Last year, Godzilla made its way across the Atlantic Ocean. No, it wasn’t a giant lizard monster, but a cloud of dust so large it could be seen from a million miles away in space.
The plume of dust blowing from the Sahara Desert broke records and was nicknamed the “Godzilla plume.”
This year, another massive dust plume is traveling across the Atlantic.
The transport of dust from the Sahara to the Americas isn’t unusual: every year, winds pick up more than 180 million tons of dust particles from the Sahara Desert, move them over the African continent and carry them all the way across the Atlantic Ocean, depositing much of the dust along the way.
What’s remarkable about the past two years is the size of the plumes. Last year, the “Godzilla plume” was the largest dust storm in our two decades of observations.
Although this year’s plume has yet to complete its journey across the Atlantic, dust plumes from the Sahara often have important impacts on the Americas.
So, why do the dust plumes matter?
Before the Sahara was a desert, it was a lakebed, where nutrients like phosphorous and iron were deposited before the lake dried up. As a result, winds pick up these nutrients in the dust plumes. Some of these nutrients get deposited in the Atlantic Ocean, feeding marine life – iron, for example, is critical for marine life. Phosphorus is also a much-needed nutrient that fertilizes vegetation in the Amazon rainforest. The amount of phosphorus deposited by Saharan dust plumes into the Amazon every year – around 22,000 tons – is roughly equivalent to the amount that gets removed from the rainforest’s soil by weather conditions. In other words, long term, the dust plumes provide an essential nutrient to the Amazon’s vegetation.
Both the dust plumes themselves and the conditions associated with them can also influence the formation of tropical storms during hurricane season. As climate change appears to be strengthening the strongest storms, understanding the relationship between dust plumes and hurricanes has only grown more important.
The dust plumes can carry microbes that can be deadly and can worsen air quality, creating potentially dangerous conditions for sensitive populations. The iron in the plumes can also kick off blooms of toxic algae off the coast of Florida that result from the increase in nutrients in the ocean.
What comes next for Saharan dust? We’re still looking into it!
Some research suggests dust plumes will intensify with higher temperatures and dryer conditions, creating more loose dust to be picked up. However, other research shows that rising ocean temperatures and changing wind speeds would result in more rainfall and vegetation in the desert, reducing how much dust blows across the Atlantic. Make sure to follow us on Tumblr for your regular dose of space!
Exploration requires mobility. And whether you’re on Earth or as far away as the Moon or Mars, you need good tires to get your vehicle from one place to another. Our decades-long work developing tires for space exploration has led to new game-changing designs and materials. Yes, we’re reinventing the wheel—here’s why.
Early tire designs were focused on moving hardware and astronauts across the lunar surface. The last NASA vehicle to visit the Moon was the Lunar Roving Vehicle during our Apollo missions. The vehicle used four large flexible wire mesh wheels with stiff inner frames. We used these Apollo era tires as the inspiration for new designs using newer materials and technology to better function on a lunar surface.
During the mid-2000s, we worked with industry partner Goodyear to develop the Spring Tire, an airless compliant tire that consists of several hundred coiled steel wires woven into a flexible mesh, giving the tires the ability to support high loads while also conforming to the terrain. The Spring Tire has been proven to generate very good traction and durability in soft sand and on rocks.
A little over a year after the Mars Curiosity Rover landed on Mars, engineers began to notice significant wheel damage in 2013 due to the unexpectedly harsh terrain. That’s when engineers began developing new Spring Tire prototypes to determine if they would be a new and better solution for exploration rovers on Mars.
In order for Spring Tires to go the distance on Martian terrain, new materials were required. Enter nickel titanium, a shape memory alloy with amazing capabilities that allow the tire to deform down to the axle and return to its original shape.
After building the shape memory alloy tire, Glenn engineers sent it to the Jet Propulsion Laboratory’s Mars Life Test Facility. It performed impressively on the punishing track.
New, high performing tires would allow lunar and Mars rovers to explore greater regions of the surface than currently possible. They conform to the terrain and do not sink as much as rigid wheels, allowing them to carry heavier payloads for the same given mass and volume. Also, because they absorb energy from impacts at moderate to high speeds, there is potential for use on crewed exploration vehicles which are expected to move at speeds significantly higher than the current Mars rovers.
Maybe. Recently, engineers and materials scientists have been testing a spinoff tire version that would work on cars and trucks on Earth. Stay tuned as we continue to push the boundaries on traditional concepts for exploring our world and beyond.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Have you ever wondered if you have what it takes to become a NASA Astronaut? We’re accepting applications starting March 2, and we’re encouraging all eligible Americans to apply by March 31!
It’s an incredible time in human spaceflight to be an astronaut. With Artemis, our sights are set on the Moon – to stay – by utilizing sustainable lunar missions, and you could be one of the humans on the surface! During their careers, this next class of astronauts may also fly on any of four different U.S. spacecraft: the International Space Station, Boeing’s CST-100 Starliner, SpaceX’s Crew Dragon and our Orion deep-space exploration vehicle; They will be at the cutting edge of a new era in human exploration.
So, still interesting in joining our ranks as an Artemis generation astronaut? Here are a few things to note.
MYTH: All astronauts have piloting experience.
FACT: You don’t need to be a pilot to be an astronaut. Flying experience is not a requirement, but could be beneficial to have.
MYTH: All astronauts have perfect vision.
FACT: It’s okay if you don’t have 20/20 vision. As of September 2007, corrective surgical procedures of the eye (PRK and LASIK), are now allowed, providing at least 1 year has passed since the date of the procedure with no permanent adverse after effects.
MYTH: All astronauts have advanced degrees like, a PhD.
FACT: While a Master’s degree from an accredited university is necessary, the requirement can also be met with the completion (or current enrollment that will result in completion by June 2021) of a nationally recognized test pilot school program.
MYTH: Astronauts are required to have military experience in order to be selected.
FACT: Military experience is not required to become an astronaut.
MYTH: You have to be a certain age in order to be an astronaut.
FACT: There are no age restrictions. Astronaut candidates selected in the past have ranged between the ages of 26 and 46, with the average age being 34.
The basic requirements to apply include United States citizenship and a master’s degree in a STEM field, including engineering, biological science, physical science, computer science, or mathematics, from an accredited institution. The requirement for the master’s degree can also be met by:
Two years (36 semester hours or 54 quarter hours) of work toward a Ph.D. program in a related science, technology, engineering or math field;
A completed doctor of medicine or doctor of osteopathic medicine degree;
Completion (or current enrollment that will result in completion by June 2021) of a nationally recognized test pilot school program.
Candidates also must have at least two years of related, progressively responsible professional experience, or at least 1,000 hours of pilot-in-command time in jet aircraft. Astronaut candidates must pass the NASA long-duration spaceflight physical.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
It’s Black Friday, but for us, it’s the annual Black Hole Friday! Today, we’ll post awesome images and information about black holes.
A black hole is a place in space where gravity pulls so much that even light cannot get out. The gravity is so strong because matter has been squeezed into a tiny space…sort of like all of those shoppers trying to fit into the department stores today.
Because no light can get out, people can’t see black holes. They are invisible. Space telescopes with special tools can help find black holes (sort of how those websites help you find shopping deals).
How big are black holes? Black holes can be big or small…just like the lines in all of the stores today. Scientists think the smallest black holes are as small as just one atom. These black holes are very tiny but have the mass of a large mountain! Mass is the amount of matter, or “stuff”, in an object.
So how do black holes form? Scientists think the smallest black holes formed when the universe began. Stellar black holes are made when the center of a very big star falls upon itself, or collapses. When this happens, it causes a supernova. A supernova is an exploding star that blasts part of the star into space. Scientists think supermassive black holes were made at the same time as the galaxy they are in.
For more fun facts and information about black holes, be sure to follow us on social media.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
50 years ago, three Apollo astronauts rode this 363 foot tall rocket, the Saturn V, embarking on one of the greatest missions of mankind – to step foot on another world. On July 20, 1969, astronauts Buzz Aldrin, Michael Collins and Neil Armstrong made history when they arrived at the Moon. Thanks to the Saturn V rocket, we were able to complete this epic feat, returning to the lunar surface a total of six times. The six missions that landed on the Moon returned a wealth of scientific data and almost 400 kilograms of lunar samples.
In honor of this historic launch, the National Air and Space Museum is projecting the identical rocket that took our astronauts to the Moon on the Washington Monument in Washington, D.C.
This week, you can watch us salute our Apollo 50th heroes and look forward to our next giant leap for future missions to the Moon and Mars. Tune in to a special two-hour live NASA Television broadcast at 1 p.m. ET on Friday, July 19. Watch the program at www.nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We’re committed to exploration and discovery, journeying to the Moon, Mars, and beyond. But how do we guide our missions on their voyage among the stars? Navigation engineers lead the way!
Using complex mathematical formulas, navigation experts calculate where our spacecraft are and where they’re headed. No matter the destination, navigating the stars is a complicated challenge that faces all our missions. But, we think you’re up to the task!
Our space navigation workbook lets you explore the techniques and mathematical concepts used by navigation engineers. The book delves into groundbreaking navigation innovations like miniaturized atomic clocks, autonomous navigation technologies, using GPS signals at the Moon, and guiding missions through the solar system with X-ray emissions from pulsars — a type of neutron star. It also introduces you to experts working with NASA’s Space Communications and Navigation program at Goddard Space Flight Center in Greenbelt, Maryland.
If you’re a high schooler who dreams of guiding a rover across the rocky surface of Mars or planning the trajectory of an observer swinging around Venus en route to the Sun, this workbook is for you! Download it today and start your adventure with NASA: https://go.nasa.gov/3i7Pzqr
While even the most “normal” black hole seems exotic compared to the tranquil objects in our solar system, there are some record-breaking oddballs. Tag along as we look at the biggest, closest, farthest, and even “spinniest” black holes discovered in the universe … that we know of right now!
Located 700 million light-years away in the galaxy Holmberg 15A, astronomers found a black hole that is a whopping 40 billion times the mass of the Sun — setting the record for the biggest black hole found so far. On the other hand, the smallest known black hole isn’t quite so easy to pinpoint. There are several black holes with masses around five times that of our Sun. There’s even one candidate with just two and a half times the Sun’s mass, but scientists aren’t sure whether it’s the smallest known black hole or actually the heaviest known neutron star!
You may need to take a seat for this one. The black hole GRS 1915+105 will make you dizzier than an afternoon at an amusement park, as it spins over 1,000 times per second! Maybe even more bizarre than how fast this black hole is spinning is what it means for a black hole to spin at all! What we're actually measuring is how strongly the black hole drags the space-time right outside its event horizon — the point where nothing can escape. Yikes!
If you’re from Earth, the closest black hole that we know of right now, Mon X-1 in the constellation Monoceros, is about 3,000 light-years away. But never fear — that’s still really far away! The farthest known black hole is J0313-1806. The light from its surroundings took a whopping 13 billion years to get to us! And with the universe constantly expanding, that distance continues to grow.
So, we know about large (supermassive, hundreds of thousands to billions of times the Sun's mass) and small (stellar-mass, five to dozens of times the Sun's mass) black holes, but what about other sizes? Though rare, astronomers have found a couple that seem to fit in between and call them intermediate-mass black holes. As for tiny ones, primordial black holes, there is a possibility that they were around when the universe got its start — but there’s not enough evidence so far to prove that they exist!
One thing that’s on astronomers’ wishlist is to see two supermassive black holes crashing into one another. Unfortunately, that event hasn’t been detected — yet! It could be only a matter of time before one reveals itself.
Though these are the records now, in early 2021 … records are meant to be broken, so who knows what we’ll find next!
Add some of these records and rare finds to your black hole-watch list, grab your handy-dandy black hole field guide to learn even more about them — and get to searching!
Keep up with NASA Universe on Facebook and Twitter where we post regularly about black holes.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
From the vantage point of the International Space Station, astronaut Shane Kimbrough (@astro_kimbrough) captured this image over the Earth, writing “Looking west over the Red Sea, Saudi Arabia and Egypt. #EarthArt from the amazing space station.”
The space station serves as the world's laboratory for conducting cutting-edge microgravity research, and is the primary platform for technology development and testing in space to enable human and robotic exploration of destinations beyond low-Earth orbit, including asteroids and Mars.
At our Johnson Space Center, located in Houston, it has been busy since July 10. Here are six things that have been going on in Houston with our astronauts, the International Space Station and our next great telescope! Take a look:
1. Our James Webb Space Telescope is Spending 100 Days in a Freezing Cold Chamber
Imagine seeing 13.5 billion light-years back in time, watching the birth of the first stars, galaxies evolve and solar systems form…our James Webb Space Telescope will do just that once it launches in 2019.
Webb will be the premier observatory of the next decade, studying every phase in the cosmic history of our universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems.
On July 10, the Webb telescope entered Johnson Space Center’s historic Chamber A for its final cryogenic test that lasts about 100 days behind a closed giant vault-like door.
Why did we put Webb in this freezing cold chamber? To ensure it can withstand the harsh environment it will experience in space.
The telescope has been in a space-like environment in the chamber, tested at cryogenic temperatures. In space, the telescope must operate at extremely cold temperatures so that it can detect infrared light – heat radiation -- from faint, distant objects.
To keep the telescope cold while in space, Webb has a sunshield the size of a tennis court, which blocks sunlight (as well as reflected light from the Earth and Moon). This means that the sun-facing side of the observatory is incredibly hot while the telescope-side remains at sub-freezing temperatures.
2. Our 12 new astronaut candidates reported to Houston to start training
Our newest class of astronaut candidates, which were announced on June 7, reported for training on August 13. These candidates will train for two years on International Space Station systems, space vehicles and Russian language, among many other skills, before being flight-ready.
3. Our Mission Control Center operated for 2,400 hours
While astronauts are in space, Mission Control operates around the clock making sure the crew is safe and the International Space Station is functioning properly. This means workers in Mission Control work in three shifts, 7 a.m. – 4 p.m., 3 p.m. – midnight and 11 p.m. – 8 a.m. This includes holidays and weekends. Day or night, Mission Control is up and running.
4. Key Teams at Johnson Space Center Continued Critical Operations During Hurricane Harvey
Although Johnson Space Center closed during Hurricane Harvey, key team members and critical personnel stayed onsite to ensure crucial operations would continue. Mission Control remained in operation throughout this period, as well as all backup systems required to maintain the James Webb Space Telescope, which is at Johnson for testing, were checked prior to the arrival of the storm, and were ready for use if necessary.
5. Crews on the International Space Station conducted hundreds of science experiments.
Mission Control at Johnson Space Center supported astronauts on board the International Space Station as they worked their typical schedule in the microgravity environment. Crew members work about 10 hours a day conducting science research that benefits life on Earth as well as prepares us for travel deeper into space.
The space station team in Houston supported a rigorous schedule of launches of cargo that included supplies and science materials for the crew living and working in the orbiting laboratory, launched there by our commercial partners.
6. Two new crews blasted off to space and a record breaking astronaut returned from a stay on space station
Houston is home to the Astronaut Corps, some of whom end up going out-of-this-world. On July 28, NASA Astronaut Randy Bresnik launched to the International Space Station alongside Italian astronaut Paolo Naspoli and Russian cosmonaut Sergey Ryazanskiy. Joining them at the International Space Station were NASA Astronauts Joe Acaba and Mark Vande Hei who launched September 12 with Russian cosmonaut Alexander Misurkin.
When NASA Astronaut Peggy Whitson landed with crewmates Jack Fischer of NASA and Fyoder Yurchikhin of Roscosmos, she broke the record for the most cumulative time in space by a U.S. astronaut. She landed with over 650 days of cumulative flight time and more than 53 hours of spacewalk time. Upon her return, the Human Research Program in Houston studies her health and how the human body adapted to her time in space.
Learn more about the Johnson Space Center online, or on Facebook, Twitter or Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Chemical Gardens, a new investigation aboard the International Space Station takes a classic science experiment to space with the hope of improving our understanding of gravity’s impact on their structural formation.
Here on Earth, chemical gardens are most often used to teach students about things like chemical reactions.
Chemical gardens form when dissolvable metal salts are placed in an aqueous solution containing anions such as silicate, borate, phosphate, or carbonate.
Delivered to the space station aboard SpaceX’S CRS-15 cargo mission, the samples for this experiment will be processed by crew members and grown throughout Expedition 56 before returning to Earth.
Results from this investigation could provide a better understanding of cement science and improvements to biomaterial devices used for scaffolding, for use both in space and on Earth.
Follow the growth of the chemical garden and the hundreds of other investigations constantly orbiting above you by following @ISS_Research on Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What is the real raw advice for someone wanting to pursue a career at NASA?
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts