June 22 marks the 40th anniversary of Charon’s discovery—the dwarf planet Pluto’s largest and first known moon. While the definition of a planet is the subject of vigorous scientific debate, this dwarf planet is a fascinating world to explore. Get to know Pluto’s beautiful, fascinating companion this week.
Astronomers James Christy and Robert Harrington weren’t even looking for satellites of Pluto when they discovered Charon in June 1978 at the U.S. Naval Observatory Flagstaff Station in Arizona – only about six miles from where Pluto was discovered at Lowell Observatory. Instead, they were trying to refine Pluto's orbit around the Sun when sharp-eyed Christy noticed images of Pluto were strangely elongated; a blob seemed to move around Pluto.
The direction of elongation cycled back and forth over 6.39 days―the same as Pluto's rotation period. Searching through their archives of Pluto images taken years before, Christy then found more cases where Pluto appeared elongated. Additional images confirmed he had discovered the first known moon of Pluto.
Christy proposed the name Charon after the mythological ferryman who carried souls across the river Acheron, one of the five mythical rivers that surrounded Pluto's underworld. But Christy also chose it for a more personal reason: The first four letters matched the name of his wife, Charlene. (Cue the collective sigh.)
Charon—the largest of Pluto’s five moons and approximately the size of Texas—is almost half the size of Pluto itself. The little moon is so big that Pluto and Charon are sometimes referred to as a double dwarf planet system. The distance between them is 12,200 miles (19,640 kilometers).
Many scientists on the New Horizons mission expected Charon to be a monotonous, crater-battered world; instead, they found a landscape covered with mountains, canyons, landslides, surface-color variations and more. High-resolution images of the Pluto-facing hemisphere of Charon, taken by New Horizons as the spacecraft sped through the Pluto system on July 14 and transmitted to Earth on Sept. 21, reveal details of a belt of fractures and canyons just north of the moon’s equator.
This great canyon system stretches more than 1,000 miles (1,600 kilometers) across the entire face of Charon and likely around onto Charon’s far side. Four times as long as the Grand Canyon, and twice as deep in places, these faults and canyons indicate a titanic geological upheaval in Charon’s past.
In April 2018, the International Astronomical Union—the internationally recognized authority for naming celestial bodies and their surface features—approved a dozen names for Charon’s features proposed by our New Horizons mission team. Many of the names focus on the literature and mythology of exploration.
This flyover video of Charon was created thanks to images from our New Horizons spacecraft. The “flight” starts with the informally named Mordor (dark) region near Charon’s north pole. Then the camera moves south to a vast chasm, descending to just 40 miles (60 kilometers) above the surface to fly through the canyon system.
This composite of enhanced color images of Pluto (lower right) and Charon (upper left), was taken by New Horizons as it passed through the Pluto system on July 14, 2015. This image highlights the striking differences between Pluto and Charon. The color and brightness of both Pluto and Charon have been processed identically to allow direct comparison of their surface properties, and to highlight the similarity between Charon’s polar red terrain and Pluto’s equatorial red terrain.
Charon neither rises nor sets, but hovers over the same spot on Pluto's surface, and the same side of Charon always faces Pluto―a phenomenon called mutual tidal locking.
Bathed in “Plutoshine,” this image from New Horizons shows the night side of Charon against a star field lit by faint, reflected light from Pluto itself on July 15, 2015.
Read the full version of this week’s ‘10 Things to Know’ article on the web HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Fourteen new Astronaut Candidates have reported to our Johnson Space Center in Houston for duty on Monday, Aug. 21! Two astronauts from the Canadian Space Agency (CSA), along with our 12 new astronaut candidates arrived for their first day of work. We selected these 12 individuals from a record number of more than 18,000 applicants.
This excited group of outstanding individuals will begin 2 years of training, along with 2 Canadian astronauts, in 5 key areas before being assigned to a mission.
What 5 areas? Let’s take a look...
1. Operate in T-38 Jets
Astronauts must be able to safely operate in the T-38 jets as either a pilot or back seater.
2. Operate + Maintain the International Space Station
Astronauts learn to operate and maintain the complex systems aboard the International Space Station. Did you know they recycle their water there? Today’s coffee is...well, tomorrow’s coffee too.
3. Learn How to Spacewalk
Or should we say waterwalk? Astronauts demonstrate the skills to complete complex spacewalk tasks in our Neutral Buoyancy Laboratory. This 6.2 million gallon pool contains a mockup of the space station and is a close simulation to microgravity.
4. Learn to Operate a Robot
Astronauts train in Canada for 2 weeks to learn how to capture visiting vehicles and more with the space station’s Canadarm 2 robotic arm.
5. Learn a Foreign Language
Astronauts must be fluent in both English and Russian, the two official languages on the International Space Station.
But before they begin all this training...they had to report for duty...
This group reported for Johnson Space Center on eclipse day and was sworn in as NASA’s Astronaut Candidate Class of 2017.
They even got to experience the partial solar eclipse together, what a great first day!
Follow their training journey online by following @NASA_Astronauts on Twitter.
Get to know them better and watch their individual interviews here: go.nasa.gov/NewAstronauts.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We won’t have a solar eclipse until Aug. 21, 2017, but observers in central Africa will see an annular eclipse, where the moon covers most but not all of the sun, on Sept. 1. Observers always need to use safe solar eclipse glasses or filters on telescopes, binoculars and cameras.
Also this month, there are two minor meteor showers, both with about 5 swift and bright meteors per hour at their peak, which will be near dawn. The first is the Aurigid shower on Sept. 1. The new moon on the first means the sky will be nice and dark for the Aurigids.
The second shower is the Epsilon Perseids on Sept. 9. The first quarter moon sets on the 9th at midnight, just in time for the best viewing of the Perseids.
There are many nice pair-ups between the moon and planets this month. You can see the moon between Venus and Jupiter on Sept. 2, and above Venus on the 3rd, right after sunset low on the West-Southwest horizon. On the 15th the nearly full moon pairs up with Neptune, two weeks after its opposition, when the 8th planet is closest to Earth in its orbit around the sun.
Watch the full September “What’s Up” video for more:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The twin Voyager spacecraft, which launched in 1977, are our ambassadors to the rest of the Milky Way, destined to continue orbiting the center of our galaxy for billions of years after they stop communicating with Earth. On Aug. 25, 2012, Voyager 1 became the first human-made object to enter interstellar space, and Voyager 2 is expected to cross over in the next few years. At age 40, the Voyagers are the farthest and longest-operating spacecraft and still have plenty more to discover. This poster captures the spirit of exploration, the vastness of space and the wonder that has fueled this ambitious journey to the outer planets and beyond.
Enjoy this and other Voyager anniversary posters. Download them for free here: https://voyager.jpl.nasa.gov/downloads/
Credit: NASA/JPL-Caltech
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
An eclipse occurs when the Moon temporarily blocks the light from the Sun. Within the narrow, 60- to 70-mile-wide band stretching from Oregon to South Carolina called the path of totality, the Moon completely blocked out the Sun’s face; elsewhere in North America, the Moon covered only a part of the star, leaving a crescent-shaped Sun visible in the sky.
During this exciting event, we were collecting your images and reactions online.
This composite image, made from 4 frames, shows the International Space Station, with a crew of six onboard, as it transits the Sun at roughly five miles per second during a partial solar eclipse from, Northern Cascades National Park in Washington. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli.
Credit: NASA/Bill Ingalls
The Bailey's Beads effect is seen as the moon makes its final move over the sun during the total solar eclipse on Monday, August 21, 2017 above Madras, Oregon.
Credit: NASA/Aubrey Gemignani
This image from one of our Twitter followers shows the eclipse through tree leaves as crescent shaped shadows from Seattle, WA.
Credit: Logan Johnson
“The eclipse in the palm of my hand”. The eclipse is seen here through an indirect method, known as a pinhole projector, by one of our followers on social media from Arlington, TX.
Credit: Mark Schnyder
Through the lens on a pair of solar filter glasses, a social media follower captures the partial eclipse from Norridgewock, ME.
Credit: Mikayla Chase
While most of us watched the eclipse from Earth, six humans had the opportunity to view the event from 250 miles above on the International Space Station. European Space Agency (ESA) astronaut Paolo Nespoli captured this image of the Moon’s shadow crossing America.
Credit: Paolo Nespoli
This composite image shows the progression of a partial solar eclipse over Ross Lake, in Northern Cascades National Park, Washington. The beautiful series of the partially eclipsed sun shows the full spectrum of the event.
Credit: NASA/Bill Ingalls
In this video captured at 1,500 frames per second with a high-speed camera, the International Space Station, with a crew of six onboard, is seen in silhouette as it transits the sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming.
Credit: NASA/Joel Kowsky
To see more images from our NASA photographers, visit: https://www.flickr.com/photos/nasahqphoto/albums/72157685363271303
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The Shaped Sonic Boom Demonstrator and the Quest for Quiet Supersonic Flight.
Download it HERE
A comprehensive History of the F-16XL Experimental Prototype and its Role in our Flight Research.
Download it HERE
Selected National Advisory Committee for Aeronautics (NACA) Research Airplanes and Their Contributions to Flight.
Download it HERE
The huge Langley Full-Scale Tunnel building dominated the skyline of Langley Air Force Base for 81 years (1930–2011). Explore how the results of critical tests conducted within its massive test section contributed to many of the Nation's most important aeronautics and space programs.
Download it HERE
A New Twist in Flight Research describes the origins and design development of aeroelastic wing technology, its application to research aircraft, the flight-test program, and follow-on research and future applications.
Download it HERE
Developing & Flight Testing the Grumman X-29A Forward Swept Wing Research Aircraft.
Download it HERE
Robert T. Jones, the Oblique Wing, our AD-1 Demonstrator, and its Legacy.
Download it HERE
The fuel crisis of the 1970s threatened not only the airline industry but also the future of American prosperity itself. It also served as the genesis of technological ingenuity and innovation from a group of scientists and engineers at NASA, who initiated planning exercises to explore new fuel-saving technologies.
Download it HERE
X-15: Extending the Frontiers of Flight describes the genesis of the program, the design and construction of the aircraft, years of research flights and the experiments that flew aboard them.
Download it HERE
Delve into the story of the Ikhana, a remotely piloted vehicle used by NASA researchers to conduct Earth science research, which became an unexpected flying and imaging helper to emergency workers battling California wildfires.
Download it HERE
This first volume in a two-volume set includes case studies and essays on NACA-NASA research for contributions such as high-speed wing design, the area rule, rotary-wing aerodynamics research, sonic boom mitigation, hypersonic design, computational fluid dynamics, electronic flight control and environmentally friendly aircraft technology.
Download it HERE
Continue your journey into the world of NASA's Contributions to Aeronautics with case studies and essays on NACA-NASA research for contributions including wind shear and lightning research, flight operations, human factors, wind tunnels, composite structures, general aviation aircraft safety, supersonic cruise aircraft research and atmospheric icing.
Download it HERE
Interested in other free e-books on topics from space, science, research and more? Discover the other e-books HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
It might look like something you’d find on Earth, but this piece of technology has a serious job to do: track global sea level rise with unprecedented accuracy. It’s #SeeingTheSeas mission will:
Provide information that will help researchers understand how climate change is reshaping Earth's coastlines – and how fast this is happenin.
Help researchers better understand how Earth's climate is changing by expanding the global atmospheric temperature data record
Help to improve weather forecasts by providing meteorologists information on atmospheric temperature and humidity.
Tune in tomorrow, Nov. 21 at 11:45 a.m. EST to watch this U.S.-European satellite launch to space! Liftoff is targeted for 12:17 p.m. EST. Watch HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This month hosts the best meteor shower of the year and the brightest stars in familiar constellations.
The Geminds peak on the morning of the 14th, and are active from December 4th through the 17th. The peak lasts for a full 24 hours, meaning more worldwide meteor watchers will get to see this spectacle.
Expect to see up to 120 meteors per hour between midnight and 4 a.m. but only from a dark sky. You'll see fewer after moonrise at 3:30 a.m. local time.
In the southern hemisphere, you won't see as many, perhaps 10-20 per hour, because the radiant never rises above the horizon.
Take a moment to enjoy the circle of constellations and their brightest stars around Gemini this month.
Find yellow Capella in the constellation Auriga.
Next-going clockwise--at 1 o'clock find Taurus and bright reddish Aldebaran, plus the Pleiades.
At two, familiar Orion, with red Betelguese, blue-white Rigel, and the three famous belt stars in-between the two.
Next comes Leo, and its white lionhearted star, Regulus at 7 o'clock.
Another familiar constellation Ursa Major completes the view at 9 o'clock.
There's a second meteor shower in December, the Ursids, radiating from Ursa Minor, the Little Dipper. If December 22nd and the morning of December 23rd are clear where you are, have a look at the Little Dipper's bowl, and you might see about ten meteors per hour. Watch the full What’s Up for December Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
From launching the largest, heaviest, most sophisticated vehicle we have ever sent to Mars, to its elegant landing at Jezero Crater – a treacherous yet promising location for finding signs of ancient life – the journey of our Perseverance rover has already been and continues to be a bold one.
But let’s not forget, building new tools and instruments or designing ways to study other worlds is not easy. Before engineers even dreamt of sending their hardware for a spin on Mars, they spent years doing all they could to validate tech on Earth – modeling in labs, flying experiments on suborbital rockets or high-altitude balloons, or testing in various facilities to simulate the harsh conditions of space.
We know that technology demonstrations – that test a new capability in space – can be risky, but trying new things is how we forge ahead, learn for future missions, and reach new heights in space.
Perseverance has already accomplished some amazing “firsts” but there are more to come. Here are four more trailblazing technologies on the Mars 2020 mission.
This week, the Ingenuity Mars Helicopter, a small, autonomous rotorcraft originally stowed beneath the rover, will make the first-ever attempt at powered, controlled flight of an aircraft on another planet.
In the last few weeks, Ingenuity safely deployed from Perseverance, charged up its solar panel, survived its first bone-chilling Martian night and firmly planted four legs on the ground. Once the team on Earth confirms that the rover drove about 16 feet (about 5 meters) away, and that both helicopter and rover are communicating via their onboard radios, preflight checks will begin, and Ingenuity will be on its way skyward.
Perseverance will receive and relay the final flight instructions from mission controllers at our Jet Propulsion Laboratory to Ingenuity. Ingenuity will run its rotors to 2,537 rpm and, if all final self-checks look good, lift off. After climbing at a rate of about 3 feet per second (1 meter per second), the helicopter will hover at 10 feet (3 meters) above the surface for up to 30 seconds. Then, the Mars Helicopter will descend and touch back down on the Martian surface. With a smooth landing and continued operability, up to four more flights could be attempted, each one building on the success of the last.
Ingenuity could pave the way for other advanced robotic flying vehicles. Possible uses of next-generation rotorcraft on Mars include:
A unique viewpoint not provided by current orbiters, rovers or landers
High-definition images and reconnaissance for robots or humans
Access to terrain that is difficult for rovers to reach
Could even carry light but vital payloads from one site to another
Here’s how to follow along as this flight makes history.
2. First Production of Oxygen from Martian Atmosphere
The Mars Oxygen In-Situ Resource Utilization Experiment, better known as MOXIE, is preparing us for human exploration of Mars by demonstrating a way to extract oxygen directly from the Martian atmosphere. That could mean access to air for breathing, but also the ability to produce vast quantities of rocket fuel to return astronauts to Earth.
Located inside the body of Perseverance, the car battery-sized instrument works like a miniature electronic tree on the rover, inhaling carbon dioxide, separating the molecule, and exhaling carbon monoxide and oxygen.
MOXIE is the first demonstration of its kind on another planet – the first test of an in-situ resource utilization technology, meaning it generates a usable product from local materials. The farther humans go into deep space, the more important this will be, due to the limited immediate access to supplies.
MOXIE will give a go at its first operations soon, a huge first step in proving it’s feasible to make oxygen, in situ, on Mars. Future, larger versions of MOXIE (something about the size of a washing machine) could produce oxygen 200 times faster by operating continuously.
The Mars Environmental Dynamics Analyzer (MEDA) system makes weather measurements including wind speed and direction, temperature and humidity, and also measures the amount and size of dust particles in the Martian atmosphere.
Using MEDA data, engineers on Earth recently pieced together the first weather report from Jezero Crater. Measurements from MEDA sensors are even helping to determine the optimal time for Ingenuity’s first flight.
The weather instrument aboard the Curiosity rover – currently located a good 2,300 miles away from Perseverance on Mars – provides similar daily weather and atmospheric data. But MEDA can record the temperature at three atmospheric heights in addition to the surface temperature. It also records the radiation budget near the surface, which will help prepare for future human exploration missions on Mars.
MEDA’s weather reports, coupled with data gathered by Curiosity and NASA’s Insight lander, will enable a deeper understanding of Martian weather patterns, events, and atmospheric turbulence that could influence planning for future endeavors like the landing or launch of the proposed Mars Sample Return mission.
On Earth, scientists use radar to look for things under the ground. They use it to study Mars-like glacial regions in the Arctic and Antarctic. Ground-penetrating radar helps us locate land mines; spot underground cables, wires, and pipes; or reveal ancient human artifacts and even buried treasure! On Mars, the "buried treasure" may be ice, which helps scientists understand the possibilities for Martian life and also identifies natural resources for future human explorers.
Perseverance's Radar Imager for Mars' Subsurface Experiment (RIMFAX) uses radar waves to probe the ground and reveal the unexplored world that lies beneath the Martian surface.
It’s the first ground-penetrating radar on the surface of Mars. RIMFAX will provide a highly detailed view of subsurface structures down to at least 30 feet (10 meters). With those measurements, the instrument will reveal hidden layers of geology and help find clues to past environments on Mars, especially those with conditions necessary for supporting life.
Stay tuned in to the latest Perseverance updates on the mission website and follow NASA Technology on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Artemis I will be an enormous step toward humanity’s return to the Moon. This mission will be the first flight test of the integrated Space Launch System rocket and the Orion spacecraft — the same system that will send future Artemis astronauts to the Moon. That’s why NASA needs someone capable to test the vehicle. Someone with the necessary experience. Someone with the Right Stuff. (Or... stuffing).
Meet Commander Moonikin Campos. He is a manikin, or a replica human body. Campos is named after Arturo Campos, a trailblazing NASA employee who worked on Apollo missions. Arturo Campos’ skill as an electrical engineer was pivotal in the rescue efforts to help guide the Apollo 13 astronauts home.
As the leader of the mission, Commander Campos will be flying in the pilot’s seat for the length of the mission: a journey of 1.3 million miles (~2 million km) around the Moon and back to Earth. He's spent years training for this mission and he loves a challenge. Campos will be equipped with two radiation sensors and will have additional sensors under his headrest and behind his seat to record acceleration and vibration data throughout the mission.
Traveling with Campos are his quirky companions, Zohar and Helga. They’re part of a special experiment to measure radiation outside of the protective bubble of Earth’s atmosphere. Together with their commander, they’re excited to play a role in humanity’s next great leap. (And hopefully they can last the entire flight without getting on each other's nerves.)
Will our brave explorers succeed on their mission and ensure the success of future Artemis operations? Can Commander Moonikin Campos live up to the legacy of his heroic namesake?? And did anyone remember to bring snacks??? Get the answers in this thrilling three-part series!
In the first part of Commander Moonikin Campos’ journey, our trailblazing hero prepares for liftoff from NASA’s spaceport at Kennedy Space Center in Florida, gets acquainted with the new hardware aboard the Orion spacecraft, and meets his crewmates: Helga and Zohar!
In the second part of the trio’s adventure, Campos, Helga, and Zohar blast out of the Earth’s atmosphere with nearly 8.8 million pounds (4 million kg) of thrust powering their ascent. Next stop: the Moon!
In the final chapter of the Artemis I mission, Campos and friends prepare for their return home, including the last and most dangerous part of their journey: reentering Earth’s atmosphere at a screeching 25,000 miles per hour (40,000 kph).
Make sure to follow us on Tumblr for your regular dose of space!
What is the most interesting fact that you discovered about Black Holes? And what is the one you would most want to find out?
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts