NASA is calling all space enthusiasts to send their artistic endeavors on a journey aboard NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft. This will be the first U.S. mission to collect a sample of an asteroid and return it to Earth for study.
OSIRIS-REx is scheduled to launch in September and travel to the asteroid Bennu. The #WeTheExplorers campaign invites the public to take part in this mission by expressing, through art, how the mission’s spirit of exploration is reflected in their own lives. Submitted works of art will be saved on a chip on the spacecraft. The spacecraft already carries a chip with more than 442,000 names submitted through the 2014 “Messages to Bennu” campaign.
“The development of the spacecraft and instruments has been a hugely creative process, where ultimately the canvas is the machined metal and composites preparing for launch in September,” said Jason Dworkin, OSIRIS-REx project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It is fitting that this endeavor can inspire the public to express their creativity to be carried by OSIRIS-REx into space.”
A submission may take the form of a sketch, photograph, graphic, poem, song, short video or other creative or artistic expression that reflects what it means to be an explorer. Submissions will be accepted via Twitter and Instagram until March 20. For details on how to include your submission on the mission to Bennu, go to:
http://www.asteroidmission.org/WeTheExplorers
“Space exploration is an inherently creative activity,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “We are inviting the world to join us on this great adventure by placing their art work on the OSIRIS-REx spacecraft, where it will stay in space for millennia.”
The spacecraft will voyage to the near-Earth asteroid Bennu to collect a sample of at least 60 grams (2.1 ounces) and return it to Earth for study. Scientists expect Bennu may hold clues to the origin of the solar system and the source of the water and organic molecules that may have made their way to Earth.
Goddard provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. The University of Arizona, Tucson leads the science team and observation planning and processing. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA's New Frontiers Program. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency's Science Mission Directorate in Washington.
For more information on OSIRIS-Rex, visit:
http://www.nasa.gov/osiris-rex
NASA astronaut Suni Williams cannonballs off a Boeing CST-100 Starliner test article after NASA engineers and Air Force pararescuemen climbed aboard the spacecraft to simulate rescuing astronauts in the event of an emergency during launch or ascent.
The Starliner is designed for land-based returns, but simulating rescue operations at NASA’s Langley Research Center’s Hydro Impact Basin in Hampton, Virginia, ensures flight crew and ground support are versed in what to do during a contingency scenario.
For more information about rescue and safety operations, see Commercial Crew: Building in Safety from the Ground Up in a Unique Way.
Credit: NASA/David C. Bowman
Eagle Nebula
via reddit
This self-portrait of NASA's Curiosity Mars rover shows the vehicle at "Namib Dune," where the rover's activities included scuffing into the dune with a wheel and scooping samples of sand for laboratory analysis.
The scene combines 57 images taken on Jan. 19, 2016, during the 1,228th Martian day, or sol, of Curiosity's work on Mars. The camera used for this is the Mars Hand Lens Imager (MAHLI) at the end of the rover's robotic arm.
Namib Dune is part of the dark-sand "Bagnold Dune Field" along the northwestern flank of Mount Sharp. Images taken from orbit have shown that dunes in the Bagnold field move as much as about 3 feet (1 meter) per Earth year.
The location of Namib Dune is show on a map of Curiosity's route athttp://mars.nasa.gov/msl/multimedia/images/?ImageID=7640. The relationship of Bagnold Dune Field to the lower portion of Mount Sharp is shown in a map at PIA16064.
The view does not include the rover's arm. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites, including "Rocknest" (PIA16468), "Windjana" (PIA18390) and "Buckskin" (PIA19807).
For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide.
MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover.
More information about Curiosity is online at http://www.nasa.gov/msl andhttp://mars.jpl.nasa.gov/msl/.
After years of preparatory studies, we are formally starting an astrophysics mission designed to help unlock the secrets of the universe.
With a view 100 times bigger than that of our Hubble Space Telescope, WFIRST will help unravel the secrets of dark energy and dark matter, and explore the evolution of the cosmos. It will also help us discover new worlds and advance the search for planets suitable for life.
WFIRST is slated to launch in the mid-2020s. The observatory will begin operations after traveling about one million miles from Earth, in a direction directly opposite the sun.
Telescopes usually come in two different “flavors” - you have really big, powerful telescopes, but those telescopes only see a tiny part of the sky. Or, telescopes are smaller and so they lack that power, but they can see big parts of the sky. WFIRST is the best of worlds.
No matter how good a telescope you build, it’s always going to have some residual errors. WFIRST will be the first time that we’re going to fly an instrument that contains special mirrors that will allow us to correct for errors in the telescope. This has never been done in space before!
Employing multiple techniques, astronomers will also use WFIRST to track how dark energy and dark matter have affected the evolution of our universe. Dark energy is a mysterious, negative pressure that has been speeding up the expansion of the universe. Dark matter is invisible material that makes up most of the matter in our universe.
Single WFIRST images will contain over a million galaxies! We can’t categorize and catalogue those galaxies on our own, which is where citizen science comes in. This allows interested people in the general public to solve scientific problems.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Vibration test at 80% power of the European Structural Test Article conducted at NASA Glenn’s Space Power Facility at Plum Brook Station, Sandusky, Ohio.
Footage from vibration and thermal vacuum testing of the SCALPSS cameras and data storage unit.
Credits: NASA/Gary Banziger
This little black camera looks like something out of a spy movie — the kind of device one might use to snap discrete photos of confidential documents.
It's about half the size of a computer mouse.
The SCALPSS cameras, one of which is pictured here prior to thermal vacuum testing, are about the size of a computer mouse. Credits: NASA
But the only spying this camera — four of them, actually — will do is for NASA researchers wondering what happens under a spacecraft as it lands on the Moon.
It's a tiny technology with a big name — Stereo Camera for Lunar Plume-Surface Studies, or SCALPSS for short — and it will journey to the Moon in 2021 as a payload aboard an Intuitive Machines Nova-C lunar lander spacecraft. Intuitive Machines is one of two U.S. companies delivering technology and science experiments to the lunar surface later this year as part of NASA's Commercial Lunar Payload Services (CLPS) initiative. SCALPSS will provide important data about the crater formed by the rocket plume of the lander as it makes its final descent and landing on the Moon's surface.
As part of the Artemis program, NASA will send robots and humans to study more of the Moon than ever before. The agency plans to establish sustainable lunar exploration by the end of the decade, and has outlined its Artemis Base Camp concept for the lunar South Pole. Landers may deliver multiple payloads very near one another. Data such as that from SCALPSS will prove aid in computer models that inform subsequent landings.
SCALPSS team members prepare the cameras and data storage unit for vibration testing. Credits: NASA/David C. Bowman
"As we send bigger, heavier payloads and we try to land things in close proximity to each other, first at the Moon then at Mars, this ability to predict landing impacts is very important," said Michelle Munk, principal investigator for SCALPSS at NASA's Langley Research Center in Hampton, Virginia.
The four SCALPSS cameras, which will be placed around the base of the commercial lander, will begin monitoring crater formation from the precise moment a lander's hot engine plume begins to interact with the Moon's surface.
"If you don't see the crater when it starts to form, you can't really model it," said Munk. "You've got to have the start point and the end point and then you can figure out what happened, in between."
The cameras will continue capturing images until after the landing is complete. Those final stereo images, which will be stored on a small onboard data storage unit before being sent to the lander for downlink back to Earth, will allow researchers to reconstruct the crater's ultimate shape and volume.
The SCALPSS data storage unit will store the imagery the cameras collect as the Intuitive Machines Nova-C lunar lander spacecraft makes its final descent and lands on the Moon's surface. Credits: NASA
Testing to characterize the SCALPSS camera and lens took place last year at NASA's Marshall Space Flight Center in Huntsville, Alabama. Researchers conducted radial distortion, field-of-view and depth-of-focus tests among others. They also ran analytical models to better characterize how the cameras will perform. Development of the actual SCALPSS payload took place at Langley. And over the summer, researchers were able to enter the lab to assemble the payload and conduct thermal vacuum and vibration tests.
That lab access involves special approval from officials at Langley, which is currently only giving access to essential employees and high-priority projects to keep employees safe during the ongoing COVID-19 pandemic. SCALPSS was one of the first projects to return to the center. Before they could do that, facilities had to pass safety and hazard assessments. And while on center, the team had to follow strict COVID-19 safety measures, such as wearing masks and limiting the number of people who could be in a room at one time. The center also provided ample access to personal protective equipment and hand sanitizer.
The SCALPSS hardware was completed in late October and will be delivered to Intuitive Machines in February.
"Development and testing for the project moved at a pretty brisk pace with very limited funds," said Robert Maddock, SCALPSS project manager. "This was likely one of the most challenging projects anyone on the team has ever worked on."
But Munk, Maddock and the entire project team have embraced these challenges because they know the images these little cameras collect may have big ripple effects as NASA prepares for a human return to the Moon as part of the Artemis program.
"To be able to get flight data and update models and influence other designs — it's really motivating and rewarding," said Munk.
Hot off the heels of this project, the SCALPSS team has already begun development of a second payload called SCALPSS 1.1. It will be flown by another CLPS commercial lander provider to a non-polar region of the Moon in 2023 and collect data similar to its predecessor. It will also carry two additional cameras to get higher resolution stereo images of the landing area before engine plume interactions begin, which is critical for the analytic models in establishing the initial conditions for the interactions.
NASA’s Artemis program includes sending a suite of new science instruments and technology demonstrations to study the Moon, landing the first woman and next man on the lunar surface in 2024, and establishing a sustained presence by the end of the decade. The agency will leverage its Artemis experience and technologies to prepare for humanity’s the next giant leap – sending astronauts to Mars as early as the 2030s.
Joe Atkinson NASA Langley Research Center
The Transiting Exoplanet Survey Satellite (TESS) is the next step in the search for planets outside of our solar system, including those that could support life. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits.
TESS will survey 200,000 of the brightest stars near the sun to search for transiting exoplanets. The mission is scheduled to launch in 2018.
The TESS launch date is NLT June 2018 (the current working launch date is April 2018).
Music: "Prototype" and "Trial" both from Killer Tracks. Credit: NASA’s Goddard Space Flight Center
NASA Goddard Space Flight Center
In many ways, the military and NASA couldn’t be different. Frank Batts has managed to navigate both worlds with precision, grace and just a bit of humor. After serving as a major general in the Army National Guard, he made the transition to working on computers as an engineer at NASA’s Langley Research Center in Hampton, Virginia.
“They’re opposites, but that keeps me balanced,” Batts said. “In the Army, you’re out there blowing things up in the field. Here, you’re trying to build electronic computer components.”
Batts is a senior data-systems engineer with the Advanced Measurement and Data Systems Branch at NASA’s Langley Research Center in Hampton, Virginia. He has been at Langley for 34 years and has seen the tools of the job change.
“Technology has changed tremendously,” said the 63-year-old Batts. “When we started out in the eighties, we were all using proprietary operating systems on real-time computers that were not widely used or understood. Now we’re pretty much using PCs for our work.”
In addition to his NASA career, Batts served his country with distinction in the armed forces – and made history along the way. He retired from the Army National Guard in 2012 as a major general and commander of the 29th Infantry Division in Fort Belvoir, Virginia - the first African-American to hold that post. He also served in the West Virginia and Tennessee national guards.
The adventure begins
Batts’ journey started in 1976, when he was accepted at North Carolina Agricultural and Technical State University in Greensboro and joined the Army Reserve Officer Training Corps (ROTC) there.
While at the university, Batts entered a cooperative program with the Union Carbide Corp., working in a gaseous diffusion plant in the nuclear division. After graduating from North Carolina A&T, Batts worked fulltime as an electrical engineer with Union Carbide, and as an engineering officer in the West Virginia National Guard.
“Initially when you get out of college, you’re competing with engineers from other schools,” Batts said. “I found out pretty soon that regardless of what school you came from, it got down to who can really deliver projects on time and on budget.”
Batts was pursuing a master’s degree in electronics engineering at North Carolina A&T around the time IBM introduced personal computers. He was told PCs were a fad and not worth investing in, but he glimpsed the future and got on board.
“It looked like to me it was the way to go,” he said.
But then in 1979, the Three Mile Island nuclear power plant in Pennsylvania experienced a partial core meltdown, releasing radioactive gas into the atmosphere.
The incident changed his professional trajectory, as the Union Carbide-run K-25 facility in Oak Ridge, Tennessee, where Batts was working, enriched uranium for nuclear power plants.
“Prior to Three Mile Island there were plans to construct nuclear plants all over the country, and K-25’s future was secure,” Batts said. “After Three Mile Island, all of those plans were dropped; we had more enriched uranium than was needed and K-25 was slated for closure.”
That meant he needed another job. While looking to move on, Batts found that NASA Langley was using a computing system similar to the one he used while he was with Union Carbide. He sets his sights on Langley, and has been on center as an electronic engineer since 1984 .
Two worlds in one
Batts’ military and NASA worlds were peacefully cohabitating until the Sept. 11, 2001, terrorist attacks. Batts was soon activated and from May 2004 through April 2005, served with the 54th Field Artillery Brigade Headquarters as the mobile liaison team chief in Kabul, Afghanistan as part of Operation Enduring Freedom.
“With the Army comes the leadership responsibilities. I managed a few thousand troops, and that’s no fun. I make an effort in my career at NASA to stay on the technical side rather than on the administrative side of things,” he said with a laugh.
What is fun for Batts, besides getting in more rounds at the golf course in his spare time, is serving as an example for engineering students though NASA’s outreach programs.
Batts, as the first engineer in his family, said he realizes the importance of recognizing those who blazed the trail for others.
“I have to pay homage to the people who came before me,” he said. “Before I was able to command a battalion, there was some else who commanded one, and did a credible enough job so that I had an opportunity.”
Batts also enjoys the reaction of people when they learn he works for NASA.
“There’s a lot of prestige that goes with working at NASA,” he said. “When people find out you work at NASA, they seem to look at you a bit differently.”
Eric Gillard NASA Langley Research Center
For only the second time in a year, a NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a view of the moon as it moved in front of the sunlit side of Earth.
The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four-megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA).
The first image is from July 2016 and the second image (moon traveling diagonally Northeast in the image) is from July 2015
Credits: NASA
Get a behind-the-scenes look at how test dummies at NASA's Langley Research Center contribute to making the planes we fly on safer and developing space exploration vehicles. Work ranges from next-generation aircraft to water-impact tests that evaluate the splashdown of Orion astronaut crew capsules returning from space.
Credit: NASA/Videographer: Gary Banziger; Writer and Co-Producer: Lily Daniels; Editor and Co-Producer: Kevin Anderson