Chandra X-Ray Observatory, We Appreciate You

Chandra X-Ray Observatory, We Appreciate You

On July 23, 1999, the Space Shuttle Columbia blasted off from the Kennedy Space Center carrying the Chandra X-ray Observatory. In the two decades that have passed, Chandra’s powerful and unique X-ray eyes have contributed to a revolution in our understanding of the cosmos.

image

Since its launch 20 years ago, Chandra's unrivaled X-ray vision has changed the way we see the universe.

Chandra X-Ray Observatory, We Appreciate You

Chandra has captured galaxy clusters – the largest gravitationally bound objects in the universe – in the process of merging.

image

Chandra has shown us the powerful wind and shock fronts that rumble through star-forming systems.

image

And a star school, so to speak -- home to thousands of the Milky Way's biggest and brightest.

image

Carl Sagan said, "We are made of star-stuff." It's true. Most of the elements necessary for life are forged inside stars and blasted into interstellar space by supernovas. Chandra has tracked them.

image

Thank you Chandra X-Ray! To more adventures with you!

image

Check out Chandra’s 20th anniversary page to see how they are celebrating.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

8 years ago

Solar System: Things to Know This Week

From images to virtual reality and interactive simulations, NASA offers plenty of ways to explore our solar system -- and beyond -- in 3-D.

image

1. Step One: Get the Glasses

Many of the images and interactive features require special glasses with red and blue lenses.

Make regular 3-D glasses: http://go.nasa.gov/2lwQOoP

Make fancy Mars rover 3-D glasses: http://go.nasa.gov/2lwEmWe

2. Breaking News (Virtual Reality Edition)

Big news from 40 light-years away (235 trillion miles). Our Spitzer Space Telescope revealed the first known system of seven Earth-size planets around a single star. Three of these planets are firmly located in the habitable zone, all of them have the potential for water on their surfaces.

No glasses required.

Get to know one of those planets, TRAPPIST-1d in virtual reality: http://go.nasa.gov/2ldaGKY

Try the virtual reality panorama (especially great for a phone or tablet): 

http://go.nasa.gov/2ld5jvt

image

This image was created by combining two images from STEREO B (Feb. 24, 2008) taken about 12 hours apart, during which the sun's rotation provides sufficient perspective to create a nice 3-D effect.

3. Free-Range 3-D Exploration

Our Eyes on the Solar System app allows free exploration of Earth, our Solar System and thousands of worlds discovered orbiting distant stars. And, you also can explore it all in 3-D!

Under visual controls just check 3-D, pop on your glasses and explore.

Download Eyes on the Solar System: http://eyes.nasa.gov/

4. Your Star in 3-D

The STEREO (Solar TErrestrial RElations Observatory) mission studied the sun in 3-D with twin satellites.

Explore the Stereo 3D gallery: http://go.nasa.gov/2ldrzFv

Solar System: Things To Know This Week

5. National Parks in 3-D

The Earth-orbiting Terra satellite’s Multiangle Imaging SpectroRadiometer (MISR) instrument provides 3-D views while orbiting Earth, including some great shots of our National Parks.

Go to the parks: http://go.nasa.gov/2bk5XHP

6. Get in the Pilot's Seat

Take a look inside the cockpit of our high altitude ER-2 aircraft as it descends for landing at Kaneohe Bay, Hawaii. This month, scientists used used the aircraft to collect data on coral reef health and volcanic emissions and eruptions. Flying at 65,000 feet, above 95 percent of Earth's atmosphere, the ER-2 has a unique ability to replicate the data a future satellite could collect. Data from this mission will help in developing a planned NASA satellite mission to study natural hazards and ecosystems called Hyperspectral Infrared Imager, or HyspIRI.

Explore the 360 video: youtu.be/Zwkr-nsbaus

Read more: http://go.nasa.gov/2m8RJ0f

7. Moon Views

The Lunar Reconnaissance Orbiter creates 3-D images from orbit by taking an image of the moon from one angle on one orbit and a different angle on a separate orbit.

See the results: http://go.nasa.gov/2lvooeZ

image

This stereo scene looking back at where Curiosity crossed a dune at "Dingo Gap" combines several exposures taken by the Navigation Camera (Navcam) high on the rover's mast.

8. Martian 3D

Our Mars fleet of rovers and orbiters captures the Red Planet from all angles - often in 3-D.

Suit up and start exploring: http://go.nasa.gov/2lddjN4

9. Saturn in 3-D

The Cassini spacecraft’s mission to Saturn is well-known for its stunning images of the planet and its complex system of rings and moons. Now you can see some of them in 3-D.

See Saturn: http://go.nasa.gov/2mCQhiZ

10. Want More? Do It Yourself!

Put a new dimension to your vacation photos. Our Mars team created this handy how-to guide to making your own eye-popping 3-D images.

Get started: http://go.nasa.gov/2lddc46

BONUS: Printer-Friendly

Why stop with images? The Ames Research Center hosts a vast collection of 3-D printable models ranging from the moon craters to spacecraft.

Start printing: http://go.nasa.gov/2ldsMg1

Discover more lists of 10 things to know about our solar system HERE.

Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

3 years ago

Photographing Planets with the Roman Space Telescope

Nearly 100 years ago, astronomer Bernard Lyot invented the coronagraph – a device that made it possible to recreate a total solar eclipse by blocking the Sun’s light. That helped scientists study the Sun’s corona, which is the outermost part of our star’s atmosphere that’s usually hidden by bright light from its surface.

Photographing Planets With The Roman Space Telescope

Our Nancy Grace Roman Space Telescope, now under construction, will test out a much more advanced version of the same thing. Roman’s Coronagraph Instrument will use special masks to block the glare from host stars but allow the light from dimmer, orbiting planets to filter through. It will also have self-flexing mirrors that will measure and subtract starlight automatically.

Photographing Planets With The Roman Space Telescope

This glare-blocking prowess is important because planets can be billions of times dimmer than their host stars! Roman’s high-tech shades will help us take pictures of planets we wouldn’t be able to photograph using any other current telescopes.

Photographing Planets With The Roman Space Telescope

Other observatories mainly use this planet-hunting method, called direct imaging, from the ground to photograph huge, bright planets called “super-Jupiters” in infrared light. These worlds can be dozens of times more massive than Jupiter, and they’re so young that they glow brightly thanks to heat left over from their formation. That glow makes them detectable in infrared light.

Photographing Planets With The Roman Space Telescope

Roman will take advanced planet-imaging tech to space to get even higher-quality pictures. And while it’s known for being an infrared telescope, Roman will actually photograph planets in visible light, like our eyes can see. That means it will be able to see smaller, older, colder worlds orbiting close to their host stars. Roman could even snap the first-ever image of a planet like Jupiter orbiting a star like our Sun.

Astronomers would ultimately like to take pictures of planets like Earth as part of the search for potentially habitable worlds. Roman’s direct imaging efforts will move us a giant leap in that direction!

Photographing Planets With The Roman Space Telescope

And direct imaging is just one component of Roman’s planet-hunting plans. The mission will also use a light-bending method called microlensing to find other worlds, including rogue planets that wander the galaxy untethered to any stars. Scientists also expect Roman to discover 100,000 planets as they cross in front of their host stars!

Photographing Planets With The Roman Space Telescope

Find out more about the Nancy Grace Roman Space Telescope on Twitter and Facebook, and about the person from which the mission draws its name.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

From Discovering the Secrets of the Universe to In-Space Servicing, We’ve Got The Tools for the Job

If you need to fix something on Earth, you could go to a store, buy the tools you need, and get started. In space, it’s not that easy.

image

Aside from the obvious challenges associated with space (like it being cold and there being no gravity), developing the right tools requires a great deal of creativity because every task is different, especially when the tools need to be designed from scratch. From the time an engineer dreams up the right tools to the time they are used in space, it can be quite a process.

On Nov. 15, astronauts Luca Parmitano and Drew Morgan began a series of spacewalks to repair an instrument called the Alpha Magnetic Spectrometer (AMS-2) on the exterior of the International Space Station. The first of four spacewalk focused on using specialized tools to remove shields and covers, to gain access to the heart of AMS to perform the repairs, and install a new cooling system.

image

The debris shield that covered Alpha Magnetic Spectrometer floats away toward Earth as astronaut Drew Morgan successfully releases it.

Once repaired, AMS will continue to help us understand more about the formation of the universe and search for evidence of dark matter and antimatter.

These spacewalks, or extravehicular activities (EVAs), are the most complex of their kind since the servicing of the Hubble Space Telescope. AMS is particularly challenging to repair not only because of the instrument’s complexity and sensitivity, but also because it was never designed to be fixed. Because of this design, it does not have the kinds of interfaces that make spacewalks easier, or the ability to be operated on with traditional multi-purpose tools. These operations are so complex, their design and planning has taken four years. Let’s take a look at how we got ready to repair AMS.

image

Thinking Outside of the (Tool) Box

When designing the tools, our engineers need to keep in mind various complications that would not come into play when fixing something on Earth. For example, if you put a screw down while you’re on Earth, gravity will keep it there — in space, you have to consistently make sure each part is secure or it will float away. You also have to add a pressurized space suit with limited dexterity to the equation, which further complicates the tool design.

image

In addition to regular space complications, the AMS instrument itself presents many challenges — with over 300,000 data channels, it was considered too complex to service and therefore was not designed to one day be repaired or updated if needed. Additionally, astronauts have never before cut and reconnected micro-fluid lines (4 millimeters wide, less than the width of the average pencil) during a spacewalk, which is necessary to repair AMS, so our engineers had to develop the tools for this big first. 

image

With all of this necessary out-of-the-box thinking, who better to go to for help than the teams that worked on the most well-known repair missions — the Hubble servicing missions and the space station tool teams? Building on the legacy of these missions, some of our same engineers that developed tools for the Hubble servicing missions and space station maintenance got to work designing the necessary tools for the AMS repair, some reworked from Hubble, and some from scratch. In total, the teams from Goddard Space Flight Center’s Satellite Servicing Projects Division, Johnson Space Center, and AMS Project Office developed 21 tools for the mission.

Designing and Building

Like many great inventions, it all starts with a sketch. Engineers figure out what steps need to be taken to accomplish the task, and imagine the necessary tools to get the job done.

From there, engineers develop a computer-aided design (CAD) model, and get to building a prototype. Tools will then undergo multiple iterations and testing with the AMS repair team and astronauts to get the design just right, until eventually, they are finalized, ready to undergo vibration and thermal vacuum testing to make sure they can withstand the harsh conditions of launch and use in the space environment. 

Hex Head Capture Tool Progression:

image

Hex Head Capture Tool Used in Space: 

image

Practice Makes Perfect

One of the reasons the AMS spacewalks have been four years in the making is because the complexity of the repairs required the astronauts to take extra time to practice. Over many months, astronauts tasked with performing the spacewalks practiced the AMS repair procedures in numerous ways to make sure they were ready for action. They practiced in:  

Virtual reality simulations:

image

The Neutral Buoyancy Laboratory:

image

The Active Response Gravity Offload System (ARGOS):

image

Astronauts use this testing to develop and practice procedures in space-like conditions, but also to figure out what works and doesn’t work, and what changes need to be made. A great example is a part of the repair that involves cutting and reconnecting fluid lines. When astronauts practiced cutting the fluid lines during testing here on Earth, they found it was difficult to identify which was the right one to cut based on sight alone. 

The tubes on the AMS essentially look the same.

image

After discussing the concern with the team monitoring the EVAs, the engineers once again got to work to fix the problem.

image

And thus, the Tube Cutting Guide tool was born! Necessity is the mother of invention and the team could not have anticipated the astronauts would need such a tool until they actually began practicing. The Tube Cutting Guide provides alignment guides, fiducials and visual access to enable astronauts to differentiate between the tubes. After each of eight tubes is cut, a newly designed protective numbered cap is installed to cover the sharp tubing.

image

Off to Space

image

With the tools and repair procedures tested and ready to go, they launched to the International Space Station earlier this year. Now they’re in the middle of the main event -- Luca and Drew completed the first spacewalk last Friday, taking things apart to access the interior of the AMS instrument. Currently, there are three other spacewalks scheduled over the course of a month. The next spacewalk will happen on Nov. 22 and will put the Tube Cutting Guide to use when astronauts reconnect the tubes to a new cooling system.

With the ingenuity of our tool designers and engineers, and our astronauts' vigorous practice, AMS will be in good hands.

image

Check out the full video for the first spacewalk. Below you can check out each of the tools above in action in space!

Debris Shield Worksite: 2:29:16 – Debris Shield Handling Aid 2:35:25 – Hex Head Capture Tool (first) 2:53:31 – #10 Allen Bit 2:54:59 – Capture Cages 3:16:35 – #10 Allen Bit (diagonal side) 3:20:58 – Socket Head Capture Tool 3:33:35 – Hex Head Capture Tool (last) 3:39:35 – Fastener Capture Block 3:40:55 – Debris Shield removal 3:46:46 – Debris Shield jettison

Handrail Installations: 4:00:53 – Diagonal Beam Handrail Install 4:26:09 – Nadir Vacuum Case Handrail Install 4:33:50 – Zenith Vacuum Case Handrail InstallVertical Support Beam (VSB)

Vertical Support Beam (VSB) Worksite: 5:04:21 – Zip Tie Cutter 5:15:27 – VSB Cover Handling Aid 5:18:05 – #10 Allen Bit 5:24:34 – Socket Head Capture Tool 5:41:54 – VSB Cover breaking 5:45:22 – VSB Cover jettison 5:58:20 – Top Spacer Tool & M4 Allen Bit 6:08:25 – Top Spacer removal 7:42:05 - Astronaut shoutout to the tools team


Tags
2 years ago

12 Great Gifts from Astronomy

This is a season where our thoughts turn to others and many exchange gifts with friends and family. For astronomers, our universe is the gift that keeps on giving. We’ve learned so much about it, but every question we answer leads to new things we want to know. Stars, galaxies, planets, black holes … there are endless wonders to study.

In honor of this time of year, let’s count our way through some of our favorite gifts from astronomy.

Our first astronomical gift is … one planet Earth

So far, there is only one planet that we’ve found that has everything needed to support life as we know it — Earth. Even though we’ve discovered over 5,200 planets outside our solar system, none are quite like home. But the search continues with the help of missions like our Transiting Exoplanet Survey Satellite (TESS). And even you (yes, you!) can help in the search with citizen science programs like Planet Hunters TESS and Backyard Worlds.

This animated visualization depicts Earth rotating in front of a black background. Land in shades of tan and green lay among vast blue oceans, with white clouds swirling in the atmosphere. The image is watermarked with the text “Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio” and “visualization.”

Our second astronomical gift is … two giant bubbles

Astronomers found out that our Milky Way galaxy is blowing bubbles — two of them! Each bubble is about 25,000 light-years tall and glows in gamma rays. Scientists using data from our Fermi Gamma-ray Space Telescope discovered these structures in 2010, and we're still learning about them.

This image captures the majestic “Fermi bubbles” that extend above and below our Milky Way galaxy, set against the black background of space. A glowing blue line horizontally crosses the center of the image, showing our perspective from Earth of our galaxy’s spiral arms and the wispy clouds of material above and below it. Cloudy bubbles, colored deep magenta to represent Fermi’s gamma-ray vision, extend above and below the galactic plane. These bubbles are enormous, extending roughly half of the Milky Way's diameter and filling much of the top and bottom of the image. The image is watermarked “Credit: NASA/DOE/Fermi LAT Collaboration.”

Our third astronomical gift is … three types of black holes

Most black holes fit into two size categories: stellar-mass goes up to hundreds of Suns, and supermassive starts at hundreds of thousands of Suns. But what happens between those two? Where are the midsize ones? With the help of NASA’s Hubble Space Telescope, scientists found the best evidence yet for that third, in between type that we call intermediate-mass black holes. The masses of these black holes should range from around a hundred to hundreds of thousands of times the Sun’s mass. The hunt continues for these elusive black holes.

This cartoon depicts two black holes as birds, with a small one representing a stellar-mass black hole on the left and an enormous one representing a supermassive black hole on the right. These two birds appear on a tan background and flap their wings, and then a circle with three question marks pops up between them to represent the intermediate-mass black holes that scientists are hunting for. The image is watermarked “Credit: NASA’s Goddard Space Flight Center.”

Our fourth and fifth astronomical gifts are … Stephan’s Quintet

When looking at this stunning image of Stephan’s Quintet from our James Webb Space Telescope, it seems like five galaxies are hanging around one another — but did you know that one of the galaxies is much closer than the others? Four of the five galaxies are hanging out together about 290 million light-years away, but the fifth and leftmost galaxy in the image below — called NGC 7320 — is actually closer to Earth at just 40 million light-years away.

A group of five galaxies that appear close to each other in the sky: two in the middle, one toward the top, one to the upper left, and one toward the bottom. Four of the five appear to be touching. One is somewhat separated. In the image, the galaxies are large relative to the hundreds of much smaller (more distant) galaxies in the background. All five galaxies have bright white cores. Each has a slightly different size, shape, structure, and coloring. Scattered across the image, in front of the galaxies are a number of foreground stars with diffraction spikes: bright white points, each with eight bright lines radiating out from the center. The image is watermarked with the text “Credits: NASA, ESA, CSA, and STScI.”

Our sixth astronomical gift is … an eclipsing six-star system

Astronomers found a six-star system where all of the stars undergo eclipses, using data from our TESS mission, a supercomputer, and automated eclipse-identifying software. The system, called TYC 7037-89-1, is located 1,900 light-years away in the constellation Eridanus and the first of its kind we’ve found.

This diagram shows the sextuple star system TYC 7037-89-1, a group of six stars that interact with each other in complex orbits. The stars are arranged in pairs: System A, System B, and System C, each of which is shown as having one larger white star and one smaller yellow star. The two stars of System A, in the upper left, are connected by a red oval and labeled "1.3-day orbit." The two stars of System C, just below System A, are connected by a turquoise oval and labeled "1.6-day orbit." Additionally, these two systems orbit each other, shown as a larger blue oval connecting the two and labeled "A and C orbit every 4 years." On the other side of the image, in the bottom right, the two stars of System B are connected by a green oval and labeled "8.2-day orbit." Lastly, Systems A, B and C all interact with System B orbiting the combined A-C system, shown as a very large lilac oval labeled "AC and B orbit every 2,000 years." A caption at the bottom of the image notes, "Star sizes are to scale, orbits are not." The image is watermarked with the text “Illustration” and “Credit: NASA's Goddard Space Flight Center.”

Our seventh astronomical gift is … seven Earth-sized planets

In 2017, our now-retired Spitzer Space Telescope helped find seven Earth-size planets around TRAPPIST-1. It remains the largest batch of Earth-size worlds found around a single star and the most rocky planets found in one star’s habitable zone, the range of distances where conditions may be just right to allow the presence of liquid water on a planet’s surface.

Further research has helped us understand the planets’ densities, atmospheres, and more!

his animated image shows an artist's concept of the star TRAPPIST-1, an ultra-cool dwarf, and the seven Earth-size planets orbiting it. TRAPPIST-1 is large and glows bright orange, while the planets are smaller and in shades of cool gray-blue. The image is highly stylized to look like glowing balls sitting on a shiny surface, and neither the sizes nor distances are to scale. The planets closer to TRAPPIST-1 have droplets of water standing on the surface around them, indicating that they may have liquid water. Planets further away have frost around them, indicating that those are more likely to have significant amounts of ice, especially on the side that faces away from the star. Our view pans across the system, from the center outward, and faint tan rings depict the orbits of each planet. The image is watermarked with the text “Illustration” and “Credit: NASA/JPL-Caltech/R. Hurt (IPAC).”

Our eighth astronomical gift is … an (almost) eight-foot mirror

The primary mirror on our Nancy Grace Roman Space Telescope is approximately eight feet in diameter, similar to our Hubble Space Telescope. But Roman can survey large regions of the sky over 1,000 times faster, allowing it to hunt for thousands of exoplanets and measure light from a billion galaxies.

Side profile of a man standing in front of the Nancy Grace Roman Space Telescope Primary mirror. The man wears a long white coat, hair net, facemask, and glasses. The man is standing to the left of the mirror, and looking at it. The mirror faces the man, so it appears to be looking back at him. The mirror is a flat, smooth, silver disk with a black cylinder protruding from its center. Behind the mirror, a black square houses hardware for the mirror. The image is watermarked “Credit: NASA/Chris Gunn.”

Our ninth astronomical gift is … a kilonova nine days later

In 2017, the National Science Foundation (NSF)’s Laser Interferometer Gravitational-Wave Observatory (LIGO) and European Gravitational Observatory’s Virgo detected gravitational waves from a pair of colliding neutron stars. Less than two seconds later, our telescopes detected a burst of gamma rays from the same event. It was the first time light and gravitational waves were seen from the same cosmic source. But then nine days later, astronomers saw X-ray light produced in jets in the collision’s aftermath. This later emission is called a kilonova, and it helped astronomers understand what the slower-moving material is made of.

This animated illustration shows what happened in the nine days following a neutron star merger known as GW170817, detected on Aug. 17, 2017. In the first part of the animation, a pair of glowing blue neutron stars spiral quickly towards each other and merge with a bright flash. The merger creates gravitational waves (shown as pale arcs rippling out from the center), a near-light-speed jet that produced gamma rays (shown as brown cones and a rapidly-traveling magenta glow erupting from the center of the collision), and a donut-shaped ring of expanding blue debris around the center of the explosion. A variety of colors represent the many wavelengths of light produced by the kilonova, creating violet to blue-white to red bursts at the top and bottom of the collision. In the second part of the animation, we see the collision as it would appear from Earth, looking like a burst of red light in the lower left and a huge umbrella-shaped cascade of blue light in the upper right, representing X-rays.  The image is watermarked with the text “Credit: NASA's Goddard Space Flight Center/CI Lab” and “Illustration.”

Our tenth astronomical gift is … NuSTAR’s ten-meter-long mast

Our NuSTAR X-ray observatory is the first space telescope able to focus on high-energy X-rays. Its ten-meter-long (33 foot) mast, which deployed shortly after launch, puts NuSTAR’s detectors at the perfect distance from its reflective optics to focus X-rays. NuSTAR recently celebrated 10 years since its launch in 2012.

This animation shows an artist’s concept of the NuSTAR X-ray observatory orbiting above the blue marble of Earth and deploying its 10-meter-long (33 foot) mast shortly after launch in 2012. NuSTAR is roughly cylindrical, with a shiny silver covering and a pair of blue solar panels on each of its sides. As we pan around the spacecraft, silver scaffolding extends from inside, separating the ends of the telescope to the right distance to begin observing the universe in X-rays. The image is watermarked with the text “Illustration” and “Credit: Credit: NASA/JPL-Caltech.”

Our eleventh astronomical gift is … eleven days of observations

How long did our Hubble Space Telescope stare at a seemingly empty patch of sky to discover it was full of thousands of faint galaxies? More than 11 days of observations came together to capture this amazing image — that’s about 1 million seconds spread over 400 orbits around Earth!

This animated image zooms into the Hubble Ultra Deep Field, showing how a tiny patch of “empty” sky turned out to contain about 10,000 galaxies. The sequence begins with a starry backdrop, then we begin to zoom into the center of this image. As we travel, larger and brighter objects come into view, including dazzling spiral and elliptical galaxies in reds, oranges, blues, and purples. The image is watermarked with the text “Credit: NASA, G. Bacon and Z. Levay (STScI).”

Our twelfth astronomical gift is … a twelve-kilometer radius

Pulsars are collapsed stellar cores that pack the mass of our Sun into a whirling city-sized ball, compressing matter to its limits. Our NICER telescope aboard the International Space Station helped us precisely measure one called J0030 and found it had a radius of about twelve kilometers — roughly the size of Chicago! This discovery has expanded our understanding of pulsars with the most precise and reliable size measurements of any to date.

In this simulation of a pulsar’s magnetic fields, dozens of thin lines dance around a central gray sphere, which is the collapsed core of a dead massive star. Some of these lines, colored orange, form loops on the surface of the sphere. Others, colored blue, arc away from two spots on the lower half of the sphere and vanish into the black background. The image is watermarked with the text “Simulation” and “Credit: NASA's Goddard Space Flight Center.”

Stay tuned to NASA Universe on Twitter and Facebook to keep up with what’s going on in the cosmos every day. You can learn more about the universe here.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
9 years ago
Jupiter In Infrared Light, As Seen By NASA’s InfraRed Telescope Facility (IRTF). The Observations Were

Jupiter in infrared light, as seen by NASA’s InfraRed Telescope Facility (IRTF). The observations were obtained in support of NASA’s Juno mission by a team headed by Juno scientist Glenn Orton.

4 years ago
Curious About NASA’s Next Mission To The Red Planet – The Mars 2020 Perseverance Rover? Here’s

Curious about NASA’s next mission to the Red Planet – the Mars 2020 Perseverance rover? Here’s your chance to ask an expert!

Targeted for launch to the Red Planet in July 2020, our Mars 2020 Perseverance rover will search for signs of ancient life. Mission engineer Lauren DuCharme and astrobiologist Sarah Stewart Johnson will be taking your questions in an Answer Time session on Friday, July 17 from noon to 1pm ET here on our Tumblr! Make sure to ask your question now by visiting http://nasa.tumblr.com/ask

Lauren DuCharme is a systems engineer at NASA’s Jet Propulsion Laboratory (JPL) in Southern California, where she’s working on the launch and cruise of the Perseverance rover. Lauren got her start at JPL as an intern. Professor Sarah Stewart Johnson is an astrobiologist at Georgetown University in Washington. Her research focuses on detecting biosignatures, or traces of life, in planetary environments.

Fun Facts:

The name Perseverance was chosen from among the 28,000 essays submitted during the "Name the Rover" contest. Seventh-grader Alex Mather wrote in his winning essay, "We are a species of explorers, and we will meet many setbacks on the way to Mars. However, we can persevere. We, not as a nation but as humans, will not give up."

Perseverance will land in Jezero Crater, a 28-mile-wide (45-kilometer-wide) crater that scientists believe was once filled with water.

Perseverance carries instruments and technology that will pave the way for future human missions to the Moon and Mars. It is also carrying 23 cameras and two microphones to the Red Planet — the most ever flown in the history of deep-space exploration.

Perseverance is the first leg of a round trip to Mars. It will be the first rover to bring a sample caching system to Mars that will package promising samples for return to Earth by a future mission.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

Hubble Space Telescope

You’ve probably heard of our Hubble Space Telescope, but have you had the chance to actually take a look at the amazing images it has captured for us over the years? Since Hubble launched in April 1990,  it has made more than 1.2 million observations, some to locations more than 13.4 billion light years from Earth!

Hubble can see astronomical objects with an angular size of 0.05 arc seconds, which is like seeing a pair of fireflies in Tokyo from your home in Maryland…yea, that’s pretty far! This accuracy allows us to see images like this one of Little Gem Nebula, roughly 6,000 light-years away from us.

image

Images from Hubble are regularly released to the public, and are some of the most breathtaking views in the Universe. Images like this one of Lagoon Nebula, in the constellation of Sagittarius, not only make for amazing desktop screen-savers, but provide us with valuable scientific information about distant stars and galaxies, as well as the planets in our solar system.

image

We recently celebrated Hubble’s 25th Anniversary, and look forward to many more years of discovery and captivating images.


Tags
6 years ago

@ottergirl-fitness: What produce have you grown on the International Space Station?


Tags
9 years ago

Solar System: Top 5 Things to Know This Week

It’s only Tuesday and this week is already filled with news about our solar system. Here are the top five things to know this week:

1) Mars!

image

With five spacecraft in orbit and two rovers exploring the ground, there’s always something new and interesting about the Red Planet. Yesterday things got even more exciting when we released the most compelling evidence yet that liquid water sometimes flows on Mars today.

2) HTV-5 Cargo Ship

image

On Monday, the HTV-5 cargo ship was released from the International Space Station to burn up as it reenters Earth’s atmosphere. The HTV-5 carried a variety of experiments and supplies to the space station, and was docked for five weeks.

3) Pluto Continues to Excite

image

If you haven’t been keeping up with the weekly releases of newly downloaded pictures from our New Horizons spacecraft, you are definitely missing out. But don’t worry, we have you covered. The latest updates can be found HERE, be sure to follow along as new information is released. More images are scheduled to be featured on Oct. 1.

4) Cassini Mission

image

This week on Sept. 30, our Cassini spacecraft will reach the closest point to Saturn in it’s latest orbit around the planet. Just to put things in perspective, that will be Cassini’s 222nd orbit around Saturn! Learn more about this mission HERE.

5) What Happened to Mars’ Atmosphere?

image

Believe it or not, the Martian atmosphere we see today used to be much more substantial many years ago. What happened? Our Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has been in orbit around Mars for one Earth year, searching for the answers. Learn more HERE.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
1 year ago
Line graph with monthly temperature anomalies from each year from 1880 to 2023 growing across the graph to create a stacked bell shape. The Y-axis is labeled negative 3 degrees Celsius to 3 degrees Celsius and the X-axis has each month from January to December. As time goes on, the curved lines seem to stack higher and higher, and the colors of the lines change from white and light blue to light red, and then dark red. Finally, the 2023 line stops at August, the latest month we have data for, and it’s visible that June, July, and August 2023 were all hotter than any previous respective month. Credit: NASA

Confirmed: Summer 2023 Hottest in NASA’s Record

All three months of summer 2023 broke records. July 2023 was the hottest month ever recorded, and the hottest July. June 2023 was the hottest June, and August 2023 was the hottest August.

NASA’s temperature record, GISTEMP, starts in 1880, when consistent, modern recordkeeping became possible. Our record uses millions of measurements of surface temperature from weather stations, ships and ocean buoys, and Antarctic research stations. Other agencies and organizations who keep similar global temperature records find the same pattern of long-term warming.

Global temperatures are rising from increased emissions of greenhouse gasses, like carbon dioxide and methane. Over the last 200 years, humans have raised atmospheric CO2 by nearly 50%, primarily through the burning of fossil fuels.

Drivers of climate change, both natural and human-caused, leave distinct fingerprints. Through observations and modeling, NASA researchers confirm that the current warming is the result of human activities, particularly increased greenhouse gas emissions.


Tags
Loading...
End of content
No more pages to load
  • justageekygal
    justageekygal liked this · 1 year ago
  • just-plain-lunacy
    just-plain-lunacy liked this · 2 years ago
  • bananashortcake
    bananashortcake liked this · 2 years ago
  • kaengeru
    kaengeru liked this · 2 years ago
  • tylerinathecosmicprincess
    tylerinathecosmicprincess reblogged this · 3 years ago
  • tylerinathecosmicprincess
    tylerinathecosmicprincess liked this · 3 years ago
  • apoapsiis
    apoapsiis reblogged this · 3 years ago
  • hookteeth
    hookteeth liked this · 3 years ago
  • screechingcreature
    screechingcreature liked this · 3 years ago
  • nicolls187
    nicolls187 liked this · 3 years ago
  • cemeteryfun
    cemeteryfun reblogged this · 3 years ago
  • museganjin
    museganjin liked this · 3 years ago
  • qwerty224561
    qwerty224561 reblogged this · 3 years ago
  • qwerty224561
    qwerty224561 liked this · 3 years ago
  • spokenwithhands
    spokenwithhands reblogged this · 3 years ago
  • a-royal-hoot
    a-royal-hoot reblogged this · 3 years ago
  • mellowmelancholia
    mellowmelancholia reblogged this · 3 years ago
  • anelezehcnas
    anelezehcnas liked this · 3 years ago
  • reality4none
    reality4none reblogged this · 4 years ago
  • tired-sunny
    tired-sunny liked this · 4 years ago
  • m1sm4tched50cks
    m1sm4tched50cks liked this · 4 years ago
  • butch-hatsune-miku
    butch-hatsune-miku liked this · 4 years ago
  • peachael
    peachael liked this · 4 years ago
  • somnolentselenophile
    somnolentselenophile liked this · 4 years ago
  • ionianstar
    ionianstar reblogged this · 4 years ago
  • ionianstar
    ionianstar liked this · 4 years ago
  • astrogeekery
    astrogeekery reblogged this · 4 years ago
  • lobecosc
    lobecosc liked this · 4 years ago
  • bruise-almighty
    bruise-almighty liked this · 4 years ago
  • iejdjsoemsmkd-blog
    iejdjsoemsmkd-blog liked this · 4 years ago
  • ethikfully
    ethikfully reblogged this · 5 years ago
  • jongsukill
    jongsukill liked this · 5 years ago
  • sapphiresorraria12
    sapphiresorraria12 liked this · 5 years ago
  • aestheticxsouls
    aestheticxsouls liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags