Hi.dr.naomi.i Have 2 Questions.

Hi.dr.naomi.i have 2 questions.

1.Can this JAMES WEB T.S able to see Mercury, Venus and certain stars that are close to the sun either. I.

2.Why is the James Webb t.s.mirror yellow?

Any specific reason for this

More Posts from Nasa and Others

7 years ago

How visible will the stars be compared to a normal night sky if I'm in the path of totality? (Sun completely covered)

I’m not entirely sure, but you will be able to see some stars that you normally wouldn’t see. https://eclipse2017.nasa.gov/sites/default/files/publications/Eclipse_brochure-bookmark_508.pdf In fact, during the 1919 eclipse, Sir Arthur Eddington and others used our ability to see stars close to the Sun during the eclipse to help confirm Einstines’ theory of general relativity. https://eclipse2017.nasa.gov/testing-general-relativity


Tags
9 years ago

What Happened to Mars?

Billions of years ago, Mars was a very different world. Liquid water flowed in long rivers that emptied into lakes and shallow seas. A thick atmosphere blanketed the planet and kept it warm.

image

Today, Mars is bitter cold. The Red Planet’s thin and wispy atmosphere provides scant cover for the surface below.

image

Our MAVEN Mission

The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission is part of our Mars Scout program. This spacecraft launched in November 2013, and is exploring the Red Planet’s upper atmosphere, ionosphere and interactions with the sun and solar wind.

image

The purpose of the MAVEN mission is to determine the state of the upper atmosphere of Mars, the processes that control it and the overall atmospheric loss that is currently occurring. Specifically, MAVEN is exploring the processes through which the top of the Martian atmosphere can be lost to space. Scientists think that this loss could be important in explaining the changes in the climate of Mars that have occurred over the last four billion years.

New Findings

Today, Nov. 5, we will share new details of key science findings from our ongoing exploration of Mars during a news briefing at 2 p.m. EDT. This event will be broadcast live on NASA Television. Have questions? Use #askNASA during the briefing.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
9 years ago

What are Gravitational Waves?

Today, the National Science Foundation (NSF) announced the detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO), a pair of ground-based observatories. But...what are gravitational waves? Let us explain:

image

Gravitational waves are disturbances in space-time, the very fabric of the universe, that travel at the speed of light. The waves are emitted by any mass that is changing speed or direction. The simplest example is a binary system, where a pair of stars or compact objects (like black holes) orbit their common center of mass.

image

We can think of gravitational effects as curvatures in space-time. Earth’s gravity is constant and produces a static curve in space-time. A gravitational wave is a curvature that moves through space-time much like a water wave moves across the surface of a lake. It is generated only when masses are speeding up, slowing down or changing direction.

Did you know Earth also gives off gravitational waves? Earth orbits the sun, which means its direction is always changing, so it does generate gravitational waves, although extremely weak and faint.

What do we learn from these waves?

Observing gravitational waves would be a huge step forward in our understanding of the evolution of the universe, and how large-scale structures, like galaxies and galaxy clusters, are formed.

Gravitational waves can travel across the universe without being impeded by intervening dust and gas. These waves could also provide information about massive objects, such as black holes, that do not themselves emit light and would be undetectable with traditional telescopes.

image

Just as we need both ground-based and space-based optical telescopes, we need both kinds of gravitational wave observatories to study different wavelengths. Each type complements the other.

Ground-based: For optical telescopes, Earth’s atmosphere prevents some wavelengths from reaching the ground and distorts the light that does.

Space-based: Telescopes in space have a clear, steady view. That said, telescopes on the ground can be much larger than anything ever launched into space, so they can capture more light from faint objects.

How does this relate to Einstein’s theory of relativity?

The direct detection of gravitational waves is the last major prediction of Einstein’s theory to be proven. Direct detection of these waves will allow scientists to test specific predictions of the theory under conditions that have not been observed to date, such as in very strong gravitational fields.

image

In everyday language, “theory” means something different than it does to scientists. For scientists, the word refers to a system of ideas that explains observations and experimental results through independent general principles. Isaac Newton's theory of gravity has limitations we can measure by, say, long-term observations of the motion of the planet Mercury. Einstein's relativity theory explains these and other measurements. We recognize that Newton's theory is incomplete when we make sufficiently sensitive measurements. This is likely also true for relativity, and gravitational waves may help us understand where it becomes incomplete.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What’s your favorite part of the job?


Tags
4 years ago

An Addition to our Space Rock Collection

On October 20th, our OSIRIS-REx mission will make its first attempt to collect and retrieve a sample of asteroid Bennu, a near-Earth asteroid. On sample collection day, Bennu will be over 200 million miles away from Earth.  

Asteroids are the building blocks of our solar system. A sample of this ancient material can tell us about the history of our planet and the origins of life. Science results published from the mission on October 8th confirm that Bennu contains carbon in a form often found in biology or in compounds associated with biology.

image

To collect a sample, OSIRIS-REx will attempt a method NASA has never used before – called Touch-And-Go (TAG).  First, the spacecraft extends its robotic sampling arm, the Touch-And-Go Sample Acquisition Mechanism (TAGSAM) – from its folded storage position. The spacecraft’s two solar panels then move into a “Y-wing” configuration over the spacecraft’s body, which positions them safely up and away from the asteroid’s surface during touch down. This configuration also places the spacecraft’s center of gravity directly over the TAGSAM collector head, which is the only part of the spacecraft that will contact Bennu’s surface.

image

Finding a safe sample collection site on Bennu’s rocky landscape was a challenge. During the sampling event, the spacecraft, which is the size of a large van, will attempt to touch down in an area that is only the size of a few parking spaces, and just a few steps away from enormous boulders.

image

The spacecraft will only make contact with Bennu for a matter of seconds - just long enough to blow nitrogen gas onto the surface to roil up dust and small pebbles, which will then be captured for a return to Earth.

image

We need to conduct a few tests before we can confirm we collected a large enough sample (about 2 oz). First, OSIRIS-REx will take images of the collector head to see if it contains rocks and dust. Second, the spacecraft will spin with the TAGSAM extended to determine the mass of collected material. If these measures show a successful collection, we will stow the sample for return to Earth. If sufficient sample has not been collected, the spacecraft has onboard nitrogen charges for two more attempts. The next TAG attempt would be made no earlier than January 2021.

image

Despite the many challenges, the OSIRIS-REx team is ready. They’ve practiced and prepared for this moment.

Join in with #ToBennuAndBack and tune in on October 20th.

Learn more about the OSIRIS-REx countdown to TAG HERE.

Learn more about the OSIRIS-REx mission HERE, or follow the mission on Facebook, Twitter and Instagram.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

The Geminids Are Now Playing in a Sky Near You

The Geminids, which peak during mid-December each year, are considered to be one of the best and most reliable annual meteor showers. 

This month, they're active from Dec. 4-17, and peak the evening of Dec. 13-14 for a full 24 hours, meaning more worldwide meteor watchers will get to enjoy the show. 

Below are 10 things to know about this beautiful spectacle.

image

1. The forecast. 

From our resident night sky expert, Jane Jones: If you can see Orion and Gemini in the sky, you'll see some Geminids. Expect to see about 60 meteors per hour before midnight on Dec. 13 and from midnight-3:30 a.m. on Dec. 14 from a dark sky. You'll see fewer meteors after moonrise at 3:30 a.m. local time. In the southern hemisphere, you won't see as many, perhaps 10-20 per hour, because the radiant—the point in the sky where the meteor shower appears to originate—never rises above the horizon.

2. Viewing tips.

Kids can join in on the fun as early as 9 or 10 p.m. You'll want to find an area well away from city or street lights. Come prepared for winter temperatures with a sleeping bag, blanket, or lawn chair. Lie flat on your back and look up, taking in as much of the sky as possible. After about 30 minutes in the dark, your eyes will adapt and you'll begin to see meteors. Be patient—the show will last until dawn, so you have plenty of time to catch a glimpse.

3. Late bloomer.

The Geminids weren't always such as a spectacular show. When they first began appearing in the mid-1800s, there were only 10-20 visible meteors per hour. Since then, the Geminids have grown to become one of the major showers of the year.

image

4. Remind me—where do meteor showers come from?

Meteors come from leftover comet particles and bits from asteroids. When these objects come around the Sun, they leave a dusty trail behind them. Every year, the Earth passes through these debris trails, which allows the bits to collide with our atmosphere, where they disintegrate to create fiery and colorful streaks in the sky.

image

5. That said...

While most meteor showers come from comets, the Geminids originate from an asteroid: 3200 Phaethon. Asteroid 3200 Phaethon takes 1.4 years to orbit the Sun once. It is possible that Phaethon is a "dead comet" or a new kind of object being discussed by astronomers called a "rock comet." Phaethon's comet-like, highly-elliptical orbit around the Sun supports this hypothesis. That said, scientists aren't too sure how to define Phaethon. When it passes by the Sun, it doesn't develop a cometary tail, and its spectra looks like a rocky asteroid. Also, the bits and pieces that break off to form the Geminid meteoroids are several times denser than cometary dust flakes.

image

6. Tell me more. 

3200 Phaethon was discovered on Oct. 11, 1983 by the Infrared Astronomical Satellite. Because of its close approach to the Sun, Phaethon is named after the Greek mythological character who drove the Sun-god Helios' chariot. Phaethon is a small asteroid: its diameter measures only 3.17 miles (5.10 kilometers) across. And we have astronomer Fred Whipple to thank—he realized that Phaethon is the source for the Geminids.

7. A tale of twins. 

The Geminids' radiant is the constellation Gemini, a.k.a. the "Twins." And, of course, the constellation of Gemini is also where we get the name for the shower: Geminids.

image

8. In case you didn't know. 

The constellation for which a meteor shower is named only helps stargazers determine which shower they're viewing on a given night; the constellation is not the source of the meteors. Also, don't just look to the constellation of Gemini to view the Geminids—they're visible throughout the night sky. 9. And in case you miss the show. 

There's a second meteor shower in December: the Ursids, radiating from Ursa Minor, the Little Dipper. If Dec. 22 and the morning of Dec. 23 are clear where you are, have a look at the Little Dipper's bowl—you might see about 10 meteors per hour. 10. Endless opportunities. There are so many sights to see in the sky. Use the Night Sky Network, the Solar System Ambassadors, and the Museum Alliance to look up local astronomy clubs, and join them for stargazing events in town, and under dark skies.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

More Than Just Drawings

Artist and graphic designer Mike Okuda may not be a household name, but you’re more familiar with his work than you know. Okuda’s artistic vision has left a mark here at NASA and on Star Trek. The series debuted 50 years ago in September 1966 and the distinctive lines and shapes of logos and ships that he created have etched their way into the minds of fans and inspired many.  

Flight Ops

image

The Flight Operations patch has a lengthy history, the original version of which dates to the early 1970s. Having designed a version of the patch, Okuda had some insights about the evolution of the design.

“The original version of that emblem was designed around 1972 by Robert McCall and represented Mission Control. It later changed to Mission Operations. I did the 2004 version, incorporating the space station, and reflecting the long-term goals of returning to the Moon, then on to Mars and beyond. I later did a version intended to reflect the new generation of spacecraft that are succeeding the shuttle, and most recently the 2014 version reflecting the merger of Mission Operations with the Astronaut Office under the new banner Flight Operations.”

“The NASA logos and patches are an important part of NASA culture,” Okuda said. “They create a team identity and they focus pride on a mission.”

image

In July 2009, Okuda received the NASA Exceptional Public Service Medal, which is awarded to those who are not government employees, but have made exceptional contributions to NASA’s mission. Above, Okuda holds one of the mission patches he designed, this one for STS-125, the final servicing mission to the Hubble Space Telescope.

Orion

image

Among the other patches that Okuda has designed for us, it one for the Orion crew exploration vehicle. Orion is an integral of our Journey to Mars and is an advanced spacecraft that will take our astronauts deeper into the solar system than ever before. 

Okuda’s vision of space can be seen in the Star Trek series through his futuristic set designs, a vision that came from his childhood fascination with the space program. 

Learn more about Star Trek and NASA.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
4 years ago

5 Out of this World Experiments Awaiting Crew-1 Space Scientists

NASA astronauts Shannon Walker, Victor Glover, and Mike Hopkins, and JAXA (Japan Aerospace Exploration Agency) astronaut Soichi Noguchi embark on a historic mission on November 14, 2020 aboard the Crew Dragon. NASA’s Crew-1 mission marks the first certified crew rotation flight to the International Space Station. During their 6-month stay on orbit, these crew members will don their science caps and complete experiments in microgravity.  Check out five out of this world experiments you can expect to see these space scientists working on during Expedition 64.

1. Space Gardening

The Crew-1 astronauts will become space farmers with the responsibility of tending to the rad(ish) garden located in a facility known as the Advanced Plant Habitat (APH). Researchers are investigating radishes in the Plant Habitat-02 experiment as a candidate crop for spaceflight applications to supplement food sources for astronauts. Radishes have the benefits of high nutritional content and quick growth rates, making these veggies an intriguing option for future space farmers on longer missions to the Moon or Mars.

image

2. Micro Miners

Microbes can seemingly do it all, including digging up the dirt (so to speak).  The BioAsteroid investigation looks at the ability of bacteria to break down rock.  Future space explorers could use this process for extracting elements from planetary surfaces and refining regolith, the type of soil found on the moon, into usable compounds.  To sum it up, these microbial miners rock.

image

3. Cooler Exploration Spacesuits

The iconic spacesuits used to walk on the moon and perform spacewalks on orbit are getting an upgrade. The next generation spacesuit, the Exploration Extravehicular Mobility Unit (xEMU), will be even cooler than before, both in looks and in terms of ability to regulate astronaut body temperature.  The Spacesuit Evaporation Rejection Flight Experiment (SERFE) experiment is a technology demonstration being performed on station to look at the efficiency of multiple components in the xEMU responsible for thermal regulation, evaporation processes, and preventing corrosion of the spacesuits.

image
image
image

4. Chips in Space

Crew-1 can expect to get a delivery of many types of chips during their mission.  We aren’t referring to the chips you would find in your pantry.  Rather, Tissue Chips in Space is an initiative sponsored by the National Institutes of Health to study 3D organ-like constructs on a small, compact devices in microgravity. Organ on a chip technology allows for the study of disease processes and potential therapeutics in a rapid manner. During Expedition 64, investigations utilizing organ on a chip technology will include studies on muscle loss, lung function, and the blood brain barrier – all on devices the size of a USB flashdrive.

image
image

5. The Rhythm of Life

Circadian rhythm, otherwise known as our "internal clock," dictates our sleep-wake cycles and influences cognition. Fruit flies are hitching a ride to the space station as the subjects of the Genes in Space-7 experiment, created by a team of high school students.  These flies, more formally known as the Drosophila melanogaster, are a model organism, meaning that they are common subjects of scientific study. Understanding changes in the genetic material that influences circadian rhythm in microgravity can shed light on processes relevant to an astronaut’s brain function.

image
image

Make sure to follow us on Tumblr for your regular dose of space:  http://nasa.tumblr.com

For updates on other platforms, follow @ISS_Research, Space Station Research and Technology News, or our Facebook to keep up with the science happening aboard your orbiting laboratory, and step outside to see the space station passing over your town using Spot the Station.


Tags
7 years ago

10 Ways to Celebrate Pi Day with Us on March 14

On March 14, we will join people across the U.S. as they celebrate an icon of nerd culture: the number pi. 

So well known and beloved is pi, also written π or 3.14, that it has a national holiday named in its honor. And it’s not just for mathematicians and rocket scientists. National Pi Day is widely celebrated among students, teachers and science fans, too. Read on to find out what makes pi so special, how it’s used to explore space and how you can join the celebration with resources from our collection.

image

1—Remind me, what is pi?

Pi, also written π, is the Swiss Army knife of numbers. No matter how big or small a circle – from the size of our universe all the way down to an atom or smaller – the ratio of a circle’s circumference (the distance around it) to its diameter (the distance across it) is always equal to pi. Most commonly, pi is used to answer questions about anything circular or spherical, so it comes in handy especially when you’re dealing with space exploration.

image

2—How much pi do you need?

For simplicity, pi is often rounded to 3.14, but its digits go on forever and don’t appear to have any repeating patterns. While people have made it a challenge to memorize record-breaking digits of pi or create computer programs to calculate them, you really don’t need that many digits for most calculations – even at NASA. Here’s one of our engineers on how many decimals of pi you need.

image

3—Officially official.

Pi pops up in everything from rocket-science-level math to the stuff you learn in elementary school, so it’s gained a sort of cult following. On March 14 (or 3/14 in U.S. date format) in 1988, a physicist at the San Francisco Exploratorium held what is thought to be the first official Pi Day celebration, which smartly included the consumption of fruit pies. Math teachers quickly realized the potential benefits of teaching students about pi while they ate pie, and it all caught on so much that in 2009, the U.S. Congress officially declared March 14 National Pi Day. Here’s how to turn your celebration into a teachable moment.

image

4—Pi helps us explore space!

Space is full of circular and spherical features, and to explore them, engineers at NASA build spacecraft that make elliptical orbits and guzzle fuel from cylindrical fuel tanks, and measure distances on circular wheels. Beyond measurements and space travel, pi is used to find out what planets are made of and how deep alien oceans are, and to study newly discovered worlds. In other words, pi goes a long way at NASA.

image

5—Not just for rocket scientists.

No Pi Day is complete without a little problem solving. Even the math-averse will find something to love about this illustrated math challenge that features real questions scientists and engineers must answer to explore and study space – like how to determine the size of a distant planet you can’t actually see. Four new problems are added to the challenge each year and answers are released the day after Pi Day.

image

6—Teachers rejoice.

For teachers, the question is not whether to celebrate Pi Day, but how to celebrate it. (And how much pie is too much? Answer: The limit does not exist.) Luckily, our Education Office has an online catalog for teachers with all 20 of its “Pi in the Sky” math challenge questions for grades 4-12. Each lesson includes a description of the real-world science and engineering behind the problem, an illustrated handout and answer key, and a list of applicable Common Core Math and Next Generation Science Standards.

image

7—How Do We celebrate?

In a way, we celebrate Pi Day every day by using pi to explore space. But in our free time, we’ve been known to make and eat space-themed pies, too! Share your own nerdy celebrations with us here.

image

8—A pop-culture icon.

The fascination with pi, as well its popularity and accessibility have made it a go-to math reference in books, movies and television. Ellie, the protagonist in Carl Sagan’s book “Contact,” finds a hidden message from aliens in the digits of pi. In the original “Star Trek” series, Spock commanded an alien entity that had taken over the computer to compute pi to the last digit – an impossible task given that the digits of pi are infinite. And writers of “The Simpsons,” a show known for referencing math, created an episode in which Apu claims to know pi to 40,000 digits and proves it by stating that the 40,000th digit is 1.

image

9—A numbers game.

Calculating record digits of pi has been a pastime of mathematicians for millennia. Until the 1900s, these calculations were done by hand and reached records in the 500s. Once computers came onto the scene, that number jumped into the thousands, millions and now trillions. Scientist and pi enthusiast Peter Trueb holds the current record – 22,459,157,718,361 digits – which took his homemade computer 105 days of around-the-clock number crunching to achieve. The record for the other favorite pastime of pi enthusiasts, memorizing digits of pi, stands at 70,030.

image

10—Time to throw in the tau?

As passionate as people are about pi, there are some who believe things would be a whole lot better if we replaced pi with a number called tau, which is equal to 2π or 6.28. Because many formulas call for 2π, tau-enthusiasts say tau would provide a more elegant and efficient way to express those formulas. Every year on Pi Day, a small debate ensues. While we won’t take sides, we will say that pi is more widely used at NASA because it has applications far beyond geometry, where 2π is found most often. Perhaps most important, though, for pi- and pie-lovers alike is there’s no delicious homonym for tau.

Enjoy the full version of this article HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Pinpointing the Cause of Earth’s Recent Record CO2 Spike

A new NASA study provides space-based evidence that Earth’s tropical regions were the cause of the largest annual increases in atmospheric carbon dioxide concentration seen in at least 2,000 years.

What was the cause of this?

Scientists suspect that the 2015-2016 El Niño – one of the largest on record – was responsible. El Niño is a cyclical warming pattern of ocean circulation in the Pacific Ocean that affects weather all over the world. Before OCO-2, we didn’t have enough data to understand exactly how El Nino played a part.

image

Analyzing the first 28 months of data from our Orbiting Carbon Observatory (OCO-2) satellite, researchers conclude that impacts of El Niño-related heat and drought occurring in the tropical regions of South America, Africa and Indonesia were responsible for the record spike in global carbon dioxide.

image

These three tropical regions released 2.5 gigatons more carbon into the atmosphere than they did in 2011. This extra carbon dioxide explains the difference in atmospheric carbon dioxide growth rates between 2011 and the peak years of 2015-16.

image

In 2015 and 2016, OCO-2 recorded atmospheric carbon dioxide increases that were 50% larger than the average increase seen in recent years preceding these observations.

image

In eastern and southern tropical South America, including the Amazon rainforest, severe drought spurred by El Niño made 2015 the driest year in the past 30 years. Temperatures were also higher than normal. These drier and hotter conditions stressed vegetation and reduced photosynthesis, meaning trees and plants absorbed less carbon from the atmosphere. The effect was to increase the net amount of carbon released into the atmosphere.

image

In contrast, rainfall in tropical Africa was at normal levels, but ecosystems endured hotter-than-normal temperatures. Dead trees and plants decomposed more, resulting in more carbon being released into the atmosphere.

image

Meanwhile, tropical Asia had the second-driest year in the past 30 years. Its increased carbon release, primarily from Indonesia, was mainly due to increased peat and forest fires -  also measured by satellites.

image

We knew El Niños were one factor in these variations, but until now we didn’t understand, at the scale of these regions, what the most important processes were. OCO-2’s geographic coverage and data density are allowing us to study each region separately.

Why does the amount of carbon dioxide in our atmosphere matter?

The concentration of carbon dioxide in Earth’s atmosphere is constantly changing. It changes from season to season as plants grow and die, with higher concentrations in the winter and lower amounts in the summer. Annually averaged atmospheric carbon dioxide concentrations have generally increased year over year since the 1800s – the start of the widespread Industrial Revolution. Before then, Earth’s atmosphere naturally contained about 595 gigatons of carbon in the form of carbon dioxide. Currently, that number is 850 gigatons.

image

Carbon dioxide is a greenhouse gas, which means that it can trap heat. Since greenhouse gas is the principal human-produced driver of climate change, better understanding how it moves through the Earth system at regional scales and how it changes over time are important aspects to monitor.

image

Get more information about these data HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • beanwood
    beanwood liked this · 1 year ago
  • ava1enzue1a
    ava1enzue1a reblogged this · 2 years ago
  • ava1enzue1a
    ava1enzue1a liked this · 2 years ago
  • tavsianus
    tavsianus liked this · 2 years ago
  • catch-m
    catch-m liked this · 3 years ago
  • xxxdiskretxxx
    xxxdiskretxxx liked this · 3 years ago
  • lekaisernoir
    lekaisernoir liked this · 3 years ago
  • 1xx-daniel-xx1
    1xx-daniel-xx1 liked this · 3 years ago
  • colavanillla
    colavanillla liked this · 3 years ago
  • svria
    svria liked this · 3 years ago
  • cyberwrite
    cyberwrite liked this · 3 years ago
  • irinalediaeva
    irinalediaeva liked this · 3 years ago
  • mymarcolelis
    mymarcolelis liked this · 3 years ago
  • jchapa13
    jchapa13 liked this · 3 years ago
  • moodamanblog
    moodamanblog liked this · 3 years ago
  • ilyjenna
    ilyjenna liked this · 3 years ago
  • mhanyz
    mhanyz liked this · 3 years ago
  • 007jf
    007jf liked this · 3 years ago
  • qaveaevaq
    qaveaevaq liked this · 3 years ago
  • jimmycuadx
    jimmycuadx liked this · 3 years ago
  • enby-astronaut
    enby-astronaut liked this · 3 years ago
  • mloyasworld
    mloyasworld liked this · 3 years ago
  • universerover
    universerover liked this · 3 years ago
  • steeleagle777
    steeleagle777 liked this · 3 years ago
  • soumyadas
    soumyadas liked this · 3 years ago
  • trila-venzien-isdarthrevan
    trila-venzien-isdarthrevan liked this · 3 years ago
  • rpricy
    rpricy liked this · 3 years ago
  • dragons-barb
    dragons-barb liked this · 3 years ago
  • edrenkust
    edrenkust liked this · 3 years ago
  • a23lina
    a23lina liked this · 3 years ago
  • astecrix
    astecrix liked this · 3 years ago
  • exactlyelectronicething
    exactlyelectronicething liked this · 3 years ago
  • iamrude
    iamrude liked this · 3 years ago
  • readinginzerogravity
    readinginzerogravity liked this · 3 years ago
  • cristianofranco
    cristianofranco liked this · 3 years ago
  • luminouslumity
    luminouslumity reblogged this · 3 years ago
  • luminouslumity
    luminouslumity liked this · 3 years ago
  • ametystfox
    ametystfox liked this · 3 years ago
  • banap-longbottom
    banap-longbottom liked this · 3 years ago
  • zelink-nalu
    zelink-nalu liked this · 3 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags