Happy National Techies Day!

Happy National Techies Day!

October 3 is National Techies Day…and here at NASA we have quite a few people who get REALLY excited about technology. Without techies and the technology they develop, we wouldn’t be able to do the amazing things we do at NASA, or on Earth and in space.

Our Techies

image

We love our techies! The passionate engineers, researchers and scientists who work on our technology efforts enable us to make a difference in the world around us. They are responsible for developing the pioneering, new technologies and capabilities needed to achieve our current and future missions.

Research and technology development take place within our centers, in academia and industry, and leverage partnerships with other government agencies and international partners. We work to engage and inspire thousands of technologists and innovators creating a community of our best and brightest working on the nation’s toughest challenges.

Technology Drives Exploration

image

Our investments in technology development enable and advance space exploration. We are continually seeking to improve our ability to access and travel through space, land more mass in more locations, enable humans to live and explore in space and accelerate the pace of discovery.

Techie Technology

Advanced Manufacturing Technologies

When traveling to other planetary bodies, each and every pound of cargo matters. If we can reduce the weight by building tools once we arrive, that’s less weight we need to launch from Earth and carry through space.

image

Additive manufacturing is a way of printing three-dimensional (3-D) components from a digital model. If you think of a common office printer, it uses a 2-D file to print images and text on a sheet of paper. A 3-D printer uses a 3D file to deposit thin layers of material on top of each other, creating a 3-D product.

image

Thanks to techies, we’re already using this technology on the International Space Station to print wrenches and other tools. Our Additive Construction for Mobile Emplacement (ACME) project is investigating ways to build structures on planetary surfaces using resources available at a given site.

image

Discover more about how our techies are working with advanced manufacturing HERE.

Technology Demonstrations

Our techies are always innovating and developing new cutting-edge ideas. We test these ideas in extreme environments both here on Earth and in space.  

Science missions in space require spacecraft propulsion systems that are high-performance, lightweight, compact and have a short development time. The Deep Space Engine project is looking to meet those needs. Our techies are currently testing a 100lbf (pound-force) thruster to see if this compact, lightweight, low-cost chemical propulsion system can operate at very low temperatures, which allows long duration storage capabilities.

Another technology in development is PUFFER, or the Pop-Up Flat Folding Explorer Robot…and it was inspired by origami! This robot’s lightweight design is capable of flattening itself, tucking in its wheels and crawling into places rovers can’t fit. PUFFER has been tested in a range of rugged terrains to explore areas that might be too risky for a full-fledged rover to go.

image

With our partners at Ball Aerospace & Technologies Corp., we’ve also collaborated on the Green Propellant Infusion Mission (GPIM), which will flight test a "green" alternative to the toxic propellant, hydrazine, in 2018. GPIM is the nation’s premier spacecraft demonstration of a new high-performance power and propulsion system — a more environmentally friendly fuel. This technology promises improved performance for future satellites and other space missions by providing for longer mission durations, increased payload mass and simplified pre-launch spacecraft processing, including safer handling and transfer of propellants.  

Find out more about our technology demonstrations HERE.

Aircraft Technology

What if you could travel from London to New York in less than 3.5 hours? Our techies’ research into supersonic flight could make that a reality! 

image

Currently, supersonic flight creates a disruptive, loud BOOM, but our goal is to instead create a soft “thump” so that flying at supersonic speeds could be permitted over land in the United States.

We’re conducting a series of flight tests to validate tools and models that will be used for the development of future quiet supersonic aircraft.

image

Did you know that with the ability to observe the location of an aircraft’s sonic booms, pilots can better keep the loud percussive sounds from disturbing communities on the ground? This display allows research pilots the ability to physically see their sonic footprint on a map as the boom occurs.

Learn more about our aircraft technology HERE.

Technology Spinoffs 

Did you know that some of the technology used in the commercial world was originally developed for NASA? For example, when we were testing parachutes for our Orion spacecraft (which will carry humans into deep space), we needed to capture every millisecond in extreme detail. This would ensure engineers saw and could fix any issues. The problem was,there didn’t exist a camera in the world that could shoot at a high enough frame rate -- and store it in the camera’s memory -- all while adjusting instantly from complete darkness to full daylight and withstanding the space vacuum, space radiation and water immersion after landing.

Oh…and it had to be small, lightweight, and run on low power. Luckily, techies built exactly what we needed. All these improvements have now been incorporated into the camera which is being used in a variety of non-space industries…including car crash tests, where high resolution camera memory help engineers get the most out of testing to make the cars we drive safer.

Learn about more of our spinoff technologies HERE.

Join Our Techie Team

We’re always looking for passionate and innovative techies to join the NASA team. From student opportunities to open technology competitions, see below for a list of ways to get involved:

NASA Solve is a gateway for everyone to participate in our mission through challenges, prize competition, citizen science and more! Here are a few opportunities:

Vascular Tissue Challenge 

The Vascular Tissue Challenge, a NASA Centennial Challenges competition, offers a $500,000 prize to be divided among the first three teams that successfully create thick, metabolically-functional human vascularized organ tissue in a controlled laboratory environment. More information HERE.

For open job opportunities at NASA, visit: https://nasajobs.nasa.gov. 

For open internship opportunities at NASA, visit: https://www.nasa.gov/audience/forstudents/stu-intern-current-opps.html

Stay tuned in to the latest NASA techie news, by following  @NASA_Technology on Twitter, NASA Technology on Facebook and visiting nasa.gov/technology.

Happy National Techies Day!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

9 years ago

A Spacecraft's Second Life: Our K2 mission

A critical failure that ended one mission has borne an unexpected and an exciting new science opportunity. The Kepler spacecraft, known for finding thousands of planets orbiting other stars, has a new job as the K2 mission.

Like its predecessor, K2 detects the tiny, telltale dips in the brightness of a star as an object passes or transits it, to possibly reveal the presence of a planet. Searching close neighboring stars for near-Earth-sized planets, K2 is finding planets ripe for follow-up studies on their atmospheres and to see what the planet is made of. A step up from its predecessor, K2 is revealing new info on comets, asteroids, dwarf planets, ice giants and moons. It will also provide new insight into areas as diverse as the birth of new stars, how stars explode into spectacular supernovae, and even the evolution of black holes.

K2 is expanding the planet-hunting legacy and has ushered in entirely new opportunities in astrophysics research, yet this is only the beginning.

Searching Nearby for Signs of Life

image

Image credit: ESO/L. Calçada

Scientists are excited about nearby multi-planet system known as K2-3. This planetary system, discovered by K2, is made of three super-Earth-sized planets orbiting a cool M-star (or red dwarf) 135 light-years away, which is relatively close in astronomical terms. To put that distance into perspective, if the Milky Way galaxy was scaled down to the size of the continental U.S. it would be the equivalent of walking the three-mile long Golden Gate Park in San Francisco, California. At this distance, our other powerful space-investigators – the Hubble Space Telescope and the forthcoming James Webb Space Telescope (JWST) – could study the atmospheres of these worlds in search of chemical fingerprints that could be indicative of life. K2 expects to find a few hundred of these close-by, near-Earth-sized neighbors.

K2 won’t be alone in searching for nearby planets outside our solar system. Revving up for launch around 2017-2018, our Transiting Exoplanet Survey Satellite (TESS) plans to monitor 200,000 close stars for planets, with a focus on finding Earth and Super-Earth-sized planets.

The above image is an artist rendering of Gliese 581, a planetary system representative of K2-3.

Neptune's Moon Dance

Movie credit: NASA Ames/SETI Institute/J. Rowe

Spying on our neighbors in our own solar system, K2 caught Neptune in a dance with its moons Triton and Nereid. On day 15 (day counter located in the top right-hand corner of the green frame) of the sped-up movie, Neptune appears, followed by its moon Triton, which looks small and faint. Keen-eyed observers can also spot Neptune's tiny moon Nereid at day 24. Neptune is not moving backward but appears to do so because of the changing position of the Kepler spacecraft as it orbits around the sun. A few fast-moving asteroids make cameo appearances in the movie, showing up as streaks across the K2 field of view. The red dots are a few of the stars K2 examines in its search for transiting planets outside of our solar system. An international team of astronomers is using these data to track Neptune’s weather and probe the planet’s internal structure by studying subtle brightness fluctuations that can only be observed with K2.

Dead Star Devours Planet

image

Image credit: CfA/Mark A. Garlick

K2 also caught a white dwarf – the dead core of an exploded star –vaporizing a nearby tiny rocky planet. Slowly the planet will disintegrate, leaving a dusting of metals on the surface of the star. This trail of debris blocks a tiny fraction of starlight from the vantage point of the spacecraft producing an unusual, but vaguely familiar pattern in the data. Recognizing the pattern, scientists further investigated the dwarf’s atmosphere to confirm their find. This discovery has helped validate a long-held theory that white dwarfs are capable of cannibalizing possible remnant planets that have survived within its solar system.

Searching for Far Out Worlds

image

NASA/JPL-Caltech

In April, spaced-based K2 and ground-based observatories on five continents will participate in a global experiment in exoplanet observation and simultaneously monitor the same region of sky towards the center of our galaxy to search for small planets, such as the size of Earth, orbiting very far from their host star or, in some cases, orbiting no star at all. For this experiment, scientists will use gravitational microlensing – the phenomenon that occurs when the gravity of a foreground object focuses and magnifies the light from a distant background star.

The animation demonstrates the principles of microlensing. The observer on Earth sees the source (distant) star when the lens (closer) star and planet pass through the center of the image. The inset shows what may be seen through a ground-based telescope. The image brightens twice, indicating when the star and planet pass through the observatory's line of sight to the distant star.

Full microlensing animation available HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Hi! When did you know that you wanted to become an astronaut?

As a kid, I thought being an astronaut was the coolest thing, but I never thought I’d be selected. While working at the CIA, I decided to go out and apply because I thought it was my last chance to actually apply.


Tags
5 years ago

How did you decide to scientist? How you start works? And what did you do for that ?

Question: How did you decide to be a scientist? How did you start work? And what did you do for that?


Tags
4 years ago
Taking Advantage Of A Total Lunar Eclipse, Astronomers Using Our Hubble Space Telescope Have Detected

Taking advantage of a total lunar eclipse, astronomers using our Hubble Space Telescope have detected ozone in our atmosphere. Why's this important? 🔭 Researchers can now use this new method – and space telescopes – to continue the search for life in our universe. Find out more HERE. 

  Make sure to follow us on Tumblr for your regular dose of space: https://go.nasa.gov/3fGbZ0I


Tags
5 years ago

Do you listen to music in space? If so, what are you jamming to?


Tags
5 years ago
In Roman Mythology, The God Jupiter Drew A Veil Of Clouds Around Himself To Hide His Mischief. It Was
In Roman Mythology, The God Jupiter Drew A Veil Of Clouds Around Himself To Hide His Mischief. It Was

In Roman mythology, the god Jupiter drew a veil of clouds around himself to hide his mischief. It was only Jupiter's wife, the goddess Juno, who could peer through the clouds and reveal Jupiter's true nature. ⁣ ⁣ Our @NASAJuno spacecraft is looking beneath the clouds of the massive gas giant, not seeking signs of misbehavior, but helping us to understand the planet's structure and history...⁣ ⁣ Now, @NASAJuno just published its first findings on the amount of water in the gas giant’s atmosphere. The Juno results estimate that at the equator, water makes up about 0.25% of the molecules in Jupiter's atmosphere — almost three times that of the Sun. An accurate total estimate of this water is critical to solving the mystery of how our solar system formed. 

The JunoCam imager aboard Juno captured this image of Jupiter's southern equatorial region on Sept. 1, 2017. The bottom image is oriented so Jupiter's poles (not visible) run left-to-right of frame.

Image credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill ⁣ ⁣


Tags
8 years ago

Jeff Williams: Record Breaker

Astronaut becomes U.S. record holder for most cumulative time in space!

The Olympics are over, but Americans are STILL breaking records. NASA astronaut Jeff Williams just broke Scott Kelly’s record of 520 cumulative days spent in space. When Williams returns to Earth on Sept. 5, he will have racked up 534 days in space. To celebrate this amazing achievement, here are some of the best images taken during his four spaceflights.

image

STS-101 Atlantis:

During May 2000, Williams made his first spacewalk during space shuttle Atlantis’ STS-101 mission. On this 10-day mission, Williams’ first spacewalk lasted nearly seven hours. He is pictured here outside the space station.

image

Expedition 13:

Williams experienced his first long-duration mission in 2006, when he served as flight engineer for Expedition 13 space station mission. During his time in orbit, he performed two spacewalks, saw the arrival of two space shuttle missions and resumed construction of the orbiting laboratory during his six-month tour. While on one of those spacewalks, Williams took this selfie.

image

Expedition 21/22:

Williams returned to space for another six-month mission in 2009 as a flight engineer on Expedition 21 and commander of Expedition 22. During that time, he hosted the crews of two space shuttle missions. The U.S.-built Tranquility module and cupola were installed on station. Here is an image of the then newly installed cupola.

image

Expedition 47/48:

This time around, Williams has been onboard the space station since March 2016, where he served as flight engineer for Expedition 47 and now commands Expedition 48. With over 7,000 retweets on Williams’ photo of an aurora from space, his Twitter followers were clearly impressed with his photography skills.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
6 years ago

@dasandwichguy: What precautions do you take to curb the effects of weightlessness?


Tags
9 years ago

What Are the Bright Spots on Ceres?

image

Dwarf planet Ceres has more than 130 bright areas, and most of them are associated with impact craters. Now, Ceres has revealed some of its well-kept secrets in two new studies in the journal Nature, thanks to data from our Dawn spacecraft.

Two studies have been looking into the mystery behind these bright areas. One study identifies this bright material as a kind of salt, while the other study suggests the detection of ammonia-rich clays. 

Study authors write that the bright material is consistent with a type of magnesium sulfate called hexahydrite. A different type of magnesium sulfate is familiar on Earth as Epsom salt.

image

Researchers, using images from Dawn’s framing camera, suggest that these salt-rich areas were left behind when water-ice sublimated in the past. Impacts from asteroids would have unearthed the mixture of ice and salt.

An image of Occator Crater (below) shows the brightest material on Ceres. Occator itself is 60 miles in diameter, and its central pit, covered by this bright material, measures about 6 miles wide. With its sharp rim and walls, it appears to be among the youngest features on the dwarf planet.

image

In the second nature study, members of the Dawn science team examined the composition of Ceres and found evidence for ammonia-rich clays. Why is this important?

Well, ammonia ice by itself would evaporate on Ceres today, because it is too warm. However, ammonia molecules could be stable if present in combination with other minerals. This raises the possibility that Ceres did not originate in the main asteroid belt between Mars and Jupiter, where it currently resides. But instead, might have formed in the outer solar system! Another idea is that Ceres formed close to its present position, incorporating materials that drifted in from the outer solar system, near the orbit of Neptune, where nitrogen ices are thermally stable.

image

As of this week, our Dawn spacecraft has reached its final orbital altitude at Ceres (about 240 miles from the surface). In mid-December, it will begin taking observations from this orbit, so be sure to check back for details!

ake sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago

6 Ways NASA is Involved in Climate Science

When it comes to climate change, we play a unique role in observing and understanding changes to the planet. Thanks to NASA’s Earth observations and related research, we know our planet and its climate are changing profoundly. We also know human activities, like releasing carbon dioxide and methane into the atmosphere, are driving this change.

Not only do we make these observations, we help people and groups use this knowledge to benefit society. The work we do at NASA is critical to helping us understand the ways our planet is responding to increased temperatures.

image

Here are 6 ways that we are involved in climate science and informing decisions:

1. Monitoring Earth’s vital signs

Just like a doctor checks your vitals when you go in for a visit, here at NASA we are constantly monitoring Earth’s vital signs - carbon dioxide levels, global temperature, Arctic sea ice minimum, the ice sheets and sea level, and more.

image

We use satellites in space, observations from airplanes and ships, and data collected on the ground to understand our planet and its changing climate. Scientists also use computers to model and understand what's happening now and what might happen in the future.

image

People who study Earth see that the planet’s climate is getting warmer. Earth's temperature has gone up more than 1 degree Celsius (~2 degrees Fahrenheit) in the last 100 years. This may not seem like much, but small changes in Earth's temperature can have big effects. The current warming trend is of particular significance, because it is predominantly the result of human activity since the mid-20th century and is proceeding at an unprecedented rate.

image

People drive cars. People heat and cool their houses. People cook food. All those things take energy. Human-produced greenhouse gas emissions are largely responsible for warming our planet. Burning fossil fuels -- which includes coal, oil, and natural gas -- releases greenhouse gases such as carbon dioxide into the atmosphere, where they act like an insulating blanket and trap heat near Earth’s surface.

At NASA, we use satellites and instruments on board the International Space Station to confirm measurements of atmospheric carbon levels. They’ve been increasing much faster than any other time in history.

image

2. Tracking global land use and its impacts 

We also monitor and track global land use. Currently, half the world's population lives in urban areas, and by 2025, the United Nations projects that number will rise to 60%. 

image

With so many people living and moving to metropolitan areas, the scientific world recognizes the need to study and understand the impacts of urban growth both locally and globally. 

image

The International Space Station helps with this effort to monitor Earth. Its position in low-Earth orbit provides variable views and lighting over more than 90% of the inhabited surface of Earth, a useful complement to sensor systems on satellites in higher-altitude polar orbits. This high-resolution imaging of land and sea allows tracking of urban and forest growth, monitoring of hurricanes and volcanic eruptions, documenting of melting glaciers and deforestation, understanding how agriculture may be impacted by water stress, and measuring carbon dioxide in Earth’s atmosphere.

3. Research into the causes of climate change

Being able to monitor Earth’s climate from space also allows us to understand what’s driving these changes.

image

With the CERES instruments, which fly on multiple Earth satellites, our scientists measure the Earth’s planetary energy balance – the amount of energy Earth receives from the Sun and how much it radiates back to space. Over time, less energy being radiated back to space is evidence of an increase in Earth’s greenhouse effect. Human emissions of greenhouse gases are trapping more and more heat.

image

NASA scientists also use computer models to simulate changes in Earth’s climate as a result of  human and natural drivers of temperature change.

image

These simulations show that human activities such as greenhouse gas emissions, along with natural factors, are necessary to simulate the changes in Earth’s climate that we have observed; natural forces alone can’t do so.

4. Research into the effects of climate change

Global climate change has already had observable effects on the environment. Glaciers and ice sheets have shrunk, ice on rivers and lakes is breaking up earlier, plant and animal ranges have shifted, and trees are flowering sooner.

image

The effects of global climate change that scientists predicted are now occurring: loss of sea ice, accelerated sea level rise and longer, more intense heat waves.

Climate modelers have predicted that, as the planet warms, Earth will experience more severe heat waves and droughts, larger and more extreme wildfires, and longer and more intense hurricane seasons on average. The events of 2020 are consistent with what models have predicted: extreme climate events are more likely because of greenhouse gas emissions.

image

Plants are also struggling to keep up with rising carbon dioxide levels. Plants play a key role in mitigating climate change. The more carbon dioxide they absorb during photosynthesis, the less carbon dioxide  remains trapped in the atmosphere where it can cause temperatures to rise. But scientists have identified an unsettling trend – 86% of land ecosystems globally are becoming progressively less efficient at absorbing the increasing levels of carbon dioxide from the atmosphere.

Helping organizations to use all the data and knowledge NASA generates is another part of our job. We’ve helped South Dakota fight West Nile Virus, helped managers across the Western U.S. handle water, helped The Nature Conservancy protect land for shorebirds, and others. We also support developing countries as they work to address climate and other challenges through a 15-year partnership with the United States Agency for International Development.

5. Action on sustainability

Sustainability involves taking action now to enable a future where the environment and living conditions are protected and enhanced. We work with many government, nonprofit, and business partners to use our data and modeling to inform their decisions and actions. We are also working to advance technologies for more efficient flight, including hybrid-electric propulsion, advanced materials, artificial intelligence, and machine learning. 

image

These advances in research and technology will not only bring about positive changes to the climate and the world in which we live, but they will also drive the economic engine of America and our partners in industry, to remain the world-wide leader in flight development.  

We partner with the private sector to facilitate the transfer of our research and NASA-developed technologies. Many innovations originally developed for use in the skies above help make life more sustainable on Earth. For example:

Our Earth-observing satellites help farmers produce more with less water.

Expertise in rocket engineering led to a technique that lessens the environmental impact of burning coal.

A fuel cell that runs equipment at oil wells reduces the need to vent greenhouse gases.

6. Applying climate research to preserve NASA centers in coastal areas

Sea level rise in the two-thirds of Earth covered by water may jeopardize up to two-thirds of NASA's infrastructure built within mere feet of sea level.

image

Some NASA centers and facilities are located in coastal real estate because the shoreline is a safer, less inhabited surrounding for launching rockets. But now these launch pads, laboratories, airfields, and testing facilities are potentially at risk because of sea level rise. We’ve worked internally at NASA to identify climate risks and support planning at our centers.

NASA Climate Science

Climate change is one of the most complex issues facing us today. It involves many dimensions – science, economics, society, politics, and moral and ethical questions – and is a global problem, felt on local scales, that will be around for decades and centuries to come. With our Eyes on the Earth and wealth of knowledge on the Earth’s climate system and its components, we are one of the world’s experts in climate science.

Visit our Climate site to explore and learn more.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • nugget4550
    nugget4550 reblogged this · 9 months ago
  • thatquietkid108
    thatquietkid108 reblogged this · 9 months ago
  • thatquietkid108
    thatquietkid108 liked this · 9 months ago
  • stardust-bodies
    stardust-bodies reblogged this · 5 years ago
  • zirdivine
    zirdivine liked this · 5 years ago
  • semper-solaria
    semper-solaria liked this · 5 years ago
  • shadowicepuma
    shadowicepuma liked this · 5 years ago
  • scigirlence-blog1
    scigirlence-blog1 liked this · 5 years ago
  • techveg
    techveg liked this · 5 years ago
  • leftrascaluniversityweasel-blog
    leftrascaluniversityweasel-blog liked this · 5 years ago
  • stagekit
    stagekit liked this · 6 years ago
  • myskaterlife-blog
    myskaterlife-blog liked this · 6 years ago
  • tinyplanettech
    tinyplanettech liked this · 6 years ago
  • iderskye
    iderskye liked this · 6 years ago
  • fluffyduckgardens
    fluffyduckgardens reblogged this · 6 years ago
  • fluffyduckgardens
    fluffyduckgardens liked this · 6 years ago
  • mk0219
    mk0219 liked this · 6 years ago
  • a-dux
    a-dux liked this · 6 years ago
  • waarachtigheid
    waarachtigheid reblogged this · 6 years ago
  • solthroughservice-blog
    solthroughservice-blog reblogged this · 6 years ago
  • thetelegraphersequations-blog
    thetelegraphersequations-blog liked this · 6 years ago
  • moodys-things
    moodys-things reblogged this · 6 years ago
  • moodys-things
    moodys-things liked this · 6 years ago
  • einsteinofthestreets
    einsteinofthestreets reblogged this · 6 years ago
  • um---hi
    um---hi liked this · 6 years ago
  • rajkumar23bch-blog
    rajkumar23bch-blog liked this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags