6 Fun Facts About Our New Hexapod Robot

6 Fun Facts About Our New Hexapod Robot

Satellites are crucial to everyday life and cost hundreds of millions of dollars to manufacture and launch. Currently, they are simply decommissioned when they run out of fuel. There is a better way, and it centers on satellite servicing, which can make spaceflight more sustainable, affordable, and resilient. Our satellite servicing technologies will open up a new world where fleet managers can call on robotic mechanics to diagnose, maintain and extend the lifespan of their assets.

Our new and unique robot is designed to test robotic satellite servicing capabilities. Standing 10 feet tall and 16 feet wide, the six-legged “hexapod” robot helps engineers perfect technologies before they’re put to use in space.

Here are SIX interesting facts about the hexapod:

1. The hexapod has six degrees of freedom. 

image

This essentially means the robot can move in six directions—three translational directions (forward and backward, up and down and left and right), and three rotational directions (roll, pitch and yaw). Because of its wide range of movement, the hexapod mimics the way a satellite moves in zero gravity.

2. It can move up to eight inches per second and can extend up to 13 feet (but usually doesn’t).

image

Like most space simulators, the hexapod typically moves slowly at about one inch per second. During tests, it remains positioned about nine feet off the floor to line up with and interact with a robotic servicing arm mounted to an arch nearby. However, the robot can move at speeds up to eight inches per second and extend/reach nearly 13 feet high!

3. The hexapod tests mission elements without humans.

image

The hexapod is crucial to testing for our Restore-L project, which will prove a combination of technologies needed to robotically refuel a satellite not originally designed to be refueled in space.

Perhaps the most difficult part of refueling a satellite in space is the autonomous rendezvous and grapple stage. A satellite in need of fuel might be moving 16,500 miles per hour in the darkness of space. A servicer satellite will need to match its speed and approach the client satellite, then grab it. This nail-biting stage needs to be done autonomously by the spacecraft’s systems (no humans controlling operations from the ground).

The hexapod helps us practice this never-before-attempted feat in space-like conditions. Eventually a suite of satellite servicing capabilities could be incorporated in other missions.

4. This type of robot is also used for flight and roller coaster simulators.

image

Because of the hexapod’s unparalleled* ability to handle a high load capacity and range of movement, while maintaining a high degree of precision and repeatability, a similar kind of robot is used for flight and roller coaster simulators.

*Pun intended: the hexapod is what is referred to as a parallel motion robot

5. The hexapod was designed and made in the U S of A.

image

The hexapod was designed and built by a small, New Hampshire-based company called Mikrolar. Mikrolar designs and produces custom robots that offer a wide range of motion and high degree of precision, for a wide variety of applications.

6. The robot lives at our Goddard Space Flight Center’s Robotic Operations Center.

image

The hexapod conducts crucial tests at our Goddard Space Flight Center’s Robotic Operations Center (ROC). The ROC is a 5,000-square-foot facility with 50 feet high ceilings. It acts as an incubator for satellite servicing technologies. Within its black curtain-lined walls, space systems, components and tasks are put to the test in simulated environments, refined and finally declared ready for action in orbit.

The hexapod is not alone in the ROC. Five other robots test satellite servicing capabilities. Engineers use these robots to practice robotic repairs on satellites rendezvousing with objects in space. 

Watch the hexapod in action HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

5 years ago

What does a normal day for you consist of?


Tags
5 years ago

New Science from our Mission to Touch the Sun

image

In August 2018, our Parker Solar Probe mission launched to space, soon becoming the closest-ever spacecraft from the Sun. Now, scientists have announced their first discoveries from this exploration of our star!

The Sun may look calm to us here on Earth, but it's an active star, unleashing powerful bursts of light, deluges of particles moving near the speed of light and billion-ton clouds of magnetized material. All of this activity can affect our technology here on Earth and in space.

Parker Solar Probe's main science goals are to understand the physics that drive this activity — and its up-close look has given us a brand-new perspective. Here are a few highlights from what we've learned so far.

1. Surprising events in the solar wind

The Sun releases a continual outflow of magnetized material called the solar wind, which shapes space weather near Earth. Observed near Earth, the solar wind is a relatively uniform flow of plasma, with occasional turbulent tumbles. Closer to the solar wind's source, Parker Solar Probe saw a much different picture: a complicated, active system. 

One type of event in particular drew the eye of the science teams: flips in the direction of the magnetic field, which flows out from the Sun, embedded in the solar wind. These reversals — dubbed "switchbacks" — last anywhere from a few seconds to several minutes as they flow over Parker Solar Probe. During a switchback, the magnetic field whips back on itself until it is pointed almost directly back at the Sun.

image

The exact source of the switchbacks isn't yet understood, but Parker Solar Probe's measurements have allowed scientists to narrow down the possibilities — and observations from the mission's 21 remaining solar flybys should help scientists better understand these events. 

2. Seeing tiny particle events

The Sun can accelerate tiny electrons and ions into storms of energetic particles that rocket through the solar system at nearly the speed of light. These particles carry a lot of energy, so they can damage spacecraft electronics and even endanger astronauts, especially those in deep space, outside the protection of Earth's magnetic field — and the short warning time for such particles makes them difficult to avoid.

image

Energetic particles from the Sun impact a detector on ESA & NASA's SOHO satellite.

Parker Solar Probe's energetic particle instruments have measured several never-before-seen events so small that all trace of them is lost before they reach Earth. These instruments have also measured a rare type of particle burst with a particularly high number of heavier elements — suggesting that both types of events may be more common than scientists previously thought.

3. Rotation of the solar wind

Near Earth, we see the solar wind flowing almost straight out from the Sun in all directions. But the Sun rotates as it releases the solar wind, and before it breaks free, the wind spins along in sync with the Sun's surface. For the first time, Parker was able to observe the solar wind while it was still rotating – starting more than 20 million miles from the Sun.

image

The strength of the circulation was stronger than many scientists had predicted, but it also transitioned more quickly than predicted to an outward flow, which helps mask the effects of that fast rotation from the vantage point where we usually see them from, near Earth, about 93 million miles away. Understanding this transition point in the solar wind is key to helping us understand how the Sun sheds energy, with implications for the lifecycles of stars and the formation of protoplanetary disks.

4. Hints of a dust-free zone

Parker also saw the first direct evidence of dust starting to thin out near the Sun – an effect that has been theorized for nearly a century, but has been impossible to measure until now. Space is awash in dust, the cosmic crumbs of collisions that formed planets, asteroids, comets and other celestial bodies billions of years ago. Scientists have long suspected that, close to the Sun, this dust would be heated to high temperatures by powerful sunlight, turning it into a gas and creating a dust-free region around the Sun.

image

For the first time, Parker's imagers saw the cosmic dust begin to thin out a little over 7 million miles from the Sun. This decrease in dust continues steadily to the current limits of Parker Solar Probe's instruments, measurements at a little over 4 million miles from the Sun. At that rate of thinning, scientists expect to see a truly dust-free zone starting a little more than 2-3 million miles from the Sun — meaning the spacecraft could observe the dust-free zone as early as 2020, when its sixth flyby of the Sun will carry it closer to our star than ever before.

These are just a few of Parker Solar Probe's first discoveries, and there's plenty more science to come throughout the mission! For the latest on our Sun, follow @NASASun on Twitter and NASA Sun Science on Facebook.


Tags
9 years ago

James Webb Space Telescope

image

Imagine seeing 13 billion years back in time, watching the first stars grow, galaxies evolve and solar systems form…our James Webb Space Telescope (JWST) will do just that!

image

As the successor to our Hubble Space Telescope, JWST will be the premier observatory of the next decade, serving thousands of astronomers worldwide. Seems like a lot of pressure, right? Well luckily, JWST is being prepared to fulfill its job by some super smart people…to be exact: more than 1,000 people in more than 17 countries! Once completed and deployed, it will be able to study every phase in the history of our Universe, ranging from the luminous glows after the Big Bang, to the formation of solar systems.

image

The Webb Telescope incorporates several innovative technologies, such as its primary mirror that’s made of 18 separate segments! They are able to unfold and adjust to shape after launch, and are made up of ultra-lightweight beryllium.

image

The sunshield is another impressive component of the telescope. The sunshield of the Webb Telescope is its biggest feature, and is the size of a tennis court! This five-layer monstrosity will deflect light and heat from the Sun, and allow pieces of the observatory to be kept very cold so they are able to operate properly.

image

Last week, we successfully installed the first of 18 flight mirrors onto the telescope, beginning a critical piece of the observatory’s construction. The engineering team used a robot arm to lift and lower the hexagonal-shaped segment that measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). The full installation is expected to be complete early next year.

image

This telescope is an international collaboration between NASA, ESA (European Space Agency) and the Canadian Space Agency (CSA), and is scheduled to launch in October of 2018 on an Ariane 5 rocket. Until then, be sure to keep up with construction of this next generation space telescope: Twitter, Facebook.

Also, make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
7 years ago
Our Cassini Spacecraft Has Been Traveling In Space For Almost 20 Years, Exploring Saturn, Its Rings And

Our Cassini spacecraft has been traveling in space for almost 20 years, exploring Saturn, its rings and even some of its moons. This mission has revealed never-before-seen events that are changing our understanding of how planetary systems form and what conditions might lead to habitats for life.

Cassini will complete its remarkable story of exploration with an intentional plunge into Saturn’s atmosphere, ending its mission.  

Participate in our Grand Finale Events

Wednesday, Sept. 13

1 p.m. EDT – News Conference from our Jet Propulsion Laboratory with a detailed preview of final mission activities Watch HERE.

Thursday, Sept 14

4:00 - 5:00 p.m. EDT - NASA Social Live Broadcast with mission experts Watch HERE.

Friday, Sept. 15

7:00 – 8:30 a.m. EDT – Live commentary on NASA TV and online of the spacecraft’s final dive into Saturn’s atmosphere. Watch HERE.

Around 8:00 a.m. EDT – Expected time of last signal and science data from Cassini Watch HERE.

9:30 a.m. EDT – Post-mission news conference Watch HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

10 “Spinoffs of Tomorrow” You Can License for Your Business

The job of the our Technology Transfer Program is pretty straight-forward – bring NASA technology down to Earth. But, what does that actually mean? We’re glad you asked! We transfer the cool inventions NASA scientists develop for missions and license them to American businesses and entrepreneurs. And that is where the magic happens: those business-savvy licensees then create goods and products using our NASA tech. Once it hits the market, it becomes a “NASA Spinoff.”

If you’re imagining that sounds like a nightmare of paperwork and bureaucracy, think again. Our new automated “ATLAS” system helps you license your tech in no time — online and without any confusing forms or jargon.

So, sit back and browse this list of NASA tech ripe for the picking (well, licensing.) When you find something you like, follow the links below to apply for a license today! You can also browse the rest of our patent portfolio - full of hundreds of available technologies – by visiting technology.nasa.gov.

image

1. Soil Remediation with Plant-Fungal Combinations

Ahh, fungus. It’s fun to say and fun to eat—if you are a mushroom fan. But, did you know it can play a crucial role in helping trees grow in contaminated soil? Scientists at our Ames Research Center discovered that a special type of the fungus among us called “Ectomycorrhizal” (or EM for short) can help enhance the growth of trees in areas that have been damaged, such as those from oil spills.

image

2. Preliminary Research Aerodynamic Design to Lower Drag

When it comes to aircraft, drag can be, well…a drag. Luckily, innovators at our Armstrong Flight Research Center are experimenting with a new wing design that removes adverse yaw (or unwanted twisting) and dramatically increases aircraft efficiency by reducing drag. Known as the “Preliminary Research Aerodynamic Design to Lower Drag (PRANDTL-D)” wing, this design addresses integrated bending moments and lift to achieve drag reduction.

image

3. Advancements in Nanomaterials

What do aircraft, batteries, and furniture have in common? They can ALL be improved with our nanomaterials.  Nanomaterials are very tiny materials that often have unique optical, electrical and mechanical properties. Innovators at NASA’s Glenn Research Center have developed a suite of materials and methods to optimize the performance of nanomaterials by making them tougher and easier to process. This useful stuff can also help electronics, fuel cells and textiles.

image

4. Green Precision Cleaning

Industrial cleaning is hard work. It can also be expensive when you have to bring in chemicals to get things squeaky. Enter “Green Precision Cleaning,” which uses the nitrogen bubbles in water instead. The bubbles act as a scrubbing agent to clean equipment. Goddard Space Flight Center scientists developed this system for cleaning tubing and piping that significantly reduces cost and carbon consumption. Deionized water (or water that has been treated to remove most of its mineral ions) takes the place of costlier isopropyl alcohol (IPA) and also leaves no waste, which cuts out the pricey process of disposal. The cleaning system quickly and precisely removes all foreign matter from tubing and piping.

image

5. Self-Contained Device to Isolate Biological Samples

When it comes to working in space, smaller is always better. Innovators at our Johnson Space Center have developed a self-contained device for isolating microscopic materials like DNA, RNA, proteins, and cells without using pipettes or centrifuges. Think of this technology like a small briefcase full of what you need to isolate genetic material from organisms and microorganisms for analysis away from the lab. The device is also leak-proof, so users are protected from chemical hazards—which is good news for astronauts and Earth-bound scientists alike.

image

6. Portable, Rapid, Quiet Drill

When it comes to “bringing the boom,” NASA does it better than anyone. But sometimes, we know it’s better to keep the decibels low. That’s why innovators at NASA’s Jet Propulsion Laboratory have developed a new handheld drilling device, suitable for a variety of operations, that is portable, rapid and quiet. Noise from drilling operations often becomes problematic because of the location or time of operations. Nighttime drilling can be particularly bothersome and the use of hearing protection in the high-noise areas may be difficult in some instances due to space restrictions or local hazards. This drill also weighs less than five pounds – talk about portable power.  

image

7. Damage Detection System for Flat Surfaces

The ability to detect damage to surfaces can be crucial, especially on a sealed environment that sustains human life or critical equipment. Enter Kennedy Space Center’s damage detection system for flat composite surfaces. The system is made up of layered composite material, with some of those layers containing the detection system imbedded right in. Besides one day potentially keeping humans safe on Mars, this tech can also be used on aircrafts, military shelters, inflatable structures and more.

image

8. Sucrose-Treated Carbon Nanotube and Graphene Yarns and Sheets

We all know what a spoonful of sugar is capable of. But, who knew it could help make some materials stronger? Innovators at NASA’s Langley Research Center did! They use dehydrated sucrose to create yarns and woven sheets of carbon nanotubes and graphene.

The resulting materials are lightweight and strong. Sucrose is inexpensive and readily available, making the process cost-effective. Makes you look at the sweet substance a little differently, doesn’t it?

image

9. Ultrasonic Stir Welding

NASA scientists needed to find a way to friction weld that would be gentler on their welding equipment. Meet our next tech, ultrasonic stir welding.

NASA’s Marshall Space Flight Center engineers developed ultrasonic stir welding to join large pieces of very high-strength, high-melting-temperature metals such as titanium and Inconel. The addition of ultrasonic energy reduces damaging forces to the stir rod (or the piece of the unit that vibrates so fast, it joins the welding material together), extending its life. The technology also leaves behind a smoother, higher-quality weld.

image

10. A Field Deployable PiezoElectric Gravimeter (PEG)

It’s important to know that the fuel pumping into rockets has remained fully liquid or if a harmful chemical is leaking out of its container. But each of those things, and the many other places sensors are routinely used, tends to require a specially designed, one-use device.

That can result in time-consuming and costly cycles of design, test and build, since there is no real standardized sensor that can be adapted and used more widely.

To meet this need, the PiezoElectric Gravimeter (PEG) was developed to provide a sensing system and method that can serve as the foundation for a wide variety of sensing applications.

image

See anything your business could use? Did anything inspire you to start your own company? If so, head to our website at technology.nasa.gov to check them out.

When you’ve found what you need, click, “Apply Now!” Our licensing system, ATLAS, will guide you through the rest.

If the items on this round-up didn’t grab you, that’s ok, too. We have hundreds of other technologies available and ready to license on our website.

And if you want to learn more about the technologies already being used all around you, visit spinoff.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago

What are Phytoplankton and Why Are They Important?

Breathe deep… and thank phytoplankton.

Why? Like plants on land, these microscopic creatures capture energy from the sun and carbon from the atmosphere to produce oxygen.

This moving image represents phytoplankton in motion. The background is blue. In the first motion two circular phytoplankton with six tentacles across the screen. After that, three circles of phytoplankton colored in red, blue and orange move from right to life. The final image shows a variety of phytoplankton appearing. NASA/Michael Starobin

Phytoplankton are microscopic organisms that live in watery environments, both salty and fresh. Though tiny, these creatures are the foundation of the aquatic food chain. They not only sustain healthy aquatic ecosystems, they also provide important clues on climate change.

Let’s explore what these creatures are and why they are important for NASA research.

Phytoplankton are diverse

Phytoplankton are an extremely diversified group of organisms, varying from photosynthesizing bacteria, e.g. cyanobacteria, to diatoms, to chalk-coated coccolithophores. Studying this incredibly diverse group is key to understanding the health - and future - of our ocean and life on earth.

This set of illustrations shows five different types of phytoplankton: cyanobacteria, diatom, dinoflagellate, green algae, and coccolithophore. Cyanobacteria look like a column of circles stuck together. Diatoms look like a triangle with rounded sides; there is a spherical shape at each corner of the triangle. Dinoflagellates look like an urn with fish-like fins on the top and right side, and a long whiplike appendage. Green algae are round with sharp spikes emanating like the teeth of a gear. Coccolithophores are spherical, and covered with flat round features, each circled with fluted edges like a pie crust. Credit: NASA/Sally Bensusen

Their growth depends on the availability of carbon dioxide, sunlight and nutrients. Like land plants, these creatures require nutrients such as nitrate, phosphate, silicate, and calcium at various levels. When conditions are right, populations can grow explosively, a phenomenon known as a bloom.

This image shows phytoplankton growing in a bloom. The bloom is colored in shades of green in the South Pacific Ocean off the Coast of New Zealand. In the left of the image clouds and blue water appear. In the left bottom corner a land mass colored in green and brown appears. To the middle the Cook Strait appears between the North and South Island of New Zealand in green. Credit: NASA

Phytoplankton blooms in the South Pacific Ocean with sediment re-suspended from the ocean floor by waves and tides along much of the New Zealand coastline.

Phytoplankton are Foundational

Phytoplankton are the foundation of the aquatic food web, feeding everything from microscopic, animal-like zooplankton to multi-ton whales. Certain species of phytoplankton produce powerful biotoxins that can kill marine life and people who eat contaminated seafood.

This image is divided into five different images. On the left, tiny phytoplankton, clear in color, are present. On the second a larger plankton, orange in color appears. In the middle, a blue sea image shows a school of fish. Next to that a large green turtle looks for food on the ocean floor. On the right, a large black whale jumps out of the water. Credit: WHOI

Phytoplankton are Part of the Carbon Cycle

Phytoplankton play an important part in the flow of carbon dioxide from the atmosphere into the ocean. Carbon dioxide is consumed during photosynthesis, with carbon being incorporated in the phytoplankton, and as phytoplankton sink a portion of that carbon makes its way into the deep ocean (far away from the atmosphere).

Changes in the growth of phytoplankton may affect atmospheric carbon dioxide concentrations, which impact climate and global surface temperatures. NASA field campaigns like EXPORTS are helping to understand the ocean's impact in terms of storing carbon dioxide.

This moving image shows angled phytoplankton, clear in color moving on a blue background. The image then switches to water. The top is a light blue with dots, while the dark blue underneath represents underwater. The moving dots on the bottom float to the top, to illustrate the carbon cycle. Credit: NASA

Phytoplankton are Key to Understanding a Changing Ocean

NASA studies phytoplankton in different ways with satellites, instruments, and ships. Upcoming missions like Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) - set to launch Jan. 2024 - will reveal interactions between the ocean and atmosphere. This includes how they exchange carbon dioxide and how atmospheric aerosols might fuel phytoplankton growth in the ocean.

Information collected by PACE, especially about changes in plankton populations, will be available to researchers all over the world. See how this data will be used.

The Ocean Color Instrument (OCI) is integrated onto the PACE spacecraft in the cleanroom at Goddard Space Flight Center. Credit: NASA


Tags
1 year ago
Many thousands of bright stars speckle the screen. The smallest ones are white pinpoints, strewn across the screen like spilled salt. Larger ones are yellow and bluish white with spiky outer edges like sea urchins. Credit: Matthew Penny (Louisiana State University)

A simulated image of NASA’s Nancy Grace Roman Space Telescope’s future observations toward the center of our galaxy, spanning less than 1 percent of the total area of Roman’s Galactic Bulge Time-Domain Survey. The simulated stars were drawn from the Besançon Galactic Model.

Exploring the Changing Universe with the Roman Space Telescope

The view from your backyard might paint the universe as an unchanging realm, where only twinkling stars and nearby objects, like satellites and meteors, stray from the apparent constancy. But stargazing through NASA’s upcoming Nancy Grace Roman Space Telescope will offer a front row seat to a dazzling display of cosmic fireworks sparkling across the sky.

Roman will view extremely faint infrared light, which has longer wavelengths than our eyes can see. Two of the mission’s core observing programs will monitor specific patches of the sky. Stitching the results together like stop-motion animation will create movies that reveal changing objects and fleeting events that would otherwise be hidden from our view.

Watch this video to learn about time-domain astronomy and how time will be a key element in NASA’s Nancy Grace Roman Space Telescope’s galactic bulge survey. Credit: NASA’s Goddard Space Flight Center

This type of science, called time-domain astronomy, is difficult for telescopes that have smaller views of space. Roman’s large field of view will help us see huge swaths of the universe. Instead of always looking at specific things and events astronomers have already identified, Roman will be able to repeatedly observe large areas of the sky to catch phenomena scientists can't predict. Then astronomers can find things no one knew were there!

One of Roman’s main surveys, the Galactic Bulge Time-Domain Survey, will monitor hundreds of millions of stars toward the center of our Milky Way galaxy. Astronomers will see many of the stars appear to flash or flicker over time.

This animation illustrates the concept of gravitational microlensing. When one star in the sky appears to pass nearly in front of another, the light rays of the background source star are bent due to the warped space-time around the foreground star. The closer star is then a virtual magnifying glass, amplifying the brightness of the background source star, so we refer to the foreground star as the lens star. If the lens star harbors a planetary system, then those planets can also act as lenses, each one producing a short change in the brightness of the source. Thus, we discover the presence of each exoplanet, and measure its mass and how far it is from its star. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab 

That can happen when something like a star or planet moves in front of a background star from our point of view. Because anything with mass warps the fabric of space-time, light from the distant star bends around the nearer object as it passes by. That makes the nearer object act as a natural magnifying glass, creating a temporary spike in the brightness of the background star’s light. That signal lets astronomers know there’s an intervening object, even if they can’t see it directly.

A galaxy with a large, warmly glowing circular center and several purplish spiral arms extending outward, wrapped around the center like a cinnamon roll. Stars speckle the entire galaxy, but they are most densely packed near the center where they're yellower. Toward the outer edges, the stars are whiter. Overlaid on top of the galaxy is a small pink outline of a spacecraft located a little more than halfway out toward the bottom edge of the galaxy. A reddish search beam extends across the galaxy through its center, about to the same point on the opposite side. Credit: NASA’s Goddard Space Flight Center/CI Lab

This artist’s concept shows the region of the Milky Way NASA’s Nancy Grace Roman Space Telescope’s Galactic Bulge Time-Domain Survey will cover – relatively uncharted territory when it comes to planet-finding. That’s important because the way planets form and evolve may be different depending on where in the galaxy they’re located. Our solar system is situated near the outskirts of the Milky Way, about halfway out on one of the galaxy’s spiral arms. A recent Kepler Space Telescope study showed that stars on the fringes of the Milky Way possess fewer of the most common planet types that have been detected so far. Roman will search in the opposite direction, toward the center of the galaxy, and could find differences in that galactic neighborhood, too.

Using this method, called microlensing, Roman will likely set a new record for the farthest-known exoplanet. That would offer a glimpse of a different galactic neighborhood that could be home to worlds quite unlike the more than 5,500 that are currently known. Roman’s microlensing observations will also find starless planets, black holes, neutron stars, and more!

This animation shows a planet crossing in front of, or transiting, its host star and the corresponding light curve astronomers would see. Using this technique, scientists anticipate NASA’s Nancy Grace Roman Space Telescope could find 100,000 new worlds. Credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR)

Stars Roman sees may also appear to flicker when a planet crosses in front of, or transits, its host star as it orbits. Roman could find 100,000 planets this way! Small icy objects that haunt the outskirts of our own solar system, known as Kuiper belt objects, may occasionally pass in front of faraway stars Roman sees, too. Astronomers will be able to see how much water the Kuiper belt objects have because the ice absorbs specific wavelengths of infrared light, providing a “fingerprint” of its presence. This will give us a window into our solar system’s early days.

A fiery orange globe appears at the left of a white disk of spinning material. As the disk spins, it draws material from the orange globe. Then suddenly the center of the white disk grows extremely bright as a sphere of white blossoms outward. The explosive white sphere then expands, quickly encompassing the whole screen in white criss-crossed with purplish gray filaments. Credit: NASA’s Goddard Space Flight Center/CI

This animation visualizes a type Ia supernova.

Roman’s High Latitude Time-Domain Survey will look beyond our galaxy to hunt for type Ia supernovas. These exploding stars originate from some binary star systems that contain at least one white dwarf – the small, hot core remnant of a Sun-like star. In some cases, the dwarf may siphon material from its companion. This triggers a runaway reaction that ultimately detonates the thief once it reaches a specific point where it has gained so much mass that it becomes unstable.

NASA’s upcoming Nancy Grace Roman Space Telescope will see thousands of exploding stars called supernovae across vast stretches of time and space. Using these observations, astronomers aim to shine a light on several cosmic mysteries, providing a window onto the universe’s distant past. Credit: NASA’s Goddard Space Flight Center

Since these rare explosions each peak at a similar, known intrinsic brightness, astronomers can use them to determine how far away they are by simply measuring how bright they appear. Astronomers will use Roman to study the light of these supernovas to find out how quickly they appear to be moving away from us.

By comparing how fast they’re receding at different distances, scientists can trace cosmic expansion over time. This will help us understand whether and how dark energy – the unexplained pressure thought to speed up the universe’s expansion – has changed throughout the history of the universe.

Left of center, two bright blue circular shapes appear to be joined toward the center of the frame. They are whitest on their outermost edges. Debris, also white and bright blue, emanates outward and extends all around the frame. The background is black. Credit: NASA, ESA, J. Olmsted (STScI)

NASA’s Nancy Grace Roman Space Telescope will survey the same areas of the sky every few days. Researchers will mine this data to identify kilonovas – explosions that happen when two neutron stars or a neutron star and a black hole collide and merge. When these collisions happen, a fraction of the resulting debris is ejected as jets, which move near the speed of light. The remaining debris produces hot, glowing, neutron-rich clouds that forge heavy elements, like gold and platinum. Roman’s extensive data will help astronomers better identify how often these events occur, how much energy they give off, and how near or far they are.

And since this survey will repeatedly observe the same large vista of space, scientists will also see sporadic events like neutron stars colliding and stars being swept into black holes. Roman could even find new types of objects and events that astronomers have never seen before!

Learn more about the exciting science Roman will investigate on X and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

What's the most beautiful natural scene uou've ever seen personally, as in Aurora Borealis, volcanic eruption, or something that made you seem like the Earth should be treasured?


Tags
5 years ago

Is Earth your favorite planet? Why or why not?


Tags
8 years ago

How hard is it to become an austronaut? I want to start to studie astrophysics and I don't know if I'll ever get any kind of job. Do you have any tips for people like me?

Astrophysics is a perfect field for pursuing any work at NASA!  A degree in a STEM field is a requirement of becoming an astronaut, but other than that there are many possibilities.  One of the best things about the astronaut office is its diversity.  We are scientists, engineers, military pilots, flight test engineers, medical doctors, etc. etc. My biggest tip is to ensure you are pursuing what it is you are passionate about as that’s the only way to truly become exceptional at what you are doing, and most importantly, to be happy doing it.  Passion, hard work, and dedication will get you there.  Good luck!


Tags
Loading...
End of content
No more pages to load
  • greenhairrebels
    greenhairrebels liked this · 4 years ago
  • ablesam
    ablesam liked this · 5 years ago
  • voltronimus-prime
    voltronimus-prime reblogged this · 5 years ago
  • voltronimus-prime
    voltronimus-prime liked this · 5 years ago
  • 5041782936
    5041782936 reblogged this · 5 years ago
  • 5041782936
    5041782936 liked this · 5 years ago
  • hesperwestern
    hesperwestern liked this · 5 years ago
  • missingbatteries
    missingbatteries reblogged this · 5 years ago
  • donthaterobotsdaterobots
    donthaterobotsdaterobots reblogged this · 5 years ago
  • bright-thorn
    bright-thorn liked this · 5 years ago
  • scratchedrecord
    scratchedrecord liked this · 6 years ago
  • sky-andromeda
    sky-andromeda liked this · 6 years ago
  • generalcollectorcrusadeposts
    generalcollectorcrusadeposts liked this · 6 years ago
  • fyrewild-blog
    fyrewild-blog liked this · 6 years ago
  • ikigai-life-blog
    ikigai-life-blog reblogged this · 6 years ago
  • astra-peraspera
    astra-peraspera reblogged this · 6 years ago
  • strangebutnotreally-blog
    strangebutnotreally-blog liked this · 6 years ago
  • moechang
    moechang liked this · 6 years ago
  • briardragon
    briardragon reblogged this · 6 years ago
  • fleurdebach5-blog
    fleurdebach5-blog liked this · 6 years ago
  • 7-brightly-colored-lamps
    7-brightly-colored-lamps reblogged this · 6 years ago
  • alicerobertstext
    alicerobertstext reblogged this · 6 years ago
  • chicken-alaska
    chicken-alaska liked this · 6 years ago
  • maggietann
    maggietann reblogged this · 6 years ago
  • maggietann
    maggietann liked this · 6 years ago
  • zoostationjustdowntheline
    zoostationjustdowntheline liked this · 6 years ago
  • canttalkreading
    canttalkreading reblogged this · 6 years ago
  • thousandhandbrightskycannon
    thousandhandbrightskycannon reblogged this · 6 years ago
  • depthsofmysol
    depthsofmysol reblogged this · 6 years ago
  • blueskies-keepraining
    blueskies-keepraining liked this · 6 years ago
  • lavenderbikepunch-blog
    lavenderbikepunch-blog liked this · 6 years ago
  • vikingsr
    vikingsr liked this · 6 years ago
  • robotpartoftheday
    robotpartoftheday reblogged this · 6 years ago
  • urbanoceanix
    urbanoceanix reblogged this · 6 years ago
  • wway-blog1
    wway-blog1 liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags