiation levels experienced during missions to the Moon.
Campos is a reference to Arturo Campos, an electrical engineer at NASA who was instrumental to bringing the Apollo 13 crew safely back home.
Apollo 13 was on its way to attempt the third Moon landing when an oxygen tank exploded and forced the mission to abort. With hundreds of thousands of miles left in the journey, mission control teams at Johnson Space Center were forced to quickly develop procedures to bring the astronauts back home while simultaneously conserving power, water, and heat. Apollo 13 is considered a “successful failure,” because of the experience gained in rescuing the crew. In addition to being a key player in these efforts, Campos also established and served as the first president of the League of United Latin American Citizens Council 660, which was composed of Mexican-American engineers at NASA.
On June 26, 2017, our Terra satellite captured this image of the thousands of islands scattered across the Aegean Sea. One notable group, the Cyclades, sits in the central region of the Aegean. They encircle the tiny, sacred island of Delos.
According to Greek mythology, Delos was the island where the twin gods Apollo and Artemis were born.
The name is a recognition of the lessons learned during the Apollo program. Dr. Abe Silverstein, former director of NASA’s Glenn Research Center, said that he chose the name “Apollo” for the NASA's first Moon landing program because image of "Apollo riding his chariot across the Sun was appropriate to the grand scale of the proposed program." Between 1969 and 1972, we successfully landed 12 humans on the lunar surface — providing us with invaluable information as the Artemis program gears up to send the first woman and the first person of color to the Moon.
Duhart is a reference to Dr. Irene Duhart Long, the first African American woman to serve in the Senior Executive Service at Kennedy Space Center. As chief medical officer at the Florida spaceport, she was the first woman and the first person of color to hold that position. Her NASA career spanned 31 years.
Working in a male-dominated field, Long confronted — and overcame — many obstacles and challenges during her decorated career. She helped create the Spaceflight and Life Sciences Training Program at Kennedy, in partnership with Florida Agricultural and Mechanical University, a program that encouraged more women and people of color to explore careers in science.
Montgomery is a reference to Julius Montgomery, the first African American ever hired at the Cape Canaveral Air Force Station to work as a technical professional. After earning a bachelor's degree at Tuskegee Institute in Alabama, Montgomery served in the U.S. Air Force, where he earned a first class radio-telescope operator's license. Montgomery began his Cape Canaveral career in 1956 as a member of the “Range Rats,” technicians who repaired malfunctioning ballistic missiles.
Montgomery was also the first African American to desegregate and graduate from Brevard Engineering College, now the Florida Institute of Technology in Melbourne, Florida.
Rigel is one of the 10 brightest stars in Earth's sky and forms part of the familiar constellation Orion. The blue supergiant is about 860 light-years from Earth.
The reference to Rigel is a nod toward the Orion spacecraft, which the Moonikin (and future Artemis astronauts!) will be riding aboard. Built to take humans farther than they’ve ever gone before, the Orion spacecraft will serve as the exploration vehicle that will carry crew into space and provide safe re-entry back to Earth.
Shackleton Crater is a crater on the Moon named after the Antarctic explorer, Ernest Shackleton. The interior of the crater receives almost no direct sunlight, which makes it very cold — the perfect place to find ice. Our Lunar Reconnaissance Orbiter spacecraft (LRO) returned data that ice may make up as much as 22% of the surface material in Shackleton!
Shackleton Crater is unique because even though most of it is permanently shadowed, three points on the rim remain collectively sunlit for more than 90% of the year. The crater is a prominent feature at the Moon’s South Pole, a region where NASA plans to send Artemis astronauts on future missions.
Wargo is a reference to Michael Wargo, who represented NASA as the first Chief Exploration Scientist for the Human Exploration and Operations Mission Directorate at NASA Headquarters. He was a leading contributor to the Lunar Reconnaissance Orbiter and the Lunar Crater Observation and Sensing Satellite (LCROSS), which launched together on to the Moon and confirmed water existed there in 2009.
Throughout his time as an instructor at MIT and his 20-year career at NASA, Wargo was known as a science ambassador to the public, and for his ability to explain complex scientific challenges and discoveries to less technical audiences. Following his sudden death in 2013, the International Astronomical Union posthumously named a crater on the far side of the Moon in his honor.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Why are we studying them? What’s purpose of this field for us on earth?
Hello. I'm curious what new feature the james webb brings to the table, like its ability to detect in infrared, that you are most excited about? What are you most interested to look into with this new telescope?
This month (March 2016), in the journal Science, New Horizons scientists have authored the first comprehensive set of papers describing results from last summer’s Pluto system flyby. These detailed papers completely transform our view of Pluto and reveal the former “astronomer’s planet” to be a real world with diverse and active geology, exotic surface chemistry, a complex atmosphere, puzzling interaction with the sun and an intriguing system of small moons.
1. Pluto has been geologically active throughout the past 4 billion years. The age-dating of Pluto’s surface through crater counts has revealed that Pluto has been geologically active throughout the past 4 billion years. Further, the surface of Pluto’s informally-named Sputnik Planum, a massive ice plain larger than Texas, is devoid of any detectable craters and estimated to be geologically young – no more than 10 million years old.
2. Pluto’s moon Charon has been discovered to have an ancient surface. As an example, the great expanse of smooth plains on Charon is likely a vast cryovolcanic flow or flows that erupted onto Charon’s surface about 4 billion years ago. These flows are likely related to the freezing of an internal ocean that globally ruptured Charon’s crust.
3. Pluto’s surface has many types of terrain. The distribution of compositional units on Pluto’s surface – from nitrogen-rich, to methane-rich, to water-rich – has been found to be surprisingly complex, creating puzzles for understanding Pluto’s climate and geologic history. The variations in surface composition on Pluto are unprecedented elsewhere in the outer solar system.
4. Pluto’s atmosphere is colder than we thought. Pluto’s upper atmospheric temperature has been found to be much colder (by about 70 degrees Fahrenheit) than had been thought from Earth-based studies, with important implications for its atmospheric escape rate. Why the atmosphere is colder is a mystery.
5. We know what Pluto’s atmosphere is made of. The New Horizon spacecraft made observations of sunlight passing through Pluto’s atmosphere. We see absorption features that indicate an atmosphere made up of nitrogen (like Earth’s) with methane, acetylene and ethylene as minor constituents.
6. We might have an idea for how Pluto’s haze formed. For first time, a plausible mechanism for forming Pluto’s atmospheric haze layers has been found. This mechanism involves the concentration of haze particles by atmospheric buoyancy waves, created by winds blowing over Pluto’s mountainous topography. Pluto’s haze extends hundreds of kilometers into space, and embedded within it are over 20 very thin, but far brighter, layers.
7. There isn’t much dust around Pluto. Before the flyby, there was concern that a small piece of debris (even the size of a grain of sand) could cause great damage to (or even destroy) the spacecraft. But the Venetia Burney Student Dust Counter (an instrument on the New Horizons spacecraft) only counted a single dust particle within five days of the flyby. This is similar to the density of dust particles in free space in the outer solar system – about 6 particles per cubic mile – showing that the region around Pluto is, in fact, not filled with debris.
8. Pluto’s atmosphere is smaller than we expected. The uppermost region of Pluto’s atmosphere is slowly escaping to space. The hotter the upper atmosphere, the more rapid the gasses escape. The lower the planet’s mass, the lower the gravity, and the faster the atmospheric loss. As molecules escape, they are ionized by solar ultraviolet light. Once ionized, the charged molecules are carried away by the solar wind. As more Pluto-genic material is picked up by the solar wind, the more the solar wind is slowed down and deflected around Pluto. So - the net result is a region (the interaction region), which is like a blunt cone pointed toward the sun, where the escaping ionized gasses interact with the solar wind. The cone extends to a distance about 6 Pluto radii from Pluto toward the sun, but extend behind Pluto at least 400 Pluto radii behind Pluto - like a wake behind the dwarf planet.
9. Pluto’s moons are brighter than we thought. The high albedos (reflectiveness) of Pluto’s small satellites (moons) – about 50 to 80 percent – are entirely different from the much lower reflectiveness of the small bodies in the general Kuiper Belt population, which range from about 5 to 20 percent. This difference lends further support to the idea that these moons were not captured from the general Kuiper Belt population, but instead formed by the collection of material produced in the aftermath of the giant collision that created the entire Pluto satellite system.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Every time you take a breath of fresh air, it’s easy to forget you can safely do so because of Earth’s atmosphere. Life on Earth could not exist without that protective cover that keeps us warm, allows us to breathe and protects us from harmful radiation—among other things.
1. On Earth, we live in the troposphere, the closest atmospheric layer to Earth’s surface. “Tropos” means “change,” and the name reflects our constantly changing weather and mixture of gases.
It’s 5 to 9 miles (8 to 14 kilometers) thick, depending on where you are on Earth, and it’s the densest layer of atmosphere. When we breathe, we’re taking in an air mixture of about 78 percent nitrogen, 21 percent oxygen and 1 percent argon, water vapor and carbon dioxide. More on Earth’s atmosphere›
2. Mars has a very thin atmosphere, nearly all carbon dioxide. Because of the Red Planet’s low atmospheric pressure, and with little methane or water vapor to reinforce the weak greenhouse effect (warming that results when the atmosphere traps heat radiating from the planet toward space), Mars’ surface remains quite cold, the average surface temperature being about -82 degrees Fahrenheit (minus 63 degrees Celsius). More on the greenhouse effect›
3. Venus’ atmosphere, like Mars’, is nearly all carbon dioxide. However, Venus has about 154,000 times more carbon dioxide in its atmosphere than Earth (and about 19,000 times more than Mars does), producing a runaway greenhouse effect and a surface temperature hot enough to melt lead. A runaway greenhouse effect is when a planet’s atmosphere and surface temperature keep increasing until the surface gets so hot that its oceans boil away. More on the greenhouse effect›
4. Jupiter likely has three distinct cloud layers (composed of ammonia, ammonium hydrosulfide and water) in its "skies" that, taken together, span an altitude range of about 44 miles (71 kilometers). The planet's fast rotation—spinning once every 10 hours—creates strong jet streams, separating its clouds into dark belts and bright zones wrapping around the circumference of the planet. More on Jupiter›
5. Saturn’s atmosphere—where our Cassini spacecraft ended its 13 extraordinary years of exploration of the planet—has a few unusual features. Its winds are among the fastest in the solar system, reaching speeds of 1,118 miles (1,800 kilometers) per hour. Saturn may be the only planet in our solar system with a warm polar vortex (a mass of swirling atmospheric gas around the pole) at both the North and South poles. Also, the vortices have “eye-wall clouds,” making them hurricane-like systems like those on Earth.
Another uniquely striking feature is a hexagon-shaped jet streamencircling the North Pole. In addition, about every 20 to 30 Earth years, Saturn hosts a megastorm (a great storm that can last many months). More on Saturn›
6. Uranus gets its signature blue-green color from the cold methane gas in its atmosphere and a lack of high clouds. The planet’s minimum troposphere temperature is 49 Kelvin (minus 224.2 degrees Celsius), making it even colder than Neptune in some places. Its winds move backward at the equator, blowing against the planet’s rotation. Closer to the poles, winds shift forward and flow with the planet’s rotation. More on Uranus›
7. Neptune is the windiest planet in our solar system. Despite its great distance and low energy input from the Sun, wind speeds at Neptune surpass 1,200 miles per hour (2,000 kilometers per hour), making them three times stronger than Jupiter’s and nine times stronger than Earth’s. Even Earth's most powerful winds hit only about 250 miles per hour (400 kilometers per hour). Also, Neptune’s atmosphere is blue for the very same reasons as Uranus’ atmosphere. More on Neptune›
8. WASP-39b, a hot, bloated, Saturn-like exoplanet (planet outside of our solar system) some 700 light-years away, apparently has a lot of water in its atmosphere. In fact, scientists estimate that it has about three times as much water as Saturn does. More on this exoplanet›
9. A weather forecast on “hot Jupiters”—blistering, Jupiter-like exoplanets that orbit very close to their stars—might mention cloudy nights and sunny days, with highs of 2,400 degrees Fahrenheit (about 1,300 degrees Celsius, or 1,600 Kelvin). Their cloud composition depends on their temperature, and studies suggest that the clouds are unevenly distributed. More on these exoplanets›
10. 55 Cancri e, a “super Earth” exoplanet (a planet outside of our solar system with a diameter between Earth’s and Neptune’s) that may be covered in lava, likely has an atmosphere containing nitrogen, water and even oxygen–molecules found in our atmosphere–but with much higher temperatures throughout. Orbiting so close to its host star, the planet could not maintain liquid water and likely would not be able to support life. More on this exoplanet›
Read the full version of this week’s Solar System 10 Things to Know HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Hey, Kate! What would you say/what advice would you give to your younger self? ✨
On May 22 Mars will be at opposition. That's when Mars, Earth and the sun all line up, with Earth directly in the middle. A few days later, Mars and Earth will reach the points in their orbits around the sun where they are nearest to each other. The closer Mars comes to Earth in its orbit, the larger and brighter it appears in the sky.
It's an opportunity for backyard skywatchers—and a good time to catch up on all the exploration now underway at the Red Planet. Here are a few things to know this week about Mars:
1. Red Star Rising
The best time to see Mars at its brightest is when it's highest in the sky, which is around midnight during May. Look toward the south in the constellation Scorpius (where right now you can also catch the planet Saturn). If you have a telescope, you may be able to pick out some of the features on its surface. But don't fall for Internet rumors claiming that Mars will appear as big as the full moon. Instead, it will look like a bright, reddish or orange star. Get Mars viewing tips HERE.
2. Roving Weather Reporter
Our Mars Curiosity mission has now been roving across the floor of Gale Crater for two full Martian years—that's four Earth years. This robotic geologist is a meteorologist, too, and its long journey has allowed it to observe the local weather for two full seasonal cycles. During that time, the rover's instruments have recorded temperatures ranging from 60.5 degrees Fahrenheit (15.9 degrees Celsius) on a summer afternoon, to minus 148 F (minus 100 C) on a winter night. They also detected an intriguing spike in methane gas—but it hasn't happened since.
3. Increasing Clouds, with a Chance of Dust Storms
The Mars Reconnaissance Orbiter keeps an eye on Martian weather, too, but on a global scale. Every week, you can see the latest weather report, including an animation showing storms and clouds across the face of Mars.
4. Walking the Ancient Shoreline
Mars explorers have studied evidence for years that the early history of the planet included times where liquid water flowed and pooled freely. But just how deep those ancient lakes were, and how long they lasted, remains a topic of debate. A new study offers a more detailed picture of the rise and fall of standing bodies of water.
5. Wish Upon a Star
It's true that Mars will be especially bright in the sky this week. But did you ever consider that Earth often shines for Mars as well? This image from the Curiosity rover shows our whole world as a single point of light. When people finally do stand on Mars, they'll be able to look at the twilight sky—and see home. Left: the Earth and the Moon in the evening sky of Mars, as seen by the Curiosity rover. Right: Mars rising over Salt Lake City. Mars credit: NASA/JPL-Caltech/MSSS/TAMU. Earth credit: Bill Dunford.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
While even the most “normal” black hole seems exotic compared to the tranquil objects in our solar system, there are some record-breaking oddballs. Tag along as we look at the biggest, closest, farthest, and even “spinniest” black holes discovered in the universe … that we know of right now!
Located 700 million light-years away in the galaxy Holmberg 15A, astronomers found a black hole that is a whopping 40 billion times the mass of the Sun — setting the record for the biggest black hole found so far. On the other hand, the smallest known black hole isn’t quite so easy to pinpoint. There are several black holes with masses around five times that of our Sun. There’s even one candidate with just two and a half times the Sun’s mass, but scientists aren’t sure whether it’s the smallest known black hole or actually the heaviest known neutron star!
You may need to take a seat for this one. The black hole GRS 1915+105 will make you dizzier than an afternoon at an amusement park, as it spins over 1,000 times per second! Maybe even more bizarre than how fast this black hole is spinning is what it means for a black hole to spin at all! What we're actually measuring is how strongly the black hole drags the space-time right outside its event horizon — the point where nothing can escape. Yikes!
If you’re from Earth, the closest black hole that we know of right now, Mon X-1 in the constellation Monoceros, is about 3,000 light-years away. But never fear — that’s still really far away! The farthest known black hole is J0313-1806. The light from its surroundings took a whopping 13 billion years to get to us! And with the universe constantly expanding, that distance continues to grow.
So, we know about large (supermassive, hundreds of thousands to billions of times the Sun's mass) and small (stellar-mass, five to dozens of times the Sun's mass) black holes, but what about other sizes? Though rare, astronomers have found a couple that seem to fit in between and call them intermediate-mass black holes. As for tiny ones, primordial black holes, there is a possibility that they were around when the universe got its start — but there’s not enough evidence so far to prove that they exist!
One thing that’s on astronomers’ wishlist is to see two supermassive black holes crashing into one another. Unfortunately, that event hasn’t been detected — yet! It could be only a matter of time before one reveals itself.
Though these are the records now, in early 2021 … records are meant to be broken, so who knows what we’ll find next!
Add some of these records and rare finds to your black hole-watch list, grab your handy-dandy black hole field guide to learn even more about them — and get to searching!
Keep up with NASA Universe on Facebook and Twitter where we post regularly about black holes.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
A common question we get is, “How can I work with NASA?”
The good news is—just in time for the back-to-school season—we have a slew of newly announced opportunities for citizen scientists and researchers in the academic community to take a shot at winning our prize competitions.
As we plan to land humans on the Moon by 2024 with our upcoming Artemis missions, we are urging students and universities to get involved and offer solutions to the challenges facing our path to the Moon and Mars. Here are five NASA competitions and contests waiting for your ideas on everything from innovative ways to drill for water on other planets to naming our next rover:
Before astronauts step on the Moon again, we will study its surface to prepare for landing, living and exploring there. Although it is Earth’s closest neighbor, there is still much to learn about the Moon, particularly in the permanently shadowed regions in and near the polar regions.
Through the annual Breakthrough, Innovative and Game-changing (BIG) Idea Challenge, we’re asking undergraduate and graduate student teams to submit proposals for sample lunar payloads that can demonstrate technology systems needed to explore areas of the Moon that never see the light of day. Teams of up to 20 students and their faculty advisors are invited to propose unique solutions in response to one of the following areas:
• Exploration of permanently shadowed regions in lunar polar regions • Technologies to support in-situ resource utilization in these regions • Capabilities to explore and operate in permanently shadowed regions
Interested teams are encouraged to submit a Notice of Intent by September 27 in order to ensure an adequate number of reviewers and to be invited to participate in a Q&A session with the judges prior to the proposal deadline. Proposal and video submission are due by January 16, 2020.
Although boots on the lunar surface by 2024 is step one in expanding our presence beyond low-Earth orbit, we’re also readying our science, technology and human exploration missions for a future on Mars.
The 2020 Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) Competition is calling on undergraduate and graduate teams to develop new concepts that leverage innovations for both our Artemis program and future human missions to the Red Planet. This year’s competition branches beyond science and engineering with a theme dedicated to economic analysis of commercial opportunities in deep space.
Competition themes range from expanding on how we use current and future assets in cislunar space to designing systems and architectures for exploring the Moon and Mars. We’re seeking proposals that demonstrate originality and creativity in the areas of engineering and analysis and must address one of the five following themes: a south pole multi-purpose rover, the International Space Station as a Mars mission analog, short surface stay Mars mission, commercial cislunar space development and autonomous utilization and maintenance on the Gateway or Mars-class transportation.
The RASC-AL challenge is open to undergraduate and graduate students majoring in science, technology, engineering, or mathematics at an accredited U.S.-based university. Submissions are due by March 5, 2020 and must include a two-minute video and a detailed seven to nine-page proposal that presents novel and robust applications that address one of the themes and support expanding humanity’s ability to thrive beyond Earth.
Autonomous robots will help future astronauts during long-duration missions to other worlds by performing tedious, repetitive and even strenuous tasks. These robotic helpers will let crews focus on the more meticulous areas of exploring. To help achieve this, our Centennial Challenges initiative, along with Space Center Houston of Texas, opened the second phase of the Space Robotics Challenge. This virtual challenge aims to advance autonomous robotic operations for missions on the surface of distant planets or moons.
This new phase invites competitors 18 and older from the public, industry and academia to develop code for a team of virtual robots that will support a simulated in-situ resource utilization mission—meaning gathering and using materials found locally—on the Moon.
The deadline to submit registration forms is December 20.
A key ingredient for our human explorers staying anywhere other than Earth is water. One of the most crucial near-term plans for deep space exploration includes finding and using water to support a sustained presence on our nearest neighbor and on Mars.
To access and extract that water, NASA needs new technologies to mine through various layers of lunar and Martian dirt and into ice deposits we believe are buried beneath the surface. A special edition of the RASC-AL competition, the Moon to Mars Ice and Prospecting Challenge, seeks to advance critical capabilities needed on the surface of the Moon and Mars. The competition, now in its fourth iteration, asks eligible undergraduate and graduate student teams to design and build hardware that can identify, map and drill through a variety of subsurface layers, then extract water from an ice block in a simulated off-world test bed.
Interested teams are asked to submit a project plan detailing their proposed concept’s design and operations by November 14. Up to 10 teams will be selected and receive a development stipend. Over the course of six months teams will build and test their systems in preparation for a head-to-head competition at our Langley Research Center in June 2020.
Red rover, red rover, send a name for Mars 2020 right over! We’re recruiting help from K-12 students nationwide to find a name for our next Mars rover mission.
The Mars 2020 rover is a 2,300-pound robotic scientist that will search for signs of past microbial life, characterize the planet's climate and geology, collect samples for future return to Earth, and pave the way for human exploration of the Red Planet.
K-12 students in U.S. public, private and home schools can enter the Mars 2020 Name the Rover essay contest. One grand prize winner will name the rover and be invited to see the spacecraft launch in July 2020 from Cape Canaveral Air Force Station in Florida. To enter the contest, students must submit by November 1 their proposed rover name and a short essay, no more than 150 words, explaining why their proposed name should be chosen.
Just as the Apollo program inspired innovation in the 1960s and '70s, our push to the Moon and Mars is inspiring students—the Artemis generation—to solve the challenges for the next era of space exploration.
For more information on all of our open prizes and challenges, visit: https://www.nasa.gov/solve/explore_opportunities
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts