How does flying feel?
Ever get a random craving for a food when in space?
NASA astronaut Kate Rubins will be taking your questions in an Answer Time session on Thursday, October 17 from 12pm - 1pm ET here on NASA’s Tumblr! Find out what it’s like to live and work 254 miles above our planet’s surface. Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!
Dr. Kate Rubins was selected in 2009 as one of nine members of the 20th NASA astronaut class. She holds a Bachelor of Science degree in Molecular Biology and a Ph.D. in Cancer Biology. During her first spaceflight from July - October 2016 as a member of the Expedition 49 and 50 crew, Dr. Rubins made history by becoming the first person to sequence DNA in space. She also worked on the Heart Cells Experiment which studied how heart muscle tissues contract, grow and change in microgravity. Before becoming a NASA astronaut, Dr. Rubins worked with some of the world’s most dangerous pathogens, heading 14 researchers studying viral diseases that primarily affect Central and West Africa.
Dr. Rubins and colleagues developed the first model of smallpox infection.
She conducted her undergraduate research on HIV-1 integration in the Infectious Diseases Laboratory at the Salk Institute for Biological Studies.
She conducted research on filoviruses (Ebola and Marburg), Arenaviruses (Lassa Fever) and collaborative projects with the U.S. Army to develop therapies for Ebola and Lassa viruses.
She has logged 115 days in space and 12 hours and 46 minutes of spacewalk time.
She enjoys running, cycling, swimming, flying, scuba diving and reading.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Have you ever packed for a long trip with a friend and ran out of space in your suitcase? Maybe your friend was nice and let your spare items hitchhike a ride in their bag? The following science experiments are doing something similar on our Space Launch System rocket.
Our Space Launch System (SLS) will be the most powerful rocket we’ve ever built and will enable astronauts in the Orion spacecraft to travel deeper into the solar system. This advanced launch vehicle will launch astronauts to an asteroid and eventually to Mars, while opening new possibilities for other payloads including robotic scientific missions to places like Mars, Saturn and Jupiter.
The primary goal of SLS and the Orion spacecraft is to launch future crewed, deep space missions. That said, an added bonus of this powerful rocket is the extra science it can carry. On it’s first mission (known as Exploration Mission-1, EM-1) SLS will carry 13 CubeSats (small satellites, each the size of a large shoebox) on its first flight as secondary payloads. These small satellites will perform various in-space experiments. In a way, these 13 CubeSats are ‘space hitchhikers’, catching a ride to deep space where they can gather data valuable to future exploration missions.
How were these 13 experiments selected? Great question. They were selected through a series of announcements of flight opportunities, a public contest and negations with our international partners.
These secondary payloads have a vast array of functions, from taking pictures of asteroids, to using yeast to detect impacts of deep-space radiation. Each month we will highlight one of these experiments on Tumblr and talk about all the exciting science they will do. Just to give you an idea of what these shoebox-sized satellites will do, we’ll give you a preview:
1. NEA Scout
NEA Scout, stands for: Near-Earth Asteroid Scout. This CubeSat will investigate an asteroid, taking pictures and observe its position in space.
2. BioSentinel
BioSentinel will be the first time living organisms have traveled to deep space in more than 40 years. It will use yeast to detect, measure and compare the impact of deep-space radiation on living organisms over long durations in deep space.
3. Lunar Flashlight
This experiment will look for ice deposits and identify locations where resources may be extracted from the lunar surface. It will demonstrate the capability to scout for useful materials and resources from lunar orbit.
4. Skyfire
Lockheed Martin’s Skyfire will perform a lunar flyby, collecting data to address both Moon and Mars Strategic Knowledge Gaps, or gaps in information required to reduce risk, increase effectiveness and improve the design of robotic and human space exploration missions, for surface characterization, remote sensing and site selection.
5. Lunar IceCube
Morehead State University’s Lunar IceCube will look for water in ice, liquid and vapor forms from a very low orbit of only 62 miles above the surface of the moon. The ability to search for useful resources can potentially help astronauts manufacture fuel and necessities to sustain a crew.
6. CuSP
The CubeSat mission to study Solar Particles, or CuSP, will be the first protype of an interplanetary CubeSat space weather station. It will observe space weather events hours before they reach Earth.
7. Luna-H-Map
Lunar Polar Hydrogen Mapper (LunaH) will enter a polar orbit around the moon with a low altitude. From there, it will produce maps of near-surface hydrogen.
8, 9, 10. Three Tournament Payloads
Three of the payloads riding along on this journey will be the winners of the Ground Tournaments portion of our CubeQuest Challenge. This challenge is designed to foster innovation in small spacecraft propulsion and communications techniques. Learn more about this challenge HERE.
11, 12, 13. International Partners
The remaining three payloads are reserved for international partners, and will be announced at a later time.
To stay updated on these experiments, visit: http://www.nasa.gov/launching-science-and-technology.html
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We live during one of the great eras of exploration. At this very moment, there are dozens of spacecraft surveying the solar system, from Mars, to Saturn, to Pluto and beyond. What’s more, you can ride along with these expeditions — all you need is an internet connection to see the latest discoveries from deep space. Here are a few essential resources for the armchair astronaut:
1. It’s Like Facebook, but for Planets
Or is it more of a Hitchhiker’s Guide to the Solar System? Whatever you want to call it, our Planets page offers quick rundowns, as well as in-depth guides, for all the major bodies in the solar system. Explore from the sun all they way out to the Oort Cloud.
2. Robots to the Rescue
Saturn looks spectacular through a telescope, but there’s only so much you can learn about it from the ground. Going there in person is tough, too. While we are now preparing to send astronauts beyond Earth orbit, a human mission to Saturn won’t be possible in the near future. That’s where the space robots come in. For example, the Cassini spacecraft studies Saturn and its moons up close, sometimes even doing things like flying right through the geyser plumes of the ice moon Enceladus. See all the solar system missions, past and present, where they went and what they’ve seen HERE.
3. Keep Your Eyes on This One
If you still haven’t tried Eyes on the Solar System, you’re missing out. This online simulation lets you tour the planets and track the past, current and future positions of spacecraft — right in your web browser, all in 3D. Eyes on the Solar System uses real NASA data to help you take a virtual flight across both space and time.
4. Images in the Raw
You don’t have to wait for a news release to see pictures from planetary missions. Some missions allow you to see raw, unprocessed images sent straight from the spacecraft. What these images lack in explanatory captions they make up for in freshness — sometimes you can see pictures from Mars or Saturn that are mere hours old. There’s something exhilarating about being among the first human beings ever to see an alien landscape. Peruse our new raw image pages HERE.
5. Bring It On Home
After you’ve toured the far reaches of the solar system, you can always come home again. When you have spent time studying the harsh conditions of our neighboring planets, the charms of a unique paradise come into sharp focus, the place we call Earth. Watch a real-time video feed from Earth orbit HERE. You can also see a daily global view of our planet from a million miles away HERE. Download THIS Earth Now mobile app to hold the planet in your hands.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today is Valentine’s Day. What better way to express that you love someone than with an intergalactic love gram? Check out some of our favorites and send them to all of your cosmic companions:
The Hubble Space Telescope revolutionized nearly all areas of astronomical research — and captured some truly lovely images. Here, a pair of intersecting galaxies swirl into the shape of a rose as a result of gravitational tidal pull. What type of roses are you getting for your love — red or galactic?
IceBridge is the largest airborne survey of Earth’s polar ice ever flown. It captures 3-D views of Arctic and Antarctic ice sheets, ice shelves and sea ice. This lovely heart-shaped glacier feature was discovered in northwest Greenland during an IceBridge flight in 2017. Which of your lover’s features would you say are the coolest?
Even though we can't see them, magnetic fields are all around us. One of the solar system’s largest magnetospheres belongs to Jupiter. Right now, our Juno spacecraft is providing scientists with their first glimpses of this unseen force. Is your attraction to your loved one magnetic?
This heart-shaped feature on the Martian landscape was captured by our Mars Reconnaissance Orbiter. It was created by a small impact crater that blew darker material on the surface away. What impact has your loved one had on you?
From three billion miles away, Pluto sent a “love note” back to Earth, via our New Horizons spacecraft. This stunning image of Pluto's "heart" shows one of the world's most dominant features, estimated to be 1,000 miles (1,600 km) across at its widest point. Will you pass this love note on to someone special in your life?
Our Solar Dynamics Observatory keeps an eye on our closest star that brings energy to you and your love. The observatory helps us understand where the Sun's energy comes from, how the inside of the Sun works, how energy is stored and released in the Sun's atmosphere and much more. Who would you say is your ray of sunshine?
Do any of these cosmic phenomena remind you of someone in your universe? Download these cards here to send to all the stars in your sky.
Want something from the Red Planet to match your bouquet of red roses? Here is our collection of Martian Valentines.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Only a few humans ever get to experience the awe-inspiring vantage point provided by the space station, but a new virtual reality (VR) experience, Space Explorers: The ISS Experience (ISS Experience), attempts to bring this perspective back to Earth for the rest of us.
Partnering with the ISS National Lab and Time, a team from Felix and Paul Studios launched a high quality 360 degree camera to space to help tell the story of science and life aboard the orbiting laboratory.
The project, currently in the process of being filmed by the station astronauts themselves, serves as an outreach project as well a technology demonstration, testing the limits of filming in the harsh environment of space.
The camera flew to the station on 16th SpaceX commercial resupply services mission in December 2018 along with a number of other scientific experiments.
Since then, the team has recorded many moments, including the SPHERES robots flying around the station (see below) , the growing and harvesting of vegetables, jam session among the astronauts, crew meals and the arrival of new astronauts.
So far, the footage coming back seems to be achieving the goal of immersing audiences in science and life aboard the space station. NASA astronaut Sunita Williams got the chance to watch some of the initial footage and says it was like I was back on the station.
While most of the filming has been completed, the biggest technical challenge is yet to come: capturing a spacewalk in virtual reality. The team expects to launch a new camera for spacewalk filming and begin production of spacewalk filming in 2020.
Learn more about ISS Experience here.
For daily updates, follow @ISS_Research on Twitter, Space Station Research and Technology News or our Facebook. Follow the ISS National Lab for information on its sponsored investigations. For opportunities to see the space station pass over your town, check out Spot the Station.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Today we celebrate International Women’s Day, a day in which we honor and recognize the contributions of women…both on Earth and in space.
Since the beginning, women have been essential to the progression and success of America’s space program.
Throughout history, women have had to overcome struggles in the workplace. The victories for gender rights were not achieved easily or quickly, and our work is not done.
Today, we strive to make sure that our legacy of inclusion and excellence lives on.
We have a long-standing cultural commitment to excellence that is largely driven by data, including data about our people. And our data shows progress is driven by questioning our assumptions and cultural prejudices – by embracing and nurturing all talent we have available, regardless of gender, race or other protected status, to build a workforce as diverse as our mission. This is how we, as a nation, will take the next giant leap in exploration.
As a world leader in science, aeronautics, space exploration and technology, we have a diverse mission that demands talent from every corner of America, and every walk of life.
Learn more about the inspiring woman at NASA here: https://women.nasa.gov/
When we think of our globe from a distance, we generally visualize two colors: blue and green. Water and land. Mostly water, consequently, our planet’s nickname of the blue marble.
Traveling around the globe every 90 minutes covering millions of miles with a focused lens on our beautiful planet from 250 miles above, I’ve captured many beautiful colors beyond blue and green that showcase Earth in new and interesting ways. Some colors are indicative of nature like desert sands and weather like snow. Other colors tell stories of Earth’s climate in bright splashes of yellows and greens of pollen and muted grey tones and clouded filters of pollution.
Blue and green still remain vivid and beautiful colors on Earth from the vantage point of the International Space Station, but here are some other colors that have caught my eye from my orbital perspective.
African violet
Bahamas blues
Tropical in Africa
Yellow desert
Orange in Egypt
Red surprise
Snow white
Follow my Year In Space on Twitter, Facebook and Instagram!
Black holes, cosmic rays, neutron stars and even new kinds of physics — for 10 years, data from our Fermi Gamma-ray Space Telescope have helped unravel some of the biggest mysteries of the cosmos. And Fermi is far from finished!
On June 11, 2008, at Cape Canaveral in Florida, the countdown started for Fermi, which was called the Gamma-ray Large Area Space Telescope (GLAST) at the time.
The telescope was renamed after launch to honor Enrico Fermi, an Italian-American pioneer in high-energy physics who also helped develop the first nuclear reactor.
Fermi has had many other things named after him, like Fermi’s Paradox, the Fermi National Accelerator Laboratory, the Enrico Fermi Nuclear Generating Station, the Enrico Fermi Institute, and the synthetic element fermium.
Photo courtesy of Argonne National Laboratory
The Fermi telescope measures some of the highest energy bursts of light in the universe; watching the sky to help scientists answer all sorts of questions about some of the most powerful objects in the universe.
Its main instrument is the Large Area Telescope (LAT), which can view 20% of the sky at a time and makes a new image of the whole gamma-ray sky every three hours. Fermi’s other instrument is the Gamma-ray Burst Monitor. It sees even more of the sky at lower energies and is designed to detect brief flashes of gamma-rays from the cosmos and Earth.
This sky map below is from 2013 and shows all of the high energy gamma rays observed by the LAT during Fermi’s first five years in space. The bright glowing band along the map’s center is our own Milky Way galaxy!
Well, they’re a form of light. But light with so much energy and with such short wavelengths that we can’t see them with the naked eye. Gamma rays require a ton of energy to produce — from things like subatomic particles (such as protons) smashing into each other.
Here on Earth, you can get them in nuclear reactors and lightning strikes. Here’s a glimpse of the Seattle skyline if you could pop on a pair of gamma-ray goggles. That purple streak? That’s still the Milky Way, which is consistently the brightest source of gamma rays in our sky.
In space, you find that kind of energy in places like black holes and neutron stars. The raindrop-looking animation below shows a big flare of gamma rays that Fermi spotted coming from something called a blazar, which is a kind of quasar, which is different from a pulsar... actually, let’s back this up a little bit.
One of the sources of gamma rays that Fermi spots are pulsars. Pulsars are a kind of neutron star, which is a kind of star that used to be a lot bigger, but collapsed into something that’s smaller and a lot denser. Pulsars send out beams of gamma rays. But the thing about pulsars is that they rotate.
So Fermi only sees a beam of gamma rays from a pulsar when it’s pointed towards Earth. Kind of like how you only periodically see the beam from a lighthouse. These flashes of light are very regular. You could almost set your watch by them!
Quasars are supermassive black holes surrounded by disks of gas. As the gas falls into the black hole, it releases massive amount of energy, including — you guessed it — gamma rays. Blazars are quasars that send out beams of gamma rays and other forms of light — right in our direction.
When Fermi sees them, it’s basically looking straight down this tunnel of light, almost all the way back to the black hole. This means we can learn about the kinds of conditions in that environment when the rays were emitted. Fermi has found about 5,500 individual sources of gamma rays, and the bulk of them have been blazars, which is pretty nifty.
But gamma rays also have many other sources. We’ve seen them coming from supernovas where stars die and from star factories where stars are born. They’re created in lightning storms here on Earth, and our own Sun can toss them out in solar flares.
Gamma rays were in the news last year because of something Fermi spotted at almost the same time as the National Science Foundation (NSF)’s Laser Interferometer Gravitational-Wave Observatory (LIGO) and European Gravitational Observatory’s Virgo on August 17, 2017. Fermi, LIGO, Virgo, and numerous other observatories spotted the merger of two neutron stars. It was the first time that gravitational waves and light were confirmed to come from the same source.
Fermi has been looking at the sky for almost 10 years now, and it’s helped scientists advance our understanding of the universe in many ways. And the longer it looks, the more we’ll learn. Discover more about how we’ll be celebrating Fermi’s achievements all year.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Soichi Noguchi was selected as an astronaut with the Japan Aerospace Exploration Agency in 1996. A native of Yokohama, Kanagawa, he is currently a mission specialist for NASA’s SpaceX Crew-1 launch taking flight to the International Space Station on Nov. 14. Soichi will be the first international crewmember on Crew Dragon and the first international partner astronaut to fly aboard three types of orbital spacecraft – the U.S. space shuttle, the Russian Soyuz, and now the SpaceX Crew Dragon! Talk about impressive. He received a B.S. in Aeronautical Engineering in 1989, master's degree in Aeronautical Engineering in 1991, Doctor of Philosophy in Advanced Interdisciplinary Studies in 2020, all from the University of Tokyo.
Soichi took time from preparing for his historic mission to answer questions about his life and career:
After my second flight, I started this research about your sensory system in zero gravity. I used a my own personal video, which I took during my last two flights at the International Space Station. I had a lot of interesting discussions amongst young professionals and students at the University of Tokyo about the research. It was a fun experience – but I would not do it again!
Space IS definitely a risky business. But the reward is higher than the risk so that’s why we take it.
Three words: Space. Is. Waiting.
We have a lot of interesting missions to do, but my personal goal is to return home with lots of fun stories.
It was 25 years ago, but I still remember the voice vividly. I got a call from Dr. Mamoru Mohri, the very first JAXA astronaut, and he said “Welcome to the Astronaut Corps.” When I got the call to be part of the Crew-1 mission, I was a lot less nervous than when I was assigned to my first mission, but the excitement remains the same.
He is a natural leader that takes care of the team really well, and he’s fun to play around with.
Star Wars… just because!
My favorite photo is Mount Fuji because I see the mountain almost every day when I was a child. It’s definitely breathtaking to see Mount Fuji from space.
I have lots of family photos, and I would put it inside my sleep station. Definitely one of the most challenging things about spaceflight is not experiencing zero gravity, not the rocket, but time away from family.
It’s an excursion. The view of the Earth is just breathtaking because you are just one glass away from the vacuum of space. There’s nothing between you and Earth.
I would say I’m most excited for interplanetary travel to become more common so that the school kids can go to Mars on their field trip.
Don’t worry, be happy!
This is definitely an exciting moment. We’re starting to see more players in the game. SpaceX is the frontrunner, but soon we’ll see Boeing, Sierra Nevada and Axiom. So the International Space Station will soon have more players involved, and it will be a lot more fun!
Thank you for your time, Soichi, and good luck on your historic mission! Get to know a bit more about Soichi and his NASA astronaut crew mates Victor Glover, Michael Hopkins, and Shannon Walker in the video above.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts