A Mesmerizing Model Of Monster Black Holes

A Mesmerizing Model of Monster Black Holes

Just about every galaxy the size of our Milky Way (or bigger) has a supermassive black hole at its center. These objects are ginormous — hundreds of thousands to billions of times the mass of the Sun! Now, we know galaxies merge from time to time, so it follows that some of their black holes should combine too. But we haven’t seen a collision like that yet, and we don’t know exactly what it would look like. 

image

A new simulation created on the Blue Waters supercomputer — which can do 13 quadrillion calculations per second, 3 million times faster than the average laptop — is helping scientists understand what kind of light would be produced by the gas around these systems as they spiral toward a merger.

The new simulation shows most of the light produced around these two black holes is UV or X-ray light. We can’t see those wavelengths with our own eyes, but many telescopes can. Models like this could tell the scientists what to look for. 

You may have spotted the blank circular region between the two black holes. No, that’s not a third black hole. It’s a spot that wasn’t modeled in this version of the simulation. Future models will include the glowing gas passing between the black holes in that region, but the researchers need more processing power. The current version already required 46 days!

image

The supermassive black holes have some pretty nifty effects on the light created by the gas in the system. If you view the simulation from the side, you can see that their gravity bends light like a lens. When the black holes are lined up, you even get a double lens!

But what would the view be like from between two black holes? In the 360-degree video above, the system’s gas has been removed and the Gaia star catalog has been added to the background. If you watch the video in the YouTube app on your phone, you can moved the screen around to explore this extreme vista. Learn more about the new simulation here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

8 years ago
"A Classic That I Never Get Tired Of: The Orange Solar Panel In Front Of The Blue–white Background

"A classic that I never get tired of: the orange solar panel in front of the blue–white background and the curvature of Earth" wrote astronaut Thomas Pesquet (@thom_astro) of the European Space Agency from aboard the International Space Station. 

The space station serves as the world's leading laboratory for conducting cutting-edge microgravity research, and is the primary platform for technology development and testing in space to enable human and robotic exploration of destinations beyond low-Earth orbit, including Mars. 

Credit: NASA/ESA


Tags
4 years ago

First piece of Orion’s Artemis III pressure vessel arrives at NASA’s Michoud Assembly Facility in New Orleans. https://blogs.nasa.gov/artemis/2020/08/25/first-piece-of-artemis-iii-orion-delivered-to-nasa/

7 years ago

Reinventing the Wheel

Planning a trip to the Moon? Mars? You’re going to need good tires…

image

Exploration requires mobility. And whether you’re on Earth or as far away as the Moon or Mars, you need good tires to get your vehicle from one place to another. Our decades-long work developing tires for space exploration has led to new game-changing designs and materials. Yes, we’re reinventing the wheel—here’s why.

Wheels on the Moon

image

Early tire designs were focused on moving hardware and astronauts across the lunar surface. The last NASA vehicle to visit the Moon was the Lunar Roving Vehicle during our Apollo missions. The vehicle used four large flexible wire mesh wheels with stiff inner frames. We used these Apollo era tires as the inspiration for new designs using newer materials and technology to better function on a lunar surface.

Up springs a new idea

image

During the mid-2000s, we worked with industry partner Goodyear to develop the Spring Tire, an airless compliant tire that consists of several hundred coiled steel wires woven into a flexible mesh, giving the tires the ability to support high loads while also conforming to the terrain. The Spring Tire has been proven to generate very good traction and durability in soft sand and on rocks.

Spring Tires for Mars

image

A little over a year after the Mars Curiosity Rover landed on Mars, engineers began to notice significant wheel damage in 2013 due to the unexpectedly harsh terrain. That’s when engineers began developing new Spring Tire prototypes to determine if they would be a new and better solution for exploration rovers on Mars.

image

In order for Spring Tires to go the distance on Martian terrain, new materials were required. Enter nickel titanium, a shape memory alloy with amazing capabilities that allow the tire to deform down to the axle and return to its original shape.

These tires can take a lickin’

image

After building the shape memory alloy tire, Glenn engineers sent it to the Jet Propulsion Laboratory’s Mars Life Test Facility. It performed impressively on the punishing track.

Why reinvent the wheel? It’s worth it.

image

New, high performing tires would allow lunar and Mars rovers to explore greater regions of the surface than currently possible. They conform to the terrain and do not sink as much as rigid wheels, allowing them to carry heavier payloads for the same given mass and volume. Also, because they absorb energy from impacts at moderate to high speeds, there is potential for use on crewed exploration vehicles which are expected to move at speeds significantly higher than the current Mars rovers.

Airless tires on Earth

image

Maybe. Recently, engineers and materials scientists have been testing a spinoff tire version that would work on cars and trucks on Earth. Stay tuned as we continue to push the boundaries on traditional concepts for exploring our world and beyond.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
5 years ago

Our Newest Solar Scope Is Ready for a Balloon Ride 🎈

Along with the Korea Astronomy and Space Science Institute, or KASI, we're getting ready to test a new way to see the Sun, high over the New Mexico desert.

A balloon — which looks a translucent white pumpkin, but large enough to hug a football field — will soon take flight, carrying a solar scope called BITSE. BITSE is a coronagraph, a special kind of telescope that blocks the bright face of the Sun to reveal its dimmer atmosphere, called the corona. BITSE stands for Balloon-borne Investigation of Temperature and Speed of Electrons in the corona.

image

Its goal? Explaining how the Sun spits out the solar wind, the stream of charged particles that blows constantly from the Sun. Scientists generally know it forms in the corona, but exactly how it does so is a mystery.

The solar wind is important because it’s the stuff that fills the space around Earth and all the other planets in our solar system. And, understanding how the solar wind works is key to predicting how solar eruptions travel. It’s a bit like a water slide: The way it flows determines how solar storms barrel through space. Sometimes, those storms crash into our planet’s magnetic field, sparking disturbances that can interfere with satellites and communications signals we use every day, like radio or GPS.

image

Right now, scientists and engineers are in Fort Sumner, New Mexico, preparing to fly BITSE up to the edge of the atmosphere. BITSE will take pictures of the corona, measuring the density, temperature and speed of negatively charged particles — called electrons — in the solar wind. Scientists need these three things to answer the question of how the solar wind forms.

One day, scientists hope to send an instrument like BITSE to space, where it can study the Sun day in and day out, and help us understand the powerful forces that push the solar wind out to speeds of 1 million miles per hour. BITSE’s balloon flight is an important step towards space, since it will help this team of scientists and engineers fine-tune their tech for future space-bound missions.  

image

Hours before sunrise, technicians from our Columbia Scientific Balloon Facility’s field site in Fort Sumner will ready the balloon for flight, partially filling the large plastic envelope with helium. The balloon is made of polyethylene — the same stuff grocery bags are made of — and is about as thick as a plastic sandwich bag, but much stronger. As the balloon rises higher into the sky, the gas in the balloon expands and the balloon grows to full size.

BITSE will float 22 miles over the desert. For at least six hours, it will drift, taking pictures of the Sun’s seething hot atmosphere. By the end of the day, it will have collected 40 feature-length movies’ worth of data.

image

BITSE’s journey to the sky began with an eclipse. Coronagraphs use a metal disk to mimic a total solar eclipse — but instead of the Moon sliding in between the Sun and Earth, the disk blocks the Sun’s face to reveal the dim corona. During the Aug. 21, 2017, total eclipse, our scientists tested key parts of this instrument in Madras, Oregon.

image

Now, the scientists are stepping out from the Moon’s shadow. A balloon will take BITSE up to the edge of the atmosphere. Balloons are a low-cost way to explore this part of the sky, allowing scientists to make better measurements and perform tests they can’t from the ground.

BITSE carries several important technologies. It’s built on one stage of lens, rather than three, like traditional coronagraphs. That means it’s designed more simply, and less likely to have a mechanical problem. And, it has a couple different sets of specialized filters that capture different kinds of light: polarized light — light waves that bob in certain directions — and specific wavelengths of light. The combination of these images provides scientists with information on the density, temperature and speed of electrons in the corona.

image

More than 22 miles over the ground, BITSE will fly high above birds, airplanes, weather and the blue sky itself. As the atmosphere thins out, there are less air particles to scatter light. That means at BITSE’s altitude, the sky is dimmer. These are good conditions for a coronagraph, whose goal is taking images of the dim corona. But even the upper atmosphere is brighter than space.

That’s why scientists are so eager to test BITSE on this balloon, and develop their instrument for a future space mission. The solar scope is designed to train its eyes on a slice of the corona that’s not well-studied, and key to solar wind formation. One day, a version of BITSE could do this from space, helping scientists gather new clues to the origins of the solar wind.  

image

At the end of BITSE’s flight, the crew at the Fort Sumner field site will send termination commands, kicking off a sequence that separates the instrument and balloon, deploys the instrument’s parachute, and punctures the balloon. An airplane circling overhead will keep watch over the balloon’s final moments, and relay BITSE’s location. At the end of its flight, far from where it started, the coronagraph will parachute to the ground. A crew will drive into the desert to recover both the balloon and BITSE at the end of the day.

For more information on how we use balloons for high-altitude science missions, visit: https://www.nasa.gov/scientificballoons

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: 10 Things to Know This Week

State of the Solar System: 10 quick updates from around our galactic neighborhood.

1. Powered by the Sun

image

Fifty-nine years ago, Vanguard 1 launched to demonstrate a new spacecraft technology – solar power. We’ve been going farther and for longer ever since.

+More on Vanguard 1

2. Mapping Mercury

image

A big week in history for exploration of the innermost planet. On March 16, 1975, our Mariner 10 made its third and final flyby of Mercury. One day and 36 years later, MESSENGER became the first spacecraft to orbit Mercury. Next up: ESA’s BepiColumbo, undergoing testing now, is set to launch for Mercury in 2018.

+Missions to Mercury

3. Return to Venus

image

U.S. and Russian scientists are discussing a planned revival of the successful Venera program that revealed much about Venus in the 1960s, 70s and 80s. Meanwhile, Japan’s Akatsuki orbiter continues to study our sister planet.

+More on Venera-D

4. Rocket Power

image

Back on Earth 91 years ago (March 16, 1926), inventor and dreamer Robet Goddard changed the world forever with the first test of a liquid-fueled rocket. We’ve been going farther and faster ever since.

+More on Goddard

5. Moon Watch

image

Our Lunar Reconnaissance Orbiter (LRO) has been sending a steady stream of high-resolution images back to Earth for more than seven years.

+More on LRO

6. Busy Mars

image

There are currently five orbiters (Mars Reconnaissance Orbiter, Mars Odyssey, MAVEN, ESA’s Mars Express and India’s Mars Orbiter Mission) and two rovers (Curiosity and Opportunity) exploring Mars, making it second only to Earth in the number of robotic spacecraft studying its secrets.

+Meet the Mars Fleet

7. Vote for Jupiter

image

Polls close today (March 20) so vote not to point a real spacecraft camera at Jupiter during the mission’s 5th perijove pass.

+Vote now

8. Science to the Last Second

image

In a little less than six months, our Cassini orbiter will plunge into Saturn as a spectacular finale to its 19-year mission – but not before it embarks on a completely new mission into unexplored space between Saturn and its mighty rings.

+More on Cassini’s Grand Finale

9. By George?

image

Happy belated birthday to Uranus, discovered on March 13, 1781 by William Herschel. The English astronomer wanted to name his discovery – the first planet discovered in recorded history – “Georgium Sidus” after England’s King George III. But he was overruled, and astronomer stuck with traditional mythological names – creating an opportunity for 263 years of student jokes at the expense of the ice giant planet’s name.

+More on Uranus

10. Go Farther

image

The round trip light time from Voyager 1 to Earth is more than 38 hours. Voyager 1 is almost 13 billion miles from our home planet.

+More on Voyager

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Scientists are trying a new, interactive way to understand ocean current data with the help of high-resolution global ocean simulations. In the part of the global visualization shown, the Gulf Stream features prominently. Surface water speeds are shown ranging from 0 meters per second (dark blue) to 1.23 meters per second (cyan).

This video is running at one simulation day per second. A team from our Advanced Supercomputing (NAS) facility at our Ames Research Center has developed a new visualization tool that is being used by researchers to study the behavior of ocean currents. The new visualization tool provides high-resolution views of the entire globe at once, allowing the scientists to see new details that they had missed in previous analyses of their simulation, which was run on our Pleiades supercomputer.

For more information, visit: https://www.nasa.gov/feature/ames/scientists-explore-ocean-currents-through-supercomputer-simulations

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

TESS: The Planet Hunter

So you’re thinking...who’s TESS? But, it’s more like: WHAT is TESS? 

The Transiting Exoplanet Survey Satellite (TESS) is an explorer-class planet finder that is scheduled to launch in April 2018. This mission will search the entire sky for exoplanets — planets outside our solar system that orbit sun-like stars.

image

In the first-ever space borne all-sky transit survey, TESS will identify planets ranging from Earth-sized to gas giants, orbiting a wide range of stellar types and orbital distances.

The main goal of this mission is to detect small planets with bright host stars in the solar neighborhood, so that we can better understand these planets and their atmospheres.

image

TESS will have a full time job monitoring the brightness of more than 200,000 stars during a two year mission. It will search for temporary drops in brightness caused by planetary transits. These transits occur when a planet’s orbit carries it directly in front of its parent star as viewed from Earth (cool GIF below).

image

TESS will provide prime targets for further, more detailed studies with the James Webb Space Telescope (JWST), as well as other large ground-based and space-based telescopes of the future.

What is the difference between TESS and our Kepler spacecraft?

TESS and Kepler address different questions: Kepler answers "how common are Earth-like planets?" while TESS answers “where are the nearest transiting rocky planets?”

image

What do we hope will come out of the TESS mission?

The main goal is to find rocky exoplanets with solid surfaces at the right distance from their stars for liquid water to be present on the surface. These could be the best candidates for follow-up observations, as they fall within the “habitable zone” and be at the right temperatures for liquid water on their surface.

TESS will use four cameras to study sections of the sky’s north and south hemispheres, looking for exoplanets. The cameras would cover about 90 percent of the sky by the end of the mission. This makes TESS an ideal follow-up to the Kepler mission, which searches for exoplanets in a fixed area of the sky. Because the TESS mission surveys the entire sky, TESS is expected to find exoplanets much closer to Earth, making them easier for further study.

Stay updated on this planet-hunting mission HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

I’m sure you’re trained so that nothing in space is really a surprise, but: was there anything about spacewalking that surprised you when you did it for the first time?


Tags
9 years ago
Http://bit.ly/rawcuriosity

http://bit.ly/rawcuriosity

Take a look around Mars. Here’s where I’m working right now.

Click the link to see all my latest pictures from the surface of Mars.

7 years ago

We Need Your Help to Find STEVE

Glowing in mostly purple and green colors, a newly discovered celestial phenomenon is sparking the interest of scientists, photographers and astronauts. The display was initially discovered by a group of citizen scientists who took pictures of the unusual lights and playfully named them "Steve."

When scientists got involved and learned more about these purples and greens, they wanted to keep the name as an homage to its initial name and citizen science discoverers. Now it is STEVE, short for Strong Thermal Emission Velocity Enhancement.

image

Credit: ©Megan Hoffman

STEVE occurs closer to the equator than where most aurora appear – for example, Southern Canada – in areas known as the sub-auroral zone. Because auroral activity in this zone is not well researched, studying STEVE will help scientists learn about the chemical and physical processes going on there. This helps us paint a better picture of how Earth's magnetic fields function and interact with charged particles in space. Ultimately, scientists can use this information to better understand the space weather near Earth, which can interfere with satellites and communications signals.

image

Want to become a citizen scientist and help us learn more about STEVE? You can submit your photos to a citizen science project called Aurorasaurus, funded by NASA and the National Science Foundation. Aurorasaurus tracks appearances of auroras – and now STEVE – around the world through reports and photographs submitted via a mobile app and on aurorasaurus.org.

Here are six tips from what we have learned so far to help you spot STEVE:

1. STEVE is a very narrow arc, aligned East-West, and extends for hundreds or thousands of miles.

image

Credit: ©Megan Hoffman 

2. STEVE mostly emits light in purple hues. Sometimes the phenomenon is accompanied by a short-lived, rapidly evolving green picket fence structure (example below).

image

Credit: ©Megan Hoffman 

3. STEVE can last 20 minutes to an hour.

4. STEVE appears closer to the equator than where normal – often green – auroras appear. It appears approximately 5-10° further south in the Northern hemisphere. This means it could appear overhead at latitudes similar to Calgary, Canada. The phenomenon has been reported from the United Kingdom, Canada, Alaska, northern US states, and New Zealand.

image

5. STEVE has only been spotted so far in the presence of an aurora (but auroras often occur without STEVE). Scientists are investigating to learn more about how the two phenomena are connected. 

6. STEVE may only appear in certain seasons. It was not observed from October 2016 to February 2017. It also was not seen from October 2017 to February 2018.

image

Credit: ©Megan Hoffman 

STEVE (and aurora) sightings can be reported at www.aurorasaurus.org or with the Aurorasaurus free mobile apps on Android and iOS. Anyone can sign up, receive alerts, and submit reports for free.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • bobby76love
    bobby76love reblogged this · 2 years ago
  • the-world-and-space
    the-world-and-space reblogged this · 3 years ago
  • jujusfaria-blog
    jujusfaria-blog liked this · 3 years ago
  • hypoallergenicpunx
    hypoallergenicpunx liked this · 4 years ago
  • somewhatoften
    somewhatoften liked this · 4 years ago
  • cassioppea
    cassioppea liked this · 4 years ago
  • grayi-diphylleia
    grayi-diphylleia liked this · 4 years ago
  • aaronwatershow
    aaronwatershow reblogged this · 4 years ago
  • dark-fantasy-illustration
    dark-fantasy-illustration liked this · 4 years ago
  • mu-si-ca-l
    mu-si-ca-l liked this · 4 years ago
  • vivaz23
    vivaz23 liked this · 4 years ago
  • 1bottleofwhiskey
    1bottleofwhiskey liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags