If You’ve Ever Watched Water Running Down The Side Of The Street, You’ve Probably Noticed That It

If you’ve ever watched water running down the side of the street, you’ve probably noticed that it doesn’t flow smoothly. Instead, you’ll see waves, rivulets, and disturbances that form. That’s because the simple action of flowing down an incline is unstable. Water and other viscous liquids can’t flow downhill smoothly. Any disturbances – an uneven surface, the rumble of passing cars, a pebble in the way – will create a disruption that grows, often until the entire flow is affected. This video shows some of the complex and beautiful patterns you get then. (Video and image credit: G. Lerisson et al.)

image
image
image

More Posts from Riekod and Others

6 years ago
After The Rain Of Hurricane Florence Came The Rainbow, Or Rainbows, In This Case. Photographer John Entwistle

After the rain of Hurricane Florence came the rainbow, or rainbows, in this case. Photographer John Entwistle captured this image of a rainbow with several additional supernumerary bows. The inner fringes seen here form when light passes through water droplets that are all close to the same size; given the spread seen here, the droplets are likely smaller than a millimeter in diameter. Supernumerary rainbows cannot be explained with a purely geometric theory of optics; instead, they require acknowledging the wave nature of light. (Image credit: J. Entwistle; via APOD; submitted by Kam-Yung Soh)

6 years ago

Gamma-ray Bursts: Black Hole Birth Announcements

Gamma-ray bursts are the brightest, most violent explosions in the universe, but they can be surprisingly tricky to detect. Our eyes can’t see them because they are tuned to just a limited portion of the types of light that exist, but thanks to technology, we can even see the highest-energy form of light in the cosmos — gamma rays.

So how did we discover gamma-ray bursts? 

Accidentally!

image

We didn’t actually develop gamma-ray detectors to peer at the universe — we were keeping an eye on our neighbors! During the Cold War, the United States and the former Soviet Union both signed the Nuclear Test Ban Treaty of 1963 that stated neither nation would test nuclear weapons in space. Just one week later, the US launched the first Vela satellite to ensure the treaty wasn’t being violated. What they saw instead were gamma-ray events happening out in the cosmos!

image

Things Going Bump in the Cosmos

Each of these gamma-ray events, dubbed “gamma-ray bursts” or GRBs, lasted such a short time that information was very difficult to gather. For decades their origins, locations and causes remained a cosmic mystery, but in recent years we’ve been able to figure out a lot about GRBs. They come in two flavors: short-duration (less than two seconds) and long-duration (two seconds or more). Short and long bursts seem to be caused by different cosmic events, but the end result is thought to be the birth of a black hole.

image

Short GRBs are created by binary neutron star mergers. Neutron stars are the superdense leftover cores of really massive stars that have gone supernova. When two of them crash together (long after they’ve gone supernova) the collision releases a spectacular amount of energy before producing a black hole. Astronomers suspect something similar may occur in a merger between a neutron star and an already-existing black hole.

image

Long GRBs account for most of the bursts we see and can be created when an extremely massive star goes supernova and launches jets of material at nearly the speed of light (though not every supernova will produce a GRB). They can last just a few seconds or several minutes, though some extremely long GRBs have been known to last for hours!

Gamma-ray Bursts: Black Hole Birth Announcements

A Gamma-Ray Burst a Day Sends Waves of Light Our Way!

Our Fermi Gamma-ray Space Telescope detects a GRB nearly every day, but there are actually many more happening — we just can’t see them! In a GRB, the gamma rays are shot out in a narrow beam. We have to be lined up just right in order to detect them, because not all bursts are beamed toward us — when we see one it’s because we’re looking right down the barrel of the gamma-ray gun. Scientists estimate that there are at least 50 times more GRBs happening each day than we detect!

image

So what’s left after a GRB — just a solitary black hole? Since GRBs usually last only a matter of seconds, it’s very difficult to study them in-depth. Fortunately, each one leaves an afterglow that can last for hours or even years in extreme cases. Afterglows are created when the GRB jets run into material surrounding the star. Because that material slows the jets down, we see lower-energy light, like X-rays and radio waves, that can take a while to fade. Afterglows are so important in helping us understand more about GRBs that our Neil Gehrels Swift Observatory was specifically designed to study them!

image

Last fall, we had the opportunity to learn even more from a gamma-ray burst than usual! From 130 million light-years away, Fermi witnessed a pair of neutron stars collide, creating a spectacular short GRB. What made this burst extra special was the fact that ground-based gravitational wave detectors LIGO and Virgo caught the same event, linking light and gravitational waves to the same source for the first time ever!

image

For over 10 years now, Fermi has been exploring the gamma-ray universe. Thanks to Fermi, scientists are learning more about the fundamental physics of the cosmos, from dark matter to the nature of space-time and beyond. Discover more about how we’ll be celebrating Fermi’s achievements all year!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

6 years ago
Aurora Over Alaska (by HB Mertz)

Aurora Over Alaska (by HB Mertz)

6 years ago

5 Facts About Earth's Radiation Donuts 🍩

Did you know that our planet is surrounded by giant, donut-shaped clouds of radiation?

image

Here’s what you need to know.

1. The radiation belts are a side effect of Earth’s magnetic field

image

The Van Allen radiation belts exist because fast-moving charged particles get trapped inside Earth’s natural magnetic field, forming two concentric donut-shaped clouds of radiation. Other planets with global magnetic fields, like Jupiter, also have radiation belts.

2. The radiation belts were one of our first Space Age discoveries

image

Earth’s radiation belts were first identified in 1958 by Explorer 1, the first U.S. satellite. The inner belt, composed predominantly of protons, and the outer belt, mostly electrons, would come to be named the Van Allen Belts, after James Van Allen, the scientist who led the charge designing the instruments and studying the radiation data from Explorer 1.

3. The Van Allen Probes have spent six years exploring the radiation belts

image

In 2012, we launched the twin Van Allen Probes to study the radiation belts. Over the past six years, these spacecraft have orbited in and out of the belts, providing brand-new data about how the radiation belts shift and change in response to solar activity and other factors.

4. Surprise! Sometimes there are three radiation belts

image

Shortly after launch, the Van Allen Probes detected a previously-unknown third radiation belt, created by a bout of strong solar activity. All the extra energy directed towards Earth meant that some particles trapped in our planet’s magnetic field were swept out into the usually relatively empty region between the two Van Allen Belts, creating an additional radiation belt.

5. Swan song for the Van Allen Probes

image

Originally designed for a two-year mission, the Van Allen Probes have spent more than six years collecting data in the harsh radiation environment of the Van Allen Belts. In spring 2019, we’re changing their orbit to bring the perigee — the part of the orbit where the spacecraft are closest to Earth — about 190 miles lower. This ensures that the spacecraft will eventually burn up in Earth’s atmosphere, instead of orbiting forever and becoming space junk.

Because the Van Allen Probes have proven to be so hardy, they’ll continue collecting data throughout the final months of the mission until they run out of fuel. As they skim through the outer reaches of Earth’s atmosphere, scientists and engineers will also learn more about how atmospheric oxygen can degrade satellite measurements — information that can help build better satellites in the future.

Keep up with the latest on the mission on Twitter, Facebook or nasa.gov/vanallenprobes.

6 years ago
Saturn’s Rings And Our Planet Earth And Moon In The Same Frame Captured By Nasa’s Cassini Spacecraft

Saturn’s rings and our planet Earth and Moon in the same frame captured by nasa’s Cassini spacecraft 19 July. (source @nasa) *Out Pale Blue Dot*

6 years ago

Dust, stars, and cosmic rays swirling around Comet 67P/Churyumov–Gerasimenko, captured by the Rosetta probe. (Source)

6 years ago

How Big is Our Galaxy, the Milky Way?

When we talk about the enormity of the cosmos, it’s easy to toss out big numbers – but far harder to wrap our minds around just how large, how far and how numerous celestial bodies like exoplanets – planets beyond our solar system – really are.

So. How big is our Milky Way Galaxy?

We use light-time to measure the vast distances of space.

It’s the distance that light travels in a specific period of time. Also: LIGHT IS FAST, nothing travels faster than light.

image

How far can light travel in one second? 186,000 miles. It might look even faster in metric: 300,000 kilometers in one second. See? FAST.

image

How far can light travel in one minute? 11,160,000 miles. We’re moving now! Light could go around the Earth a bit more than 448 times in one minute.

image

Speaking of Earth, how long does it take light from the Sun to reach our planet? 8.3 minutes. (It takes 43.2 minutes for sunlight to reach Jupiter, about 484 million miles away.) Light is fast, but the distances are VAST.

image

In an hour, light can travel 671 million miles. We’re still light-years from the nearest exoplanet, by the way. Proxima Centauri b is 4.2 light-years away. So… how far is a light-year? 5.8 TRILLION MILES.

image

A trip at light speed to the very edge of our solar system – the farthest reaches of the Oort Cloud, a collection of dormant comets way, WAY out there – would take about 1.87 years.

Our galaxy contains 100 to 400 billion stars and is about 100,000 light-years across!

One of the most distant exoplanets known to us in the Milky Way is Kepler-443b. Traveling at light speed, it would take 3,000 years to get there. Or 28 billion years, going 60 mph. So, you know, far.

SPACE IS BIG.

image

Read more here: go.nasa.gov/2FTyhgH

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

6 years ago

Free Astronomy Resources

Astronomy

Astronomy Lecture Powerpoints

Astronomy Lecture Notes (Textbook-Like)

Astronomy Notes

Astronomy Lecture Notes (Alaska)

Astronomy Lecture Powerpoints (Trinity)

Astronomy Lecture Notes (MIRA)

Astronomy Lecture Powerpoints (Rutten)

Modern Astronomy Lecture Notes

Astronomy Lecture Powerpoints (Wickman)

Solar System Astronomy Lecture Notes

Astronomy Lecture Notes

Astronomy Lecture Notes (Mitchell)

Astronomy Lecture Notes (Rochester)

Time Systems Lecture Notes

Earth and Sky Notes

Galactic Structure and Stellar Populations Lecture Notes

Stars, Galaxies, and the Universe Lecture Notes

Astronomical Techniques

Essential Radio Astronomy

Introduction to Astronomy 

Physics

Equations and Formulas

Essential Physics Equations

MCAT Physics Equations

Frequently Used Physics Equations

General Physics Notes

Physics Lecture Notes (MIT) 

University Physics (Textbook-Like)

General Physics I

Physics Lecture Notes (Colorado)

Physics Lecture Notes (Rochester)

Physics Lecture Notes (Cabrillo)

Physics Lecture Notes (Trinity)

Physics Notes

Physics Videos (Flipping Physics)

Physics Ch 1 to 8 Lecture Notes

Feynman Physics Lecture Notes

Electromagnetism

Electromagnetism Lecture Notes

Feynman Electromagnetism and Matter Lecture Notes 

Mechanics

Mechanics (Physics) Lecture Notes

Mechanics (Physics) Powerpoint Slides

Feynman Quantum Mechanics Lecture Notes 

Physics and Astronomy

Physics of the Interstellar Medium Lecture Notes

Physics for Astronomy Lecture Notes (Textbook-Like)

Radio Astronomy (Physics 728)

Physics: Astronomy, Astrophysics, and Cosmology

Inorganic Chemistry

Inorganic Chemistry Chapter Notes

Inorganic Chemistry Lecture Notes

Inorganic Chemistry 2 Lecture Notes

Advanced Inorganic Chemistry Lecture Notes

Calculus

Formulas and Equations

Calculus Cheat Sheet

AP Calculus Basic Formulas and Properties

Calculus 1 Formulas

Basic Calculus: Rules and Formulas (Video)

Differential Formulas

Integral Calculus Formulas

The Basics

Basic Calculus Refresher

Single Variable Calculus

Multivariable Calculus (Textbook-like)

Basics of Calculus (Textbook-like)

Calculus for Beginners

Calculus 1

Calculus (Textbook-like)

Calculus 1 (Textbook-like)

Calculus 1 Video Lectures

Calculus 1 Lecture Notes

Calculus 1 Lecture Notes (Northern Illinois)

Calculus 1 Lecture Notes (Citadel)

Calculus 1 Compact Lecture Notes

Calculus Lecture Notes (Raz Kupferman)

Introduction to Calculus Lecture Notes

Calculus 2

Calculus 2 Lecture Notes

Calculus 2 Lecture Notes (Northern Illinois)

Calculus 2 Notes (Illinois State)

Calculus 2 Lecture Notes (McClendon)

Calculus 2 Lecture Notes (Textbook-like)

Calculus 2 (Textbook-like) (Dawkins)

Calculus 2 Lecture Videos

Calculus 2 Class Notes

Calculus 2 Materials (Notes, Handouts, Etc.)

Calculus 3

Calculus 3 Lecture Notes (Lamar)

Calculus 3 Lecture Videos

Calculus 3 (Dawkins)

Calculus 3 (Notes, Homework, Quizzes)

Notes for Calculus 3

Calculus 3 Class Notes

Other Calculus

Integral Calculus Lecture Notes

Algebra and Differential Calculus

Differential and Integral Calculus (Textbook)

Differential and Integral Calculus (Lecture Notes & Old Exams)

Computer Science Calculus Lecture Notes

Calculus for Physics C

Analytic Geometry and Calculus 2

History

Notes on the History of Astronomy

History of Astronomy Powerpoint

Early History of Astronomy

History of Radio Astronomy

NASA History

Neolithic Astronomy

Mesopotamian Astronomy

Islamic Astronomy

Indian Astronomy

Greek Astronomy

Chinese Astronomy

Egyptian Astronomy

Mayan Astronomy

Space Agencies

National Aeronautics and Space Administration

South African National Space Agency

Canadian Space Agency

National Space Research and Development Agency

Italian Space Agency

Norwegian Space Center

Korea Aerospace Research Institute

Japan Aerospace Exploration Agency

UK Space Agency

Australian Space Agency

6 years ago
Blue Straggler Stars In Globular Cluster M53 

Blue Straggler Stars in Globular Cluster M53 

Image Credit: ESA/Hubble, NASA

6 years ago

“The most exciting phrase to hear in science, the one that heralds new discoveries, is not ‘Eureka!’ (I’ve found it!), but ‘That’s funny…’”

— Isaac Asimov | Author - I, Robot | Professor - Biochemistry

  • techjum
    techjum reblogged this · 4 years ago
  • seascratch
    seascratch reblogged this · 5 years ago
  • the-nomadic-writer
    the-nomadic-writer liked this · 6 years ago
  • m00ndingochan
    m00ndingochan liked this · 6 years ago
  • billyhargrovetrash
    billyhargrovetrash liked this · 6 years ago
  • wyomingnot
    wyomingnot reblogged this · 6 years ago
  • gentianablue
    gentianablue reblogged this · 6 years ago
  • wisconsinwarlock
    wisconsinwarlock reblogged this · 6 years ago
  • kuwaneko
    kuwaneko reblogged this · 6 years ago
  • gentianablue
    gentianablue liked this · 6 years ago
  • fgulla
    fgulla liked this · 6 years ago
  • mugwomps
    mugwomps reblogged this · 6 years ago
  • mugwomps
    mugwomps liked this · 6 years ago
  • ranapip
    ranapip reblogged this · 6 years ago
  • redhousehead
    redhousehead reblogged this · 6 years ago
  • redhousehead
    redhousehead liked this · 6 years ago
  • torukun1
    torukun1 liked this · 6 years ago
  • sentimental-bottlesnake
    sentimental-bottlesnake liked this · 6 years ago
  • stardustmachine
    stardustmachine reblogged this · 6 years ago
  • stardustmachine
    stardustmachine liked this · 6 years ago
  • gamutra
    gamutra liked this · 6 years ago
  • perennii
    perennii reblogged this · 6 years ago
  • perennii
    perennii liked this · 6 years ago
  • tunajorts
    tunajorts reblogged this · 6 years ago
  • tunajorts
    tunajorts liked this · 6 years ago
  • luminiel
    luminiel reblogged this · 6 years ago
  • ferdiazro
    ferdiazro reblogged this · 6 years ago
  • flofleche
    flofleche liked this · 6 years ago
  • avatarofterminus
    avatarofterminus liked this · 6 years ago
  • staerling
    staerling liked this · 6 years ago
  • ulvdakota
    ulvdakota liked this · 6 years ago
  • dragonpostcards
    dragonpostcards reblogged this · 6 years ago
  • xxrxxckxx
    xxrxxckxx liked this · 6 years ago
  • gravelbar
    gravelbar liked this · 6 years ago
  • kuwaneko
    kuwaneko liked this · 6 years ago
  • detourist
    detourist reblogged this · 6 years ago
  • chameleonsalad
    chameleonsalad liked this · 6 years ago
  • circularfire
    circularfire reblogged this · 6 years ago
  • skcirthinq
    skcirthinq reblogged this · 6 years ago
  • ablovescrafting
    ablovescrafting liked this · 6 years ago
  • opalescent-potato
    opalescent-potato reblogged this · 6 years ago
  • cat-nip-cartel
    cat-nip-cartel reblogged this · 6 years ago
  • cashthebrash
    cashthebrash reblogged this · 6 years ago
  • hasunomori
    hasunomori liked this · 6 years ago
  • lastlighthousekeeper
    lastlighthousekeeper liked this · 6 years ago
  • fatcigs
    fatcigs reblogged this · 6 years ago
riekod - 里枝子
里枝子

astronomy, coffee, frogs, rocks

150 posts

Explore Tumblr Blog
Search Through Tumblr Tags