Engineers at NASA’s Langley Research Center in Hampton, Virginia, kicked off a series of nine drop tests of a representative Orion crew capsule withcrash test dummies inside to understand what the spacecraft and astronauts may experience when landing in the Pacific Ocean after deep-space missions. The high-fidelity capsule, coupled with the heat shield from Orion’s first flight in space, was hoisted approximately 16 feet above the water and vertically dropped into Langley’s 20-foot-deep Hydro Impact Basin. The crash test dummies were instrumented to provide data and secured inside the capsule to help provide information engineers need to ensure astronauts will be protected from injury during splashdown. Each test in the series simulates different scenarios for Orion’s parachute-assisted landings, wind conditions, velocities and wave heights the spacecraft may experience when touching down in the ocean.
Anna Fox, a seventh-grader from Virginia Beach Middle School in Virginia Beach, Virginia, was named as the grand prize winner of Langley Research Center’s Student Art Contest.
“I was very excited when I heard that I won first place for my grade,” Anna said. “But when I heard that I won grand prize, I was speechless.”
A record 831 entries were submitted from hundreds of children in 39 states, the District of Columbia and Puerto Rico, with 13 students earning first-place honors in grade levels K-12 and the opportunity to be considered for the grand prize, said Kristina Cors, Langley Student Art Contest coordinator.
“We hope this contest continues to grow and provide a place for students to explore science and technology through creativity,” she said.
“I was very excited when I heard that I won first place for my grade,” Anna Fox said. “But when I heard that I won grand prize, I was speechless.”
Credits: Courtesy of Anne Baker
The art contest theme, “The Next 100 Years,” was intended to illustrate how NASA research and innovation propels science to new discoveries.
“This year’s artwork was particularly remarkable, and represented the theme ‘The Next 100 Years’ with imagination and immense talent,” Cors said.
Anna’s winning piece shows a deep-space scene with an astronaut planting a flag on a planet’s mountain while watching a rocket fly off in the distance in a sky populated by stars, galaxies and a moon.
“When I started drawing, I had no idea what to do, so I had looked at a bunch of videos on how to do galaxies for inspiration,” Anna said. “After that I randomly placed colors together until I found something I liked. It all started coming together from there.”
Once she got an idea in motion, Anna did her work using old and new techniques.
“I created my artwork digitally on Photoshop,” Anna said. “I had started with basic colors for the background, including the explosion behind the rocks. Then, on another layer I created the rocks, planet, astronaut and rocket ship taking off. Later I added detail on all the layers to look more realistic. The last step was to add all of the stars and galaxies, which I did with a special brush.”
Anna, who has been an artist for as long as she could pick up a pencil, said she started drawing digitally when she was 11, inspired by her father’s work on a computer.
“I think the best part of creating art is having fun with it and inspiring others to do art as well,” she said.
Anna said she always had an interest in space and the art contest was a perfect vehicle to express that.
“I think that the coolest thing about NASA is that they help so many people achieve their dreams, and send people to do what not a lot of people get to do,” Anna said.
For her grand-prize victory, Anna received a certificate, and a NASA Exploration Package of posters, pens, stickers, patches and lapel pins. Her artwork will be displayed at the Virginia Air & Space Center in Hampton, Virginia.
The 13 grade-level winners were selected by a panel of five judges from the Hampton Roads art community, and the grand champion was picked by Langley employees. Each piece was evaluated on originality, interpretation of subject matter/theme, creative techniques, composition and overall art appearance.
Eric Gillard NASA Langley Research Center
Just me meeting my hero Katherine Johnson after interviewing her in the newsroom for another article I’m writing. nbd ((VERY BIG DEAL)) •🚀•🚀• Katherine G. Johnson is a pioneer in American space history. A NASA mathematician, Johnson’s computations have influenced every major space program from Mercury through the Shuttle. She even calculated the flight path for the first American mission space. In 1953, Johnson was contracted as a research mathematician at the Langley Research Center with the National Advisory Committee for Aeronautics (NACA), the agency that preceded NASA. She worked in a pool of women performing math calculations until she was temporarily assigned to help the all-male flight research team, and wound up staying there. Johnson’s specialty was calculating the trajectories for space shots which determined the timing for launches, including the Mercury mission and Apollo 11, the mission to the moon. (at NASA Langley Research Center)
Check out what goes on at our Hydro Impact Basin Facility at the NASA Langley Research Center! This steel structure was once our Lunar Landing Research Facility for the Apollo missions.
Commercial Crew Partner Boeing Tests Starliner Spacecraft
Engineers from NASA’s Langley Research Center in Hampton, Virginia, and Boeing dropped a full-scale test article of the company’s CST-100 Starliner into Langley’s 20-foot-deep Hydro Impact Basin. Although the spacecraft is designed to land on land, Boeing is testing the Starliner’s systems in water to ensure astronaut safety in the unlikely event of an emergency during launch or ascent. Testing allows engineers to understand the performance of the spacecraft when it hits the water, how it will right itself and how to handle rescue and recovery operations. The test is part of the qualification phase of testing and evaluation for the Starliner system to ensure it is ready to carry astronauts to and from the International Space Station.
Image Credit: NASA/David C. Bowman
There are amazing opportunities at each center. Learn more at: https://intern.nasa.gov
An out of this world career or internship might not be as far out of reach as you think. Check out all the ways you can get involved!
Our internships are the perfect place to start! We offer paid internships for spring, summer, and fall semesters to U.S. citizens currently attending an accredited university full time. Learn more at: https://intern.nasa.gov
Seriously considering a job in the Federal civil service? Check out the Pathways Internship Program which allows you to do multiple work tours while you finish school: http://nasajobs.nasa.gov/studentopps/employment/iep.htm
If you’re a U.S. citizen who has graduated from an accredited college or university within the past 2 years (or 6 if you have served in the military), then the our Recent Graduates program is just for you. Accepted applicants are placed in a 1 year career development program with the possibility of an additional year, or even granted term or permanent jobs within the agency. Learn more at: http://nasajobs.nasa.gov/studentopps/employment/rgp.htm.
You can search for our job openings any time at USAJobs.com. Create an account, then use the USAJobs resume builder. Want to make sure your resume maximizes your opportunity for a job at NASA? Check out our Applicant Guide: https://applyonline.nasa.gov/applicant_guide.html.
You can then search for our job openings here: https://nasai.usajobs.gov/.
Astronaut candidate applications are accepted every few years- including right now! Get yours in before the current application closes on February 18, 2016.
Do you have a bachelor’s degree in a STEM field and 3 years of related professional experience? You might be eligible. Find out more and apply online at: https://nasai.usajobs.gov/GetJob/ViewDetails/423817000.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
For only the second time in a year, a NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a view of the moon as it moved in front of the sunlit side of Earth.
The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four-megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA).
The first image is from July 2016 and the second image (moon traveling diagonally Northeast in the image) is from July 2015
Credits: NASA
We do the coolest tests here! Check out the Boeing Commercial Crew CST-100 Starliner drop:
Engineers from NASA’s Langley Research Center in Hampton, Va., and Boeing dropped a full-scale test article of the company’s CST-100 Starliner into Langley’s 20-foot-deep Hydro Impact Basin at the Landing and Impact Research Facility. Although the spacecraft is designed to land on land, Boeing is testing the Starliner’s systems in water to ensure astronaut safety in the unlikely event of an emergency. This test happened Feb. 9, 2016.
On 2/18/1930, 86 years ago, Clyde Tombaugh discovered #Pluto. Happy Anniversary, buddy, we should have sent flowers. Hope you’re happy with #NewHorizons instead!
Skywatchers in the western hemisphere will see a rare sight on Monday: over the course of several hours, the silhouette of the planet Mercury will appear to cross the face of the Sun. The “transit” of Mercury results from the precise alignment of the orbits of Mercury and Earth that only happens either 13 or 14 times per century; usually the orbital alignment is weak, and as seen from our planet Mercury “misses” the Sun’s disk as it orbits once every 88 days. But on Monday, the view through a properly-shielded telescope will reveal the innermost planet as a dark, perfectly circular spot that moves completely across the Sun in exactly seven and a half hours.
Because of the specifics of our respective orbits, Mercury transits only happen in either the months of May or November, with average dates of 8th May and 10th November. May transits happen less frequently than November transits because during May, Mercury is closer to its largest distance from the Sun, while in November the opposite is true. As a result, the range of possible angles between the Sun and Mercury, as seen from Earth, is smaller in November than May. While the interval between successive November transits can be either 7, 13 or 33 years, May transits are less common, with successive appearances in either 13- or 33-year intervals.
Observations of Mercury transits reach back to at least the seventeenth century. Observations from earlier than this are unlikely because the apparent size of Mercury’s silhouette against the Sun is too small for the unaided eye to resolve. This is why the first recorded Mercury transit — by the French astronomer Pierre Gassendi on 7 November 1631 — dates to after Galileo Galilei’s invention of the telescope in about 1609. Johannes Kepler earlier understood that Mercury’s orbit should periodically take it in front of the Sun, but he died in 1630 before being able to observe a predicted transit.
While these events once had great scientific interest, they are now mainly curiosities that delight astronomy aficionados. Rarer still are transits of Venus across the Sun, the last of which took place in 2012. These events come in pairs separated by 113 years, meaning that most people alive now will not be around to see the next one in December 2117.
Who can see Monday’s event? That depends on the hour of day and which side of the Earth faces the Sun at the time. The map below indicates which parts of the world see either all, some, or none of the transit:
You’ll need at least a good pair of binoculars or a telescope — properly shielded with a heavy filer to prevent eye damage — to even sense Mercury during the transit. It will look like a small, perfectly round and completely opaque black dot against the bright solar photosphere. Mercury is distinguishable in this sense from sunspots, which are irregular in shape, can be partially transparent, and of much larger sizes. This image compares Mercury during a transit (bottom-center) with a sunspot near the solar limb (upper right).
NOTE: DO NOT LOOK AT THE SUN THROUGH A TELESCOPE WITHOUT A FULL-APERTURE SOLAR FILTER! Doing so can cause permanent blindness! Instead, try projecting the image of the sun from a telescope or binoculars onto white paper. This method avoids bringing dangerous, strongly-focused sunlight anywhere near one’s eyes.
Better still: Watch the transit live online! Find live streaming coverage from Slooh, NASA TV, Celestron telescopes, Sky and Telescope magazine, and the Virtual Telescope.
(Top image credit: Sky & Telescope magazine; map and transit image: Fred Espenak)
This self-portrait of NASA's Curiosity Mars rover shows the vehicle at "Namib Dune," where the rover's activities included scuffing into the dune with a wheel and scooping samples of sand for laboratory analysis.
The scene combines 57 images taken on Jan. 19, 2016, during the 1,228th Martian day, or sol, of Curiosity's work on Mars. The camera used for this is the Mars Hand Lens Imager (MAHLI) at the end of the rover's robotic arm.
Namib Dune is part of the dark-sand "Bagnold Dune Field" along the northwestern flank of Mount Sharp. Images taken from orbit have shown that dunes in the Bagnold field move as much as about 3 feet (1 meter) per Earth year.
The location of Namib Dune is show on a map of Curiosity's route athttp://mars.nasa.gov/msl/multimedia/images/?ImageID=7640. The relationship of Bagnold Dune Field to the lower portion of Mount Sharp is shown in a map at PIA16064.
The view does not include the rover's arm. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites, including "Rocknest" (PIA16468), "Windjana" (PIA18390) and "Buckskin" (PIA19807).
For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide.
MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover.
More information about Curiosity is online at http://www.nasa.gov/msl andhttp://mars.jpl.nasa.gov/msl/.
In June 2015, when the cameras on NASA’s approaching New Horizons spacecraft first spotted the large reddish polar region on Pluto’s largest moon, Charon, mission scientists knew two things: they’d never seen anything like it elsewhere in our solar system, and they couldn’t wait to get the story behind it.
Over the past year, after analyzing the images and other data that New Horizons has sent back from its historic July 2015 flight through the Pluto system, the scientists think they’ve solved the mystery. As they detail this week in the international scientific journal Nature, Charon’s polar coloring comes from Pluto itself – as methane gas that escapes from Pluto’s atmosphere and becomes “trapped” by the moon’s gravity and freezes to the cold, icy surface at Charon’s pole. This is followed by chemical processing by ultraviolet light from the sun that transforms the methane into heavier hydrocarbons and eventually into reddish organic materials called tholins.
"Who would have thought that Pluto is a graffiti artist, spray-painting its companion with a reddish stain that covers an area the size of New Mexico?" asked Will Grundy, a New Horizons co-investigator from Lowell Observatory in Flagstaff, Arizona, and lead author of the paper. "Every time we explore, we find surprises. Nature is amazingly inventive in using the basic laws of physics and chemistry to create spectacular landscapes."
The team combined analyses from detailed Charon images obtained by New Horizons with computer models of how ice evolves on Charon’s poles. Mission scientists had previously speculated that methane from Pluto’s atmosphere was trapped in Charon’s north pole and slowly converted into the reddish material, but had no models to support that theory.
The New Horizons team dug into the data to determine whether conditions on the Texas-sized moon (with a diameter of 753 miles or 1,212 kilometers) could allow the capture and processing of methane gas. The models using Pluto and Charon’s 248-year orbit around the sun show some extreme weather at Charon’s poles, where 100 years of continuous sunlight alternate with another century of continuous darkness. Surface temperatures during these long winters dip to -430 Fahrenheit (-257 Celsius), cold enough to freeze methane gas into a solid.
“The methane molecules bounce around on Charon's surface until they either escape back into space or land on the cold pole, where they freeze solid, forming a thin coating of methane ice that lasts until sunlight comes back in the spring,” Grundy said. But while the methane ice quickly sublimates away, the heavier hydrocarbons created from it remain on the surface.
The models also suggested that in Charon’s springtime the returning sunlight triggers conversion of the frozen methane back into gas. But while the methane ice quickly sublimates away, the heavier hydrocarbons created from this evaporative process remain on the surface.
Sunlight further irradiates those leftovers into reddish material – called tholins – that has slowly accumulated on Charon’s poles over millions of years. New Horizons’ observations of Charon’s other pole, currently in winter darkness – and seen by New Horizons only by light reflecting from Pluto, or “Pluto-shine” – confirmed that the same activity was occurring at both poles.
“This study solves one of the greatest mysteries we found on Charon, Pluto’s giant moon,” said Alan Stern, New Horizons principal investigator from the Southwest Research Institute, and a study co-author. “And it opens up the possibility that other small planets in the Kuiper Belt with moons may create similar, or even more extensive ‘atmospheric transfer’ features on their moons.”
Credits: NASA/JHUAPL/SwRI