From Earth To The Moon: How Are We Getting There?

From Earth to the Moon: How Are We Getting There?

image

More than 45 years since humans last set foot on the lunar surface, we’re going back to the Moon and getting ready for Mars. The Artemis program will send the first woman and next man to walk on the surface of the Moon by 2024, establish sustainable lunar exploration and pave the way for future missions deeper into the solar system.

Getting There

image

Our powerful new rocket, the Space Launch System (SLS), will send astronauts aboard the Orion spacecraft a quarter million miles from Earth to lunar orbit. The spacecraft is designed to support astronauts traveling hundreds of thousands of miles from home, where getting back to Earth takes days rather hours.

Lunar Outpost

image

Astronauts will dock Orion at our new lunar outpost that will orbit the Moon called the Gateway. This small spaceship will serve as a temporary home and office for astronauts in orbit between missions to the surface of the Moon. It will provide us and our partners access to the entire surface of the Moon, including places we’ve never been before like the lunar South Pole. Even before our first trip to Mars, astronauts will use the Gateway to train for life far away from Earth, and we will use it to practice moving a spaceship in different orbits in deep space.

Expeditions to the Moon

image

The crew will board a human landing system docked to the Gateway to take expeditions down to the surface of the Moon. We have proposed using a three-stage landing system, with a transfer vehicle to take crew to low-lunar orbit, a descent element to land safely on the surface, and an ascent element to take them back to the Gateway. 

Return to Earth

image

Astronauts will ultimately return to Earth aboard the Orion spacecraft. Orion will enter the Earth’s atmosphere traveling at 25,000 miles per hour, will slow to 300 mph, then parachutes will deploy to slow the spacecraft to approximately 20 mph before splashing down in the Pacific Ocean.

Red Planet 

image

We will establish sustainable lunar exploration within the next decade, and from there, we will prepare for our next giant leap – sending astronauts to Mars!

Discover more about our plans to go to the Moon and on to Mars: https://www.nasa.gov/moontomars

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

More Posts from Nasa and Others

2 years ago

What is Artemis I?

The SLS and Orion spacecraft can be seen in the foreground with a full Moon to the left of the spacecraft. The SLS is orange, Orion is white, and the Moon is grey and white. A lightning tower is to the left of the Moon.

Credit: NASA/Ben Smegelsky

On November 14, NASA is set to launch the uncrewed Artemis I flight test to the Moon and back. Artemis I is the first integrated flight test of the Space Launch System (SLS) rocket, the Orion spacecraft, and Exploration Ground Systems at NASA’s Kennedy Space Center in Florida. These are the same systems that will bring future Artemis astronauts to the Moon.

The Vehicle Assembly Building (VAB), mobile launcher, and Space Launch System (SLS) rocket can all be seen from a low-angle perspective. The VAB is a large grey and white cube-shaped building with large doors. The mobile launcher is grey, black, and white, with many pipes and levels, and the SLS rocket is orange with two white boosters on either side.

Credit: NASA/Ben Smegelsky

Standing 322 feet (98 meters) tall, the SLS rocket comprises of a core stage, an upper stage, two solid boosters, and four RS-25 engines. The SLS rocket is the most powerful rocket in the world, able to carry 59,500 pounds (27 metric tons) of payloads to deep space — more than any other vehicle. With its unprecedented power, SLS is the only rocket that can send the Orion spacecraft, astronauts, and cargo directly to the Moon on a single mission.

The massive Vehicle Assembly Building (VAB) is a large grey and white cube-shaped building with large doors. It has an American flag on it, along with the NASA meatball logo and the Artemis mission logo. The Space Launch System (SLS) rocket stands to the right of the VAB. The SLS is orange with two white boosters on either side.

Credit: NASA/Kim Shiflett

Before launch, Artemis I has some big help: the Vehicle Assembly Building (VAB) at KSC is the largest single-story building in the world. The VAB was constructed for the assembly of the Apollo/Saturn V Moon rocket, and this is where the SLS rocket is assembled, maintained, and integrated with the Orion spacecraft. 

NASA’s Space Launch System (SLS) rocket, with the Orion capsule atop, slowly rolls out of the Vehicle Assembly Building on the crawler-transporter 2. The crawler is grey with treads and walkways, and the SLS is orange with two white boosters on either side.

Credit: NASA/Kim Shiflett

The mobile launcher is used to assemble, process, and launch the SLS rocket and Orion spacecraft. The massive structure consists of a two-story base and a tower equipped with a number of connection lines to provide the rocket and spacecraft with power, communications, coolant, and fuel prior to launch.

The crawler-transporter 2 is on the left, with the Space Launch System (SLS) rocket on the right of this photo. The crawler is grey with treads and walkways, and the SLS is orange with two white boosters on either side. The sky is blue with fluffy white clouds in the background.

Credit: NASA/Joel Kowsky

Capable of carrying 18 million pounds (8.2 million kg) and the size of a baseball infield, crawler-transporter 2 will transport SLS and Orion the 4.2 miles (6.8 km) to Launch Pad 39B. This historic launch pad was where the Apollo 10 mission lifted off from on May 18, 1969, to rehearse the first Moon landing.

An artist’s rendition of the Orion flight shows a portion of a blue and white Earth in a semi-circle at the bottom of this photo; at the center, a white and grey Orion heads towards a semi-lit Moon in grey. The rest of the image is black, with some small stars dotted throughout.

Credit: NASA/Liam Yanulis

During the launch, SLS will generate around 8.8 million pounds (~4.0 million kg) of thrust, propelling the Orion spacecraft into Earth’s orbit. Then, Orion will perform a Trans Lunar Injection to begin the path to the Moon. The spacecraft will orbit the Moon, traveling 40,000 miles beyond the far side of the Moon — farther than any human-rated spacecraft has ever flown.

An artist’s rendition of the Orion spacecraft is in the foreground in front of the Moon. The perspective is from one of the spacecraft’s solar arrays. The solar array is black, with white and orange dots throughout. The spacecraft has a large NASA logo in red and is grey, white, and black overall.

Credit: NASA/Liam Yanulis

The Orion spacecraft is designed to carry astronauts on deep space missions farther than ever before. Orion contains the habitable volume of about two minivans, enough living space for four people for up to 21 days. Future astronauts will be able to prepare food, exercise, and yes, have a bathroom. Orion also has a launch abort system to keep astronauts safe if an emergency happens during launch, and a European-built service module that fuels and propels the spacecraft.

Commander Moonikin Campos, a manikin, sits aboard the Orion spacecraft in the Orion Crew Survival suit, which is orange with blue straps. The helmet is white with a black tinted visor. A black hose connects to the suit, and the blue background shows NASA and Artemis logos.

Credit: NASA/Frank Michaux

While the Artemis I flight test is uncrewed, the Orion spacecraft will not be empty: there will be three manikins aboard the vehicle. Commander Moonikin Campos will be sitting in the commander’s seat, collecting data on the vibrations and accelerations future astronauts will experience on the journey to the Moon. He is joined with two phantom torsos, Helga and Zohar, in a partnership with the German Aerospace Center and Israeli Space Agency to test a radiation protection vest.

Seen from above is the upside-down, open interior of the Orion capsule with 10 CubeSats secured onto its walls. The interior is yellowish-green and textured, and the exterior of the capsule segment is white with a few black panels. It sits in a processing facility with white walls and servicing platforms surrounding the spacecraft.

Credit: NASA/Cory Huston

A host of shoebox-sized satellites called CubeSats help enable science and technology experiments that could enhance our understanding of deep space travel and the Moon while providing critical information for future Artemis missions.

An artist’s rendition of the Orion spacecraft reentering Earth’s atmosphere. Orion is an orange streak coming from the top right to the left center of the photo, and Earth is seen at night with city lights as dots and a thin strip of atmosphere beneath the Sun.

Credit: NASA/Liam Yanulis

At the end of the four-week mission, the Orion spacecraft will return to Earth. Orion will travel at 25,000 mph (40,000 km per hour) before slowing down to 300 mph (480 km per hour) once it enters the Earth’s atmosphere. After the parachutes deploy, the spacecraft will glide in at approximately 20 mph (32 km per hour) before splashdown about 60 miles (100 km) off the coast of California. NASA’s recovery team and the U.S. Navy will retrieve the Orion spacecraft from the Pacific Ocean.

A large gray ship in the background is deploying small boats, with the Orion spacecraft has large inflatable balloons on top.

Credit: NASA

With the ultimate goal of establishing a long-term presence on the Moon, Artemis I is a critical step as NASA prepares to send humans to Mars and beyond.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

To the Moon and Beyond: Why Our SLS Rocket Is Designed for Deep Space

It will take incredible power to send the first woman and the next man to the Moon’s South Pole by 2024.  That’s where America’s Space Launch System (SLS) rocket comes in to play.

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

Providing more payload mass, volume capability and energy to speed missions through deep space than any other rocket, our SLS rocket, along with our lunar Gateway and Orion spacecraft, creates the backbone for our deep space exploration and Artemis lunar mission goals.

Here’s why our SLS rocket is a deep space rocket like no other:

It’s a heavy lifter

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

The Artemis missions will send humans 280,000 miles away from Earth. That’s 1,000 times farther into space than the International Space Station. To accomplish that mega feat, you need a rocket that’s designed to lift — and lift heavy. With help from a dynamic core stage — the largest stage we have ever built — the 5.75-million-pound SLS rocket can propel itself off the Earth. This includes the 57,000 pounds of cargo that will go to the Moon. To accomplish this, SLS will produce 15% more thrust at launch and during ascent than the Saturn V did for the Apollo Program.

We have the power 

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

Where do our rocket’s lift and thrust capabilities come from? If you take a peek under our powerful rocket’s hood, so to speak, you’ll find a core stage with four RS-25 engines that produce more than 2 million pounds of thrust alongside two solid rocket boosters that each provide another 3.6 million pounds of thrust power. It’s a bold design. Together, they provide an incredible 8.8 million pounds of thrust to power the Artemis missions off the Earth. The engines and boosters are modified heritage hardware from the Space Shuttle Program, ensuring high performance and reliability to drive our deep space missions.

A rocket with style

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

While our rocket’s core stage design will remain basically the same for each of the Artemis missions, the SLS rocket’s upper stage evolves to open new possibilities for payloads and even robotic scientific missions to worlds farther away than the Moon like Mars, Saturn and Jupiter. For the first three Artemis missions, our SLS rocket uses an interim cryogenic propulsion stage with one RL10 engine to send Orion to the lunar south pole. For Artemis missions following the initial 2024 Moon landing, our SLS rocket will have an exploration upper stage with bigger fuel tanks and four RL10 engines so that Orion, up to four astronauts and larger cargoes can be sent to the Moon, too. Additional core stages and upper stages will support either crewed Artemis missions, science missions or cargo missions for a sustained presence in deep space.

It’s just the beginning

To The Moon And Beyond: Why Our SLS Rocket Is Designed For Deep Space

Crews at our Michoud Assembly Facility in New Orleans are in the final phases of assembling the core stage for Artemis I— and are already working on assembly for Artemis II.

Through the Artemis program, we aim not just to return humans to the Moon, but to create a sustainable presence there as well. While there, astronauts will learn to use the Moon’s natural resources and harness our newfound knowledge to prepare for the horizon goal: humans on Mars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Science Coming Soon to a Space Station Near You

Dozens of science experiments will soon make their red carpet debuts on the International Space Station. They will arrive courtesy of a Dragon cargo spacecraft launched from Cape Canaveral Air Force Station in Florida. The starring players include investigations into 3D printing organ tissue, breaking up rocks and building bones.

Meet some of the experiments blasting off that could lead to the development of new technologies as well as improve life on Earth.

Grab yourself an (organ) tissue

Scientists and medical professionals have long dreamed of the day 3D printers can be used to create useable human organs. But pesky gravity seems to always get in the way.

image

Enter microgravity. The new BioFabrication Facility (BFF) will provide a platform to attempt the creation of this organ tissue on the space station, a potential first step towards creating entire human organs in space.

Put down your pickaxe and pick up some microbes

Extracting minerals from rocks doesn’t always require brute force. Microbes can be deployed for the same purpose in a process called bio-mining. While common on Earth, the method still needs to be explored in space to see if it can eventually help explorers on the Moon and Mars. The BioRock investigation will examine the interactions between microbes and rocks and see if microgravity could limit the use of bio-mining by restricting bacterial growth.

image

Keep rolling along 

Goodyear Tire will investigate if microgravity can help improve the silica design process, silica rubber formation and tire manufacturing. This investigation could lead to improvements like better tire performance and increased fuel efficiency, putting a bit of cash back in your pocket.

image

When space gets on our nerves

Meet microglia: a type of immune defense cell found in the central nervous system. Better understanding nerve cells and their behavior in microgravity is crucial to protecting astronaut health. 

The Space Tango-Induced Pluripotent Stem Cells experiment will convert induced pluripotent stem cells (iPSCs) derived from patients with Parkinson’s and Multiple Sclerosis into different types of brain cells. Researchers will examine two things:

How microglial cells grow and move

Changes in gene expression in microgravity

image

Studying this process in microgravity could reveal mechanisms not previously understood and could lead to improved prevention and treatments for the diseases.

Space moss!

Moss, the tiny plants you see covering rocks and trees in the woods, change how they behave once the gravity in their environment changes. Space Moss compares the mosses grown aboard the space station with your typical run-of-the-mill Earth-bound moss.

image

This investigation will let researchers see how moss behavior in space could allow it to serve as a source of food and oxygen on future Moon or Mars bases.

A smooth connection 

Docking with the space station requires physical points for connections, and International Docking Adapters (IDAs) are providing a more sophisticated way of doing so.

image

IDA 3 will be attached to the Harmony mode, home to two existing IDAs. This adapter can accommodate commercial crew vehicle dockings, such as the first spacecraft to launch from U.S. soil since the space shuttle.

Building a better bone 

The Cell Science-02 investigation will improve our understanding of tissue regeneration and allow us to develop better countermeasures to fight loss of bone density by astronauts.

image

By examining the effects of microgravity on healing agents, this investigation may be able to assist people on Earth being treated for serious wounds or osteoporosis.

Want to learn about more investigations heading to the space station (or even ones currently under way)? Make sure to follow @ISS_Research on Twitter and Space Station Research and Technology News on Facebook. 

If you want to see the International Space Station with your own eyes, check out Spot the Station to see it pass over your town.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

After 20 years in space, the Cassini spacecraft is running out of fuel. In 2010, Cassini began a seven-year mission extension in which the plan was to expend all of the spacecraft’s propellant exploring Saturn and its moons. This led to the Grand Finale and ends with a plunge into the planet’s atmosphere at 6:32 a.m. EDT on Friday, Sept. 15.

The spacecraft will ram through Saturn’s atmosphere at four times the speed of a re-entry vehicle entering Earth’s atmosphere, and Cassini has no heat shield. So temperatures around the spacecraft will increase by 30-to-100 times per minute, and every component of the spacecraft will disintegrate over the next couple of minutes…

Cassini’s gold-colored multi-layer insulation blankets will char and break apart, and then the spacecraft's carbon fiber epoxy structures, such as the 11-foot (3-meter) wide high-gain antenna and the 30-foot (11-meter) long magnetometer boom, will weaken and break apart. Components mounted on the outside of the central body of the spacecraft will then break apart, followed by the leading face of the spacecraft itself.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

Will the robot be able to send vedio footage?


Tags
7 years ago

Astronaut Journal Entry - Pre-Launch

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry written by NASA astronaut Scott Tingle.

To read more entires from this series, visit our Space Blogs on Tumblr.

image

Our crew just finished the final training event before the launch. Tomorrow, at 13:20 local time (Baikonur), we will strap the Soyuz MS-07 spacecraft to our backs and fly it to low Earth orbit. We will spend 2.5 days in low Earth orbit before docking to the MRM-1 docking port on the International Space Station (ISS). There we will begin approximately 168 days of maintenance, service and science aboard one of the greatest engineering marvels that humans have ever created.

image

Today was bittersweet. Ending a 2-year process of intense training was welcomed by all of us. We are very tired. Seeing our families for the last time was difficult. I am pretty lucky, though. My wife, Raynette, and the kids have grown up around military service and are conditioned to endure the time spent apart during extended calls-to-duty. We are also very much anticipating the good times we will have upon my return in June. Sean and Amy showed me a few videos of them mucking it up at Red Square before flying out to Baikonur. Eric was impressed with the Russian guards marching in to relieve the watch at Red Square. Raynette was taking it all in stride and did not seem surprised by any of it. I think I might have a family of mutants who are comfortable anywhere. Nice! And, by the way, I am VERY proud of all of them!

image

Tomorrow’s schedule includes a wake-up at 04:00, followed by an immediate medical exam and light breakfast. Upon returning to our quarters, we will undergo a few simple medical procedures that should help make the 2.5-day journey to ISS a little more comfortable. I’ve begun prepping with motion sickness medication that should limit the nausea associated with the first phases of spaceflight. I will continue this effort through docking. This being my first flight, I’m not sure how my body will respond and am taking all precautions to maintain a good working capability. The commander will need my help operating the vehicle, and I need to not be puking into a bag during the busy times. We suit up at 09:30 and then report to the State Commission as “Готовы к Полёту”, or “Ready for Flight”. We’ll enter the bus, wave goodbye to our friends and family, and then head out to the launch pad. Approximately 2 kilometers from the launch pad, the bus will stop. 

image

The crew will get out, pee on the bus’s tire, and then complete the last part of the drive to the launch pad. This is a traditional event first done by Yuri Gagarin during his historic first flight and repeated in his honor to this day. We will then strap in and prepare the systems for launch. Next is a waiting game of approximately 2 hours. Ouch. The crew provided five songs each to help pass the time. My playlist included “Born to Run” (Springsteen), “Sweet Child O’ Mine” (Guns and Roses), “Cliffs of Dover” (Eric Johnson), “More than a Feeling” (Boston), and “Touch the Sky” (Rainbow Bridge, Russian). Launch will happen precisely at 13:20.

image

I think this sets the stage. It’s 21:30, only 6.5 hours until duty calls. Time to get some sleep. If I could only lower my level of excitement!

Find more ‘Captain’s Log’ entries HERE.

Follow NASA astronaut Scott Tingle on Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
4 years ago

Orion’s top images of 2020

The Orion program showed its resilience this year during an unprecedented time, racking up several success stories building and testing the spacecraft in preparation for upcoming Artemis missions to the Moon. From hot fire and structural testing, to crew and service module assembly activities, progress on Orion brought the agency closer to sending the first woman and next man to the Moon by 2024, and sustainable lunar exploration by 2028.

Orion’s Top Images Of 2020

Ensuring crew safety, a hot fire test was conducted on the Northrop Grumman-built attitude control motor – which provides steering for Orion’s  launch abort system in the event of an emergency during ascent – at the company’s facility in Elkton, Maryland. The 30-second hot fire was the third and final test to qualify the motor for human missions, beginning with Artemis II.

Orion’s Top Images Of 2020

During a three-month testing campaign at NASA’s Plum Brook Station in Sandusky, Ohio, the Orion spacecraft was subjected to the extreme temperatures and electromagnetic environment it will experience on Artemis I – Orion’s first uncrewed test flight to the Moon atop the agency’s  Space Launch System (SLS) rocket. Testing wrapped up early and the vehicle was readied for its journey back to NASA’s Kennedy Space Center aboard the agency’s one-of-a-kind Super Guppy.

Orion’s Top Images Of 2020

Before NASA astronauts fly Orion on missions to the Moon and back, testing is necessary to verify the spacecraft’s ability to withstand the stresses of launch, climb to orbit, the harsh conditions of deep space transit, and return to Earth. Engineers from NASA and its prime contractor, Lockheed Martin, completed testing on Orion’s Structural Test Article (STA) for Artemis I. The STA is structurally identical to Orion’s main spacecraft elements: the crew module, service module and launch abort system.

Orion’s Top Images Of 2020

The first element machined for the Artemis III Orion crew module – a cone panel with openings for windows, which will provide a spectacular view – was designed by Lockheed Martin, and manufactured by AMRO Fabricating Corp., of South El Monte, California. The completed panel made its way to NASA’s Michoud Assembly Facility near New Orleans, where engineers will weld it with other elements as part of Orion’s pressure vessel.

Orion’s Top Images Of 2020

Orion’s European Service Module primary structure for the Artemis for the Artemis III mission arrived at the Airbus facility in Bremen, Germany, from its Thales Alenia Space manufacturing site in Turin, Italy. The service module will be equipped with components to power Orion and provide life support to astronauts – such as air, water, heat and cooling – during the mission that will land the first woman and next man on the Moon.

Orion’s Top Images Of 2020

Three spacecraft adapter jettison fairing panels were fitted onto Orion’s service module inside the Neil Armstrong Operations and Checkout Building at Kennedy. Once secured, the panels encapsulate the service module to protect it from harsh environments such as heat, wind, and acoustics as the spacecraft is propelled out of Earth’s atmosphere atop the SLS rocket during NASA’s Artemis I mission.

8 years ago

Will NASA send astronauts to the moon again or any other planet within the next ten years?

Will NASA Send Astronauts To The Moon Again Or Any Other Planet Within The Next Ten Years?

@nasaorion spacecraft will launch on the Space Launch system (the largest spacecraft every built, even bigger than the Saturn V rocket!).  Both are under construction @nasa currently, and this is the spacecraft that will take us beyond the low earth orbit of the International Space Station, whether that be the Moon, Mars, or beyond.  We will conduct test missions with astronauts on Orion in the early 2020s, and a first mission will take us 40,000 miles beyond the Moon!


Tags
6 years ago

@lmndmlk: How many hours a day do you spend working?


Tags
4 years ago

Oddly Satisfying #NASAMoonKits 🌙

What would you take with you to the Moon? 🧳

image

We’re getting ready for our Green Run Hot Fire test, which will fire all four engines of the rocket that will be used for our Artemis I mission. This test will ensure the Space Launch System rocket is ready for the first and future missions beyond Earth’s orbit, putting us one step closer to landing the first woman and the next man on the Moon!

In celebration of this important milestone, we’ve been asking everyone (yeah, you there!) to dust off your suitcase, get creative, and show us what you would take if you were heading to the Moon!

Take a moment to peruse these #oddlysatisfying #NASAMoonKits submitted by people like you, and let them inspire you to lay out your own masterpiece. Post a picture of what you’d pack for the moon using the hashtag #NASAMoonKit for a chance to be shared by us! ⁣

1. @alexandra4astronaut

image

A stunning #NASAMoonKit in blue. 💙

2.@timmerman.jess

image

Looks like a little friend is hoping to catch a ride with this #NASAMoonKit. 🐶

3. @guido_aerus_lombardo

image

A #NASAMoonKit fit for an explorer. 🧭

4. @melli.jp

image

Shout out to the monochrome #NASAMoonKit enthusiasts! 🖤

5. @mycactusdress

image

This #NASAMoonKit is thoughtfully laid out by a true fan. 📚

6. Mar Christian V. Cruz

image

This geologist’s #NASAMoonKit rocks. ⛏️

7. Nelli

image

Beauty in simple #NASAMoonKits. ✨

8. @urbanxkoi

image

This #NASAMoonKit successfully fits into our Expert Mode — a volume of 5” by 8” by 2” (12.7 cm x 20.32 cm x 5.08 cm). The Expert Mode dimensions are based on the amount of space astronauts are allowed when they travel to the International Space Station!

9. PWR Aerospace

image

Nothing like a cozy #NASAMoonKit. 🧦

10. LEGO

image

This #NASAMoonKit is clearly for the builder-types! 🧸

How to Show Us What’s In Your #NASAMoonKit:    

There are four social media platforms that you can use to submit your work:

Instagram: Use the Instagram app to upload your photo or video, and in the description include #NASAMoonKit  

Twitter: Share your image on Twitter and include #NASAMoonKit in the tweet  

Facebook: Share your image on Facebook and include #NASAMoonKit in the post  

Tumblr: Share your image in Tumblr and include #NASAMoonKit in the tags

If a #NASAMoonKit post catches our eye, we may share your post on our NASA social media accounts or share it on the Green Run broadcast! 

Click here for #NASAMoonKit Terms and Conditions.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • satanplease
    satanplease liked this · 1 year ago
  • poeticlifephoto
    poeticlifephoto liked this · 1 year ago
  • nyxkky
    nyxkky reblogged this · 3 years ago
  • nyxkky
    nyxkky liked this · 3 years ago
  • op8989
    op8989 liked this · 3 years ago
  • mxphxsto
    mxphxsto liked this · 4 years ago
  • warmdayssweetnights
    warmdayssweetnights liked this · 4 years ago
  • bottles-with-caps
    bottles-with-caps liked this · 4 years ago
  • darknight2525
    darknight2525 liked this · 4 years ago
  • darkexpertherringstatesman
    darkexpertherringstatesman liked this · 4 years ago
  • quaetemere
    quaetemere reblogged this · 4 years ago
  • quaetemere
    quaetemere liked this · 4 years ago
  • famouspandaherringkid
    famouspandaherringkid liked this · 4 years ago
  • idiefordescendants
    idiefordescendants liked this · 4 years ago
  • toastgoatteeth
    toastgoatteeth liked this · 4 years ago
  • scoutforest
    scoutforest liked this · 4 years ago
  • viperadellamorte
    viperadellamorte reblogged this · 4 years ago
  • i-am-moonknight
    i-am-moonknight liked this · 4 years ago
  • wrongfooted
    wrongfooted liked this · 4 years ago
  • apizzaaffliction
    apizzaaffliction liked this · 4 years ago
  • b1llyth3k1d1001
    b1llyth3k1d1001 liked this · 4 years ago
  • thomasbrisenio
    thomasbrisenio liked this · 5 years ago
  • jennizaqt
    jennizaqt liked this · 5 years ago
  • annapolisrose
    annapolisrose liked this · 5 years ago
  • rodolfo9999
    rodolfo9999 liked this · 5 years ago
  • beforevenice
    beforevenice liked this · 5 years ago
  • fabien-euskadi
    fabien-euskadi reblogged this · 5 years ago
  • radiantlyry
    radiantlyry liked this · 5 years ago
  • fabien-euskadi
    fabien-euskadi liked this · 5 years ago
  • meatthefunction
    meatthefunction liked this · 5 years ago
  • potatoeking98
    potatoeking98 liked this · 5 years ago
  • honorguest
    honorguest liked this · 5 years ago
  • gutter-full-of-angels
    gutter-full-of-angels liked this · 5 years ago
  • wingedpartypicklebandit-blog
    wingedpartypicklebandit-blog liked this · 5 years ago
  • spidysshoes
    spidysshoes liked this · 5 years ago
  • 8-bit-cupcake
    8-bit-cupcake reblogged this · 5 years ago
  • 8-bit-cupcake
    8-bit-cupcake liked this · 5 years ago
  • tremendoussoulfarmegg
    tremendoussoulfarmegg liked this · 5 years ago
  • baby-a-in-trenchcoat
    baby-a-in-trenchcoat liked this · 5 years ago
  • orsoalex
    orsoalex liked this · 5 years ago
  • lo-li-ta-ha-ze
    lo-li-ta-ha-ze reblogged this · 5 years ago
  • slumbermude-blog
    slumbermude-blog liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags