Questions Coming Up From….

Questions coming up from….

@Dee-an-ugh-deactivated20210528: My 4-year-old is already interested in space. How can I nurture her interest the older she gets in a productive way

@marvelpjostarwarsobssessed: What inspired/caused your interest in space?

@Anonymous: Do you like your job?

More Posts from Nasa and Others

7 years ago

Solar System: 10 Things to Know This Week

January 8: Images for Your Computer or Phone Wallpaper

Need some fresh perspective? Here are 10 vision-stretching images for your computer desktop or phone wallpaper. These are all real pictures, sent recently by our planetary missions throughout the solar system. You'll find more of our images at solarsystem.nasa.gov/galleries, images.nasa.gov and www.jpl.nasa.gov/spaceimages.

Applying Wallpaper: 1. Click on the screen resolution you would like to use. 2. Right-click on the image (control-click on a Mac) and select the option 'Set the Background' or 'Set as Wallpaper' (or similar).

1. The Fault in Our Mars

image

This image from our Mars Reconnaissance Orbiter (MRO) of northern Meridiani Planum shows faults that have disrupted layered deposits. Some of the faults produced a clean break along the layers, displacing and offsetting individual beds.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200 Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

2. Jupiter Blues

image

Our Juno spacecraft captured this image when the spacecraft was only 11,747 miles (18,906 kilometers) from the tops of Jupiter's clouds -- that's roughly as far as the distance between New York City and Perth, Australia. The color-enhanced image, which captures a cloud system in Jupiter's northern hemisphere, was taken on Oct. 24, 2017, when Juno was at a latitude of 57.57 degrees (nearly three-fifths of the way from Jupiter's equator to its north pole) and performing its ninth close flyby of the gas giant planet.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200 Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

3. A Farewell to Saturn

image

After more than 13 years at Saturn, and with its fate sealed, our Cassini spacecraft bid farewell to the Saturnian system by firing the shutters of its wide-angle camera and capturing this last, full mosaic of Saturn and its rings two days before the spacecraft's dramatic plunge into the planet's atmosphere on Sept. 15, 2017.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200 Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

4. All Aglow

image

Saturn's moon Enceladus drifts before the rings, which glow brightly in the sunlight. Beneath its icy exterior shell, Enceladus hides a global ocean of liquid water. Just visible at the moon's south pole (at bottom here) is the plume of water ice particles and other material that constantly spews from that ocean via fractures in the ice. The bright speck to the right of Enceladus is a distant star. This image was taken in visible light with the Cassini spacecraft narrow-angle camera on Nov. 6, 2011.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200 Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

5. Rare Encircling Filament

image

Our Solar Dynamics Observatory came across an oddity this week that the spacecraft has rarely observed before: a dark filament encircling an active region (Oct. 29-31, 2017). Solar filaments are clouds of charged particles that float above the Sun, tethered to it by magnetic forces. They are usually elongated and uneven strands. Only a handful of times before have we seen one shaped like a circle. (The black area to the left of the brighter active region is a coronal hole, a magnetically open region of the Sun).

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200 Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334 

6. Jupiter's Stunning Southern Hemisphere

image

See Jupiter's southern hemisphere in beautiful detail in this image taken by our Juno spacecraft. The color-enhanced view captures one of the white ovals in the "String of Pearls," one of eight massive rotating storms at 40 degrees south latitude on the gas giant planet. The image was taken on Oct. 24, 2017, as Juno performed its ninth close flyby of Jupiter. At the time the image was taken, the spacecraft was 20,577 miles (33,115 kilometers) from the tops of the clouds of the planet.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200 Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

7. Saturn's Rings: View from Beneath

image

Our Cassini spacecraft obtained this panoramic view of Saturn's rings on Sept. 9, 2017, just minutes after it passed through the ring plane. The view looks upward at the southern face of the rings from a vantage point above Saturn's southern hemisphere.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200 Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

8. From Hot to Hottest

image

This sequence of images from our Solar Dynamics Observatory shows the Sun from its surface to its upper atmosphere all taken at about the same time (Oct. 27, 2017). The first shows the surface of the sun in filtered white light; the other seven images were taken in different wavelengths of extreme ultraviolet light. Note that each wavelength reveals somewhat different features. They are shown in order of temperature, from the first one at about 11,000 degrees Fahrenheit (6,000 degrees Celsius) on the surface, out to about 10 million degrees in the upper atmosphere. Yes, the sun's outer atmosphere is much, much hotter than the surface. Scientists are getting closer to solving the processes that generate this phenomenon.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200 Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

9. High Resolution View of Ceres

image

This orthographic projection shows dwarf planet Ceres as seen by our Dawn spacecraft. The projection is centered on Occator Crater, home to the brightest area on Ceres. Occator is centered at 20 degrees north latitude, 239 degrees east longitude.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200 Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334 

10. In the Chasm

image

This image from our Mars Reconnaissance Orbiter shows a small portion of the floor of Coprates Chasma, a large trough within the Valles Marineris system of canyons. Although the exact sequence of events that formed Coprates Chasma is unknown, the ripples, mesas, and craters visible throughout the terrain point to a complex history involving multiple mechanisms of erosion and deposition. The main trough of Coprates Chasma ranges from 37 miles (60 kilometers) to 62 miles (100 kilometers) in width.

Desktop: 1280 x 800 | 1600 x 1200 | 1920 x 1200 Mobile: 1440 x 2560 | 1080 x 1920 | 750 x 1334

Explore and learn more about our solar system at: solarsystem.nasa.gov/. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
1 year ago
Vibrantly hued shapes speckle an image with a black background. Orbs glowing red, yellow, and blue are strewn across the frame, and a large, translucent blue haze dominates most of the center. Credit: NASA, ESA, and M. Brodwin (University of Missouri)

Astronomers used three of NASA's Great Observatories to capture this multiwavelength image showing galaxy cluster IDCS J1426.5+3508. It includes X-rays recorded by the Chandra X-ray Observatory in blue, visible light observed by the Hubble Space Telescope in green, and infrared light from the Spitzer Space Telescope in red. This rare galaxy cluster has important implications for understanding how these megastructures formed and evolved early in the universe.

How Astronomers Time Travel

Let’s add another item to your travel bucket list: the early universe! You don’t need the type of time machine you see in sci-fi movies, and you don’t have to worry about getting trapped in the past. You don’t even need to leave the comfort of your home! All you need is a powerful space-based telescope.

But let’s start small and work our way up to the farthest reaches of space. We’ll explain how it all works along the way.

This animation shows a small, blue planet Earth at the left of the frame and an even smaller white dot representing the Moon at the right. The background is black. A beam of light travels back and forth between them. The graphic is labeled “Earth and Moon to scale, Speed of light in real-time, surface-to-surface in 1.255 seconds, average distance 384,400 km.” Credit: James O'Donoghue, used with permission

This animation illustrates how fast light travels between Earth and the Moon. The farther light has to travel, the more noticeable its speed limit becomes.

The speed of light is superfast, but it isn’t infinite. It travels at about 186,000 miles (300 million meters) per second. That means that it takes time for the light from any object to reach our eyes. The farther it is, the more time it takes.

You can see nearby things basically in real time because the light travel time isn’t long enough to make a difference. Even if an object is 100 miles (161 kilometers) away, it takes just 0.0005 seconds for light to travel that far. But on astronomical scales, the effects become noticeable.

The Sun and planets are lined up along the center of the frame with distances shown to scale. The title is “The Solar System: with real-time speed of light.” Earth is labeled 1 AU, 8 minutes 17 seconds; Jupiter is 5.2 AU, 43 minutes 17 seconds; Saturn is 9.6 AU, 1 hour 20 minutes; Uranus is 19.2 AU, 2 hours 40 minutes; and Neptune is 30 AU, 4 hours 10 minutes. The bottom of the graphic says, “1 AU (astronomical unit) = 93 million miles, or 150 million kilometers.” Credit: James O'Donoghue, used with permission

This infographic shows how long it takes light to travel to different planets in our solar system.

Within our solar system, light’s speed limit means it can take a while to communicate back and forth between spacecraft and ground stations on Earth. We see the Moon, Sun, and planets as they were slightly in the past, but it's not usually far enough back to be scientifically interesting.

As we peer farther out into our galaxy, we use light-years to talk about distances. Smaller units like miles or kilometers would be too overwhelming and we’d lose a sense of their meaning. One light-year – the distance light travels in a year – is nearly 6 trillion miles (9.5 trillion kilometers). And that’s just a tiny baby step into the cosmos.

The Sun’s closest neighboring star, Proxima Centauri, is 4.2 light-years away. That means we see it as it was about four years ago. Betelgeuse, a more distant (and more volatile) stellar neighbor, is around 700 light-years away. Because of light’s lag time, astronomers don’t know for sure whether this supergiant star is still there! It may have already blasted itself apart in a supernova explosion – but it probably has another 10,000 years or more to go.

An undulating, translucent star-forming region in the Carina Nebula, hued in ambers and blues. Foreground stars with diffraction spikes can be seen, as can a speckling of background points of light through the cloudy nebula. Credit: NASA, ESA, CSA, and STScI

What looks much like craggy mountains on a moonlit evening is actually the edge of a nearby, young, star-forming region NGC 3324 in the Carina Nebula. Captured in infrared light by the Near-Infrared Camera (NIRCam) on NASA’s James Webb Space Telescope, this image reveals previously obscured areas of star birth.

The Carina Nebula clocks in at 7,500 light-years away, which means the light we receive from it today began its journey about 3,000 years before the pyramids of Giza in Egypt were built! Many new stars there have undoubtedly been born by now, but their light may not reach Earth for thousands of years.

Glowing spiral arms are twisted around like a cosmic cinnamon roll. A bright yellow oval is diagonal in the center of the frame, and sprays of stars extend outward from it like tentacles. Pink, white, and blue stars speckle the spiral arms and dusty lanes lie in between. The glowing arms are streaked with smaller clumps of dust. Credit: NASA and Nick Risinger

An artist’s concept of our Milky Way galaxy, with rough locations for the Sun and Carina nebula marked.

If we zoom way out, you can see that 7,500 light-years away is still pretty much within our neighborhood. Let’s look further back in time…

Spiral galaxy NGC 5643 with a bright, barred center surrounded by an orange-y glow. Vaguely purplish swirling arms extend outward from the center and appear somewhat mottled as streams of dust block white and blue stars in the arms here and there. A few stars are each surrounded by many sharp diffraction spikes. Credit: ESA/Hubble and NASA, A. Riess et al.; acknowledgement: Mahdi Zamani

This stunning image by the NASA/ESA Hubble Space Telescope features the spiral galaxy NGC 5643. Looking this good isn’t easy; 30 different exposures, for a total of nine hours of observation time, together with Hubble’s high resolution and clarity, were needed to produce an image of such exquisite detail and beauty.

Peering outside our Milky Way galaxy transports us much further into the past. The Andromeda galaxy, our nearest large galactic neighbor, is about 2.5 million light-years away. And that’s still pretty close, as far as the universe goes. The image above shows the spiral galaxy NGC 5643, which is about 60 million light-years away! That means we see it as it was about 60 million years ago.

As telescopes look deeper into the universe, they capture snapshots in time from different cosmic eras. Astronomers can stitch those snapshots together to unravel things like galaxy evolution. The closest ones are more mature; we see them nearly as they truly are in the present day because their light doesn’t have to travel as far to reach us. We can’t rewind those galaxies (or our own), but we can get clues about how they likely developed. Looking at galaxies that are farther and farther away means seeing these star cities in ever earlier stages of development.

The farthest galaxies we can see are both old and young. They’re billions of years old now, and the light we receive from them is ancient since it took so long to traverse the cosmos. But since their light was emitted when the galaxies were young, it gives us a view of their infancy.

The animation begins with a tiny dot of purplish light which quickly explodes, with a flash of light blossoming out to cover the whole frame. The light subsides and the screen shows galaxies of smudgy or spiral shapes racing outward from the center of the frame. Credit: NASA’s Goddard Space Flight Center

This animation is an artist’s concept of the big bang, with representations of the early universe and its expansion.

Comparing how fast objects at different distances are moving away opened up the biggest mystery in modern astronomy: cosmic acceleration. The universe was already expanding as a result of the big bang, but astronomers expected it to slow down over time. Instead, it’s speeding up!

The universe’s expansion makes it tricky to talk about the distances of the farthest objects. We often use lookback time, which is the amount of time it took for an object’s light to reach us. That’s simpler than using a literal distance, because an object that was 10 billion light-years away when it emitted the light we received from it would actually be more than 16 billion light-years away right now, due to the expansion of space. We can even see objects that are presently over 30 billion light-years from Earth, even though the universe is only about 14 billion years old.

Hundreds of red, yellow, white, and blue galaxies are sprinkled across a black background, appearing as small, brightly colored smudges. The tiniest galaxies appear as mere dots, while larger ones are disk-shaped. One blue star with six diffraction spikes shines in the lower-left corner. Credit: NASA, ESA, CSA, and M. Zamani (ESA/Webb). Science: B. Robertson (UCSC), S. Tacchella (Cambridge), E. Curtis-Lake (Hertfordshire), S. Carniani (Scuola Normale Superiore), and the JADES Collaboration

This James Webb Space Telescope image shines with the light from galaxies that are more than 13.4 billion years old, dating back to less than 400 million years after the big bang.

Our James Webb Space Telescope has helped us time travel back more than 13.4 billion years, to when the universe was less than 400 million years old. When our Nancy Grace Roman Space Telescope launches in a few years, astronomers will pair its vast view of space with Webb’s zooming capabilities to study the early universe in better ways than ever before. And don’t worry – these telescopes will make plenty of pit stops along the way at other exciting cosmic destinations across space and time.

Learn more about the exciting science Roman will investigate on X and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

Our Flying Observatory Goes to New Zealand!

Our flying observatory, called SOFIA, carries a 100-inch telescope inside a Boeing 747SP aircraft. Scientists onboard study the life cycle of stars, planets (including Pluto’s atmosphere), the area around black holes and complex molecules in space. 

Heading South

image

Once each year our flying observatory, SOFIA, its team and instruments travel to the Southern Hemisphere to Christchurch, New Zealand. From there the team studies stars and other objects that cannot be seen while flying in the Northern Hemisphere.

What We Study

image

We often study star formation in our Milky Way Galaxy. But from the Southern Hemisphere we can also study the lifecycle of stars in two other galaxies called the Magellanic Clouds. The Magallenic Clouds have different materials in them, which changes how stars form in these galaxies. Scientists are studying these differences to better understand how the first stars in our universe formed.  

Home Away from Home

image

The observatory and its team use the National Science Foundation’s U.S. Antarctic Program facility at Christchurch International Airport. The Antarctic program’s off-season is June and July, so it’s an ideal time for us to use these facilities.

Another Blast of Winter

image

The Southern Hemisphere’s seasons are opposite from our own. When we are operating from Christchurch in June and July, it’s winter. This means that the nights are very long – ideal for our nighttime observing flights, which last approximately 10 hours.

Light Show

image

These observations often bring us so far south that the team onboard can see the Southern Lights, also called the Aurora Australis. This is the Southern Hemisphere equivalent of the Northern Lights, or Aurora Borealis, visible near the North Pole. Auroras are caused by particles from space hitting the atmosphere near Earth’s magnetic poles. Our scientists onboard SOFIA don’t study the aurora, but they do enjoy the view.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Glacier Turns into a ‘Snow Swamp’

In just four days this summer, miles of snow melted from Lowell Glacier in Canada. Mauri Pelto, a glaciologist at Nichols College, called the area of water-saturated snow a “snow swamp.”

image

These false-color images show the rapid snow melt in Kluane National Park in the Yukon Territory. The first image was taken on July 22, 2018, by the European Space Agency’s Sentinel-2; the next image was acquired on July 26, 2018, by the Landsat 8 satellite.

Ice is shown as light blue, while meltwater is dark blue. On July 26, the slush covered more than 25 square miles (40 square km).

During those four days, daily temperatures 40 miles (60 km) northeast of the glacier reached 84 degrees Fahrenheit (29 degrees Celsius) — much higher than normal for the region in July.

Read more: https://go.nasa.gov/2Q9JSeO

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
1 year ago
An aerial view of the Barents Sea, north of Norway and Russia, shows white, wispy cloud coverage over both land and ocean. Clouds are seen in the bottom left corner extending up towards the top left corner but dwindling as they rise. Clouds are also seen in the top right corner. A green colored land mass is seen along the bottom third of the image. In the dark blue ocean are vibrant swirls of teal and green phytoplankton blooms. Credit: NASA

Sharpening Our View of Climate Change with the Plankton, Aerosol, Cloud, ocean Ecosystem Satellite

As our planet warms, Earth’s ocean and atmosphere are changing.

Climate change has a lot of impact on the ocean, from sea level rise to marine heat waves to a loss of biodiversity. Meanwhile, greenhouse gases like carbon dioxide continue to warm our atmosphere.

NASA’s upcoming satellite, PACE, is soon to be on the case!

Set to launch on Feb. 6, 2024, the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission will help us better understand the complex systems driving the global changes that come with a warming climate.

A global map centered on the Pacific Ocean. The map highlights the areas where ocean surface color changed. Change in color is represented by shades of green. The darkest green correlates to higher levels of change. Black dots on the map represent areas where chlorophyll levels also changed. Credit: NASA/Wanmei Liang; data from Cael, B. B., et al. (2023)

Earth’s ocean is becoming greener due to climate change. PACE will see the ocean in more hues than ever before.

While a single phytoplankton typically can’t be seen with the naked eye, communities of trillions of phytoplankton, called blooms, can be seen from space. Blooms often take on a greenish tinge due to the pigments that phytoplankton (similar to plants on land) use to make energy through photosynthesis.

In a 2023 study, scientists found that portions of the ocean had turned greener because there were more chlorophyll-carrying phytoplankton. PACE has a hyperspectral sensor, the Ocean Color Instrument (OCI), that will be able to discern subtle shifts in hue. This will allow scientists to monitor changes in phytoplankton communities and ocean health overall due to climate change.

Satellite image of a bright turquoise phytoplankton bloom in the Atlantic. The bloom is a large spiral shape on the right side of the image. Credit: USGS; NASA

Phytoplankton play a key role in helping the ocean absorb carbon from the atmosphere. PACE will identify different phytoplankton species from space.

With PACE, scientists will be able to tell what phytoplankton communities are present – from space! Before, this could only be done by analyzing a sample of seawater.

Telling “who’s who” in a phytoplankton bloom is key because different phytoplankton play vastly different roles in aquatic ecosystems. They can fuel the food chain and draw down carbon dioxide from the atmosphere to photosynthesize. Some phytoplankton populations capture carbon as they die and sink to the deep ocean; others release the gas back into the atmosphere as they decay near the surface.

Studying these teeny tiny critters from space will help scientists learn how and where phytoplankton are affected by climate change, and how changes in these communities may affect other creatures and ocean ecosystems.

Animation of aerosol model data around the world. Plumes of red, green, yellow, blue and pink swirl over the gray landmasses and blue ocean to show carbon, sulfate, dust, sea salt, and nitrate, respectively. Credit: NASA

Climate models are one of our most powerful tools to understand how Earth is changing. PACE data will improve the data these models rely on.

The PACE mission will offer important insights on airborne particles of sea salt, smoke, human-made pollutants, and dust – collectively called aerosols – by observing how they interact with light.

With two instruments called polarimeters, SPEXone and HARP2, PACE will allow scientists to measure the size, composition, and abundance of these microscopic particles in our atmosphere. This information is crucial to figuring out how climate and air quality are changing.

PACE data will help scientists answer key climate questions, like how aerosols affect cloud formation or how ice clouds and liquid clouds differ.

It will also enable scientists to examine one of the trickiest components of climate change to model: how clouds and aerosols interact. Once PACE is operational, scientists can replace the estimates currently used to fill data gaps in climate models with measurements from the new satellite.

Animation of the PACE satellite orbiting a gray globe. As the satellite orbits, colorful swaths are left in its path, indicating where the satellite has collected data. Credit: NASA

With a view of the whole planet every two days, PACE will track both microscopic organisms in the ocean and microscopic particles in the atmosphere. PACE’s unique view will help us learn more about the ways climate change is impacting our planet’s ocean and atmosphere.

Stay up to date on the NASA PACE blog, and make sure to follow us on Tumblr for your regular dose of sPACE!


Tags
7 years ago

What's Made in a Thunderstorm and Faster Than Lightning? Gamma Rays!

A flash of lightning. A roll of thunder. These are normal stormy sights and sounds. But sometimes, up above the clouds, stranger things happen. Our Fermi Gamma-ray Space Telescope has spotted bursts of gamma rays - some of the highest-energy forms of light in the universe - coming from thunderstorms. Gamma rays are usually found coming from objects with crazy extreme physics like neutron stars and black holes. 

So why is Fermi seeing them come from thunderstorms?

image

Thunderstorms form when warm, damp air near the ground starts to rise and encounters colder air. As the warm air rises, moisture condenses into water droplets. The upward-moving water droplets bump into downward-moving ice crystals, stripping off electrons and creating a static charge in the cloud.

image

The top of the storm becomes positively charged, and the bottom becomes negatively charged, like two ends of a battery. Eventually the opposite charges build enough to overcome the insulating properties of the surrounding air - and zap! You get lightning.

image

Scientists suspect that lightning reconfigures the cloud's electrical field. In some cases this allows electrons to rush toward the upper part of the storm at nearly the speed of light. That makes thunderstorms the most powerful natural particle accelerators on Earth!

image

When those electrons run into air molecules, they emit a terrestrial gamma-ray flash, which means that thunderstorms are creating some of the highest energy forms of light in the universe. But that's not all - thunderstorms can also produce antimatter! Yep, you read that correctly! Sometimes, a gamma ray will run into an atom and produce an electron and a positron, which is an electron's antimatter opposite!

image

The Fermi Gamma-ray Space Telescope can spot terrestrial gamma-ray flashes within 500 miles of the location directly below the spacecraft. It does this using an instrument called the Gamma-ray Burst Monitor which is primarily used to watch for spectacular flashes of gamma rays coming from the universe.

image

There are an estimated 1,800 thunderstorms occurring on Earth at any given moment. Over the 10 years that Fermi has been in space, it has spotted about 5,000 terrestrial gamma-ray flashes. But scientists estimate that there are 1,000 of these flashes every day - we're just seeing the ones that are within 500 miles of Fermi's regular orbits, which don't cover the U.S. or Europe.

The map above shows all the flashes Fermi has seen since 2008. (Notice there's a blob missing over the lower part of South America. That's the South Atlantic Anomaly, a portion of the sky where radiation affects spacecraft and causes data glitches.)

image

Fermi has also spotted terrestrial gamma-ray flashes coming from individual tropical weather systems. The most productive system we've seen was Tropical Storm Julio in 2014, which later became a hurricane. It produced four flashes in just 100 minutes!

image

Learn more about what Fermi's discovered about gamma rays over the last 10 years and how we're celebrating its accomplishments.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
3 years ago

How Climate Change Showed Up in 2021

2021 was tied for the sixth-hottest year since modern record keeping began. We work together with the National Oceanic and Atmospheric Administration to track temperatures around the world and study how they change from year to year.

How Climate Change Showed Up In 2021

For decades, the overall global temperature has been increasing because of human activities. The last decade has been the warmest on record. Each individual year’s average temperature, however, can be affected by things like ocean circulation, volcanic eruptions, and specific weather events.

For instance, last year we saw the beginning of La Niña – a pattern of cooler waters in the Pacific – that was responsible for slightly cooling 2021’s average temperature. Still, last year continued a long-term trend of global warming.

Globally, Earth’s temperature in 2021 was nearly 2°F warmer than the late 19th Century, for the seventh year in a row.

How Climate Change Showed Up In 2021

The Record

Studying 142 Years

Since 1880, we can put together a consistent record of temperatures around the planet and see that it was much colder in the late-19th century. Before 1880, uncertainties in tracking global temperatures are larger. Temperatures have increased even faster since the 1970s, the result of increasing greenhouse gases in the atmosphere.

Tracking Millions of Individual Observations

Our scientists use millions of individual observations of data from more than 20,000 weather stations and Antarctic research stations, together with ship- and buoy-based observations of sea surface temperatures, to track global temperatures.

How Climate Change Showed Up In 2021

Reviewing Multiple Independent Records

Our global temperature record – GISTEMP – is one of a number of independent global temperature records, all of which show the same pattern of warming.

How Climate Change Showed Up In 2021

The Consequences

Everywhere Experiences Climate Change Differently

As Earth warms, temperature changes occur unevenly around the globe. The Arctic is currently warming about four times faster than the rest of the planet – a process called Arctic amplification. Similarly, urban areas tend to warm faster than rural areas, partly because building materials like asphalt, steel and concrete retain heat.

How Climate Change Showed Up In 2021

Droughts and Floods in Warmer Weather

More than 88% of the Western US experienced drought conditions in 2021. At the same time, communities in Western Europe saw two months’ worth of rain in 24 hours, breaking records and triggering flash floods. Because a hotter climate means more water can be carried in the atmosphere, areas like the Western US suffer drought from the increased 'thirstiness' of the atmosphere, while precipitation events can become more extreme as the amount of moisture in the atmosphere rises.

How Climate Change Showed Up In 2021

Sea Levels Continue to Rise

Melting ice raises sea levels around the world, as meltwater drains into the ocean. In addition, heat causes the ocean water to expand. From 1993 to today, global mean sea level has been rising around 3.4 millimeters per year. In 2021, sea level data from the recently launched NASA/ESA Sentinel-6 Michael Freilich mission became available to the public.

How Climate Change Showed Up In 2021

There is Hope

“This is not good news, but the fact that we are able to track this in real time and understand why it’s changing, and get people to notice why it’s changing and how we can change things to change the next trajectory, that gives me hope. Because we’re not in the dark here. We’re not the dinosaurs who are unaware the comet is coming. We can see the comet coming, and we can act.” – Dr. Gavin Schmidt, director of NASA GISS, where the global temperature record is calculated

Make sure to follow us on Tumblr for your regular dose of space!


Tags
7 years ago

Vice President Mike Pence visited our Kennedy Space Center in Florida today. While there, he delivered remarks to the workforce and toured our complex to see progress toward sending humans deeper into space, and eventually to Mars. He also had the opportunity to see our work with commercial companies to launch humans from U.S. soil to the International Space Station. 

8 years ago

Celebrating 17 Years of NASA’s ‘Little Earth Satellite That Could’

The satellite was little— the size of a small refrigerator; it was only supposed to last one year and constructed and operated on a shoestring budget — yet it persisted.

After 17 years of operation, more than 1,500 research papers generated and 180,000 images captured, one of NASA’s pathfinder Earth satellites for testing new satellite technologies and concepts comes to an end on March 30, 2017. The Earth Observing-1 (EO-1) satellite will be powered off on that date but will not enter Earth’s atmosphere until 2056. 

“The Earth Observing-1 satellite is like The Little Engine That Could,” said Betsy Middleton, project scientist for the satellite at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. 

To celebrate the mission, we’re highlighting some of EO-1’s notable contributions to scientific research, spaceflight advancements and society. 

Scientists Learn More About Earth in Fine Detail

image

This animation shifts between an image showing flooding that occurred at the Arkansas and Mississippi rivers on January 12, 2016, captured by ALI and the rivers at normal levels on February 14, 2015 taken by the Operational Land Imager on Landsat 8. Credit: NASA’s Earth Observatory  

EO-1 carried the Advanced Land Imager that improved observations of forest cover, crops, coastal waters and small particles in the air known as aerosols. These improvements allowed researchers to identify smaller features on a local scale such as floods and landslides, which were especially useful for disaster support. 

image

On the night of Sept. 6, 2014, EO-1’s Hyperion observed the ongoing eruption at Holuhraun, Iceland as shown in the above image. Partially covered by clouds, this scene shows the extent of the lava flows that had been erupting.

EO-1’s other key instrument Hyperion provided an even greater level of detail in measuring the chemical constituents of Earth’s surface— akin to going from a black and white television of the 1940s to the high-definition color televisions of today. Hyperion’s level of sophistication doesn’t just show that plants are present, but can actually differentiate between corn, sorghum and many other species and ecosystems. Scientists and forest managers used these data, for instance, to explore remote terrain or to take stock of smoke and other chemical constituents during volcanic eruptions, and how they change through time.  

Crowdsourced Satellite Images of Disasters   

image

EO-1 was one of the first satellites to capture the scene after the World Trade Center attacks (pictured above) and the flooding in New Orleans after Hurricane Katrina. EO-1 also observed the toxic sludge in western Hungary in October 2010 and a large methane leak in southern California in October 2015. All of these scenes, which EO-1 provided quick, high-quality satellite imagery of the event, were covered in major news outlets. All of these scenes were also captured because of user requests. EO-1 had the capability of being user-driven, meaning the public could submit a request to the team for where they wanted the satellite to gather data along its fixed orbits. 

image

This image shows toxic sludge (red-orange streak) running west from an aluminum oxide plant in western Hungary after a wall broke allowing the sludge to spill from the factory on October 4, 2010. This image was taken by EO-1’s Advanced Land Imager on October 9, 2010. Credit: NASA’s Earth Observatory

 Artificial Intelligence Enables More Efficient Satellite Collaboration

image

This image of volcanic activity on Antarctica’s Mount Erebus on May 7, 2004 was taken by EO-1’s Advanced Land Imager after sensing thermal emissions from the volcano. The satellite gave itself new orders to take another image several hours later. Credit: Earth Observatory

EO-1 was among the first satellites to be programmed with a form of artificial intelligence software, allowing the satellite to make decisions based on the data it collects. For instance, if a scientist commanded EO-1 to take a picture of an erupting volcano, the software could decide to automatically take a follow-up image the next time it passed overhead. The Autonomous Sciencecraft Experiment software was developed by NASA’s Jet Propulsion Laboratory in Pasadena, California, and was uploaded to EO-1 three years after it launched. 

image

This image of Nassau Bahamas was taken by EO-1’s Advanced Land Imager on Oct 8, 2016, shortly after Hurricane Matthew hit. European, Japanese, Canadian, and Italian Space Agency members of the international coalition Committee on Earth Observation Satellites used their respective satellites to take images over the Caribbean islands and the U.S. Southeast coastline during Hurricane Matthew. Images were used to make flood maps in response to requests from disaster management agencies in Haiti, Dominican Republic, St. Martin, Bahamas, and the U.S. Federal Emergency Management Agency.

The artificial intelligence software also allows a group of satellites and ground sensors to communicate and coordinate with one another with no manual prompting. Called a "sensor web", if a satellite viewed an interesting scene, it could alert other satellites on the network to collect data during their passes over the same area. Together, they more quickly observe and downlink data from the scene than waiting for human orders. NASA's SensorWeb software reduces the wait time for data from weeks to days or hours, which is especially helpful for emergency responders. 

Laying the Foundation for ‘Formation Flying’

image

This animation shows the Rodeo-Chediski fire on July 7, 2002, that were taken one minute apart by Landsat 7 (burned areas in red) and EO-1 (burned areas in purple). This precision formation flying allowed EO-1 to directly compare the data and performance from its land imager and the Landsat 7 ETM+. EO-1’s most important technology goal was to test ALI for future Landsat satellites, which was accomplished on Landsat 8. Credit: NASA’s Goddard Space Flight Center

EO-1 was a pioneer in precision “formation flying” that kept it orbiting Earth exactly one minute behind the Landsat 7 satellite, already in orbit. Before EO-1, no satellite had flown that close to another satellite in the same orbit. EO-1 used formation flying to do a side-by-side comparison of its onboard ALI with Landsat 7’s operational imager to compare the products from the two imagers. Today, many satellites that measure different characteristics of Earth, including the five satellites in NASA's A Train, are positioned within seconds to minutes of one another to make observations on the surface near-simultaneously.

For more information on EO-1’s major accomplishments, visit: https://www.nasa.gov/feature/goddard/2017/celebrating-17-years-of-nasa-s-little-earth-satellite-that-could

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com/.


Tags
6 years ago

Five Ways NASA’s Internships Rock(et)

Sending humans to space, returning to the Moon, transforming aircraft, exploring the extraordinary every day: just a few things you are a part of as a NASA intern. Whether you have dreamed of working at the agency your whole life, or discovered a new interest, students at NASA have the opportunity to make real contributions to space exploration and flight. Want to know more? Here are five ways these internships can be rocket fuel for your career:

5. NASA gives you a navigation system. 

Five Ways NASA’s Internships Rock(et)

Imagine walking into a lab to work side-by-side with NASA scientists, engineers and researchers. As a NASA intern, that’s a daily reality. Mentors are full-time employees who guide and work with students throughout their internship. Space communications intern Nick Sia believes working with a mentor is what makes NASA’s internships different. “Working one-on-one has given me more opportunities to work on different projects,” he says. “It’s the best motivation to do great work.”

4. It’s more than training for launch day. 

image

As a NASA intern, your work matters. Students are treated as employees, and their ideas are valued. Hands-on assignments allow interns to make real contributions to NASA research and gain experience. For example, Erin Rezich is working in our mobility lab to help design excavation hardware for planetary surfaces such as the Moon. “It’s an incredibly exciting project because these are problems that have to be solved to move planetary exploration forward,” she says.

3. Students develop an array of skills.

image

Not only do interns improve their technical skills, but they are also building communication and leadership skills. This summer, students are taking part in a two-week immersive design challenge. Participants will design a Ram Air Turbine for NASA Glenn’s 1x1 Supersonic Wind Tunnel. “This design challenge is a unique opportunity to create a design from scratch, which could actually be implemented,” says Woodrow Funk, an electrical testing engineer intern. Projects such as this allow students to work independently, plan, organize and improve time management skills. 

2. Non-technical degrees shoot for the stars. 

image

NASA also offers many opportunities for students pursuing a career outside of STEM fields. Departments such as human resources, administration, education and communications engage students with hands-on projects. These organizations provide support essential to NASA’s programs and missions. “I was excited that NASA offered opportunities that match my skill set,” says Molly Kearns, a digital media student working with Space Communications and Navigation. Kearns’ first summer at NASA confirmed her passion for graphic design. “What makes the experience so rewarding is seeing content that I created published on social media sites,” she says.

1. Students are surrounded by extraordinary peers. 

image

Students come to NASA from all over the nation to develop important skills matched to their career goals and expand the way they think about their work. Being surrounded by the best scientists, developers, engineers, mathematicians and communicators is inspiring. NASA’s network is one of graduate fellow Jamesa Stokes’ main motivations. “There are tons of smart and awesome people who work here,” says Stokes, “At the end of the day, they are willing to help anyone who comes and asks for it.”

Are you ready to liftoff your career? Learn more about opportunities for students at NASA here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • sk8echo
    sk8echo liked this · 1 year ago
  • keithgray
    keithgray liked this · 2 years ago
  • vanderlysposts
    vanderlysposts liked this · 2 years ago
  • illbebuyingallofthoseflowers
    illbebuyingallofthoseflowers liked this · 3 years ago
  • john-erby
    john-erby liked this · 3 years ago
  • quiero-hacer-algo-increible
    quiero-hacer-algo-increible liked this · 3 years ago
  • hillarysss
    hillarysss liked this · 3 years ago
  • winchesterwitch07
    winchesterwitch07 liked this · 3 years ago
  • harebellpudding
    harebellpudding liked this · 3 years ago
  • dibyas-world
    dibyas-world liked this · 3 years ago
  • serendipityandfaith
    serendipityandfaith liked this · 3 years ago
  • dawgstreetbank20trillion
    dawgstreetbank20trillion liked this · 3 years ago
  • paigeysblog
    paigeysblog liked this · 3 years ago
  • cheezbot
    cheezbot liked this · 3 years ago
  • bravorjjjj-blog
    bravorjjjj-blog reblogged this · 3 years ago
  • thinketh-me-do
    thinketh-me-do liked this · 3 years ago
  • bhcdl
    bhcdl liked this · 3 years ago
  • recycling-friend
    recycling-friend liked this · 3 years ago
  • beatrice-otter
    beatrice-otter reblogged this · 3 years ago
  • infinitesystems
    infinitesystems liked this · 3 years ago
  • archerajs
    archerajs liked this · 3 years ago
  • belindasvasconcelos
    belindasvasconcelos liked this · 3 years ago
  • littlemissrand
    littlemissrand liked this · 3 years ago
  • silentninjacat2
    silentninjacat2 liked this · 3 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags