Are Cloaking Devices Coming? Metalens-Shaped Light May Lead The Way

Are Cloaking Devices Coming? Metalens-Shaped Light May Lead The Way
Are Cloaking Devices Coming? Metalens-Shaped Light May Lead The Way
Are Cloaking Devices Coming? Metalens-Shaped Light May Lead The Way
Are Cloaking Devices Coming? Metalens-Shaped Light May Lead The Way
Are Cloaking Devices Coming? Metalens-Shaped Light May Lead The Way
Are Cloaking Devices Coming? Metalens-Shaped Light May Lead The Way
Are Cloaking Devices Coming? Metalens-Shaped Light May Lead The Way
Are Cloaking Devices Coming? Metalens-Shaped Light May Lead The Way

Are Cloaking Devices Coming? Metalens-Shaped Light May Lead The Way

“The biggest challenge facing a real-life cloak has been the incorporation of a large variety of wavelengths, as the cloak’s material must vary from point-to-point to bend (and then unbend) the light by the proper amount. Based on the materials discovered so far, we haven’t yet managed to penetrate the visible light portion of the spectrum with a cloak. This new advance in metalenses, however, seems to indicate that if you can do it for a single, narrow wavelength, you can apply this nanofin technology to extend the wavelength covered tremendously. This first application to achromatic lenses covered nearly the full visible-light spectrum (from 470 to 670 nm), and fusing this with advances in metamaterials would make visible-light cloaking devices a reality.”

What would it take to have a true cloaking device? You’d need some way to bend the light coming from all across the electromagnetic spectrum around your cloaked object, and have it propagate off in the same direction once it moved past you. To an outside observer, it would simply seem like the cloaked object wasn’t there, and they’d only view the world in front of and behind them. Even with the recent advances that have been made in metamaterials, we have not yet been able to realize this dream in three dimensions, covering the entire electromagnetic spectrum, and from all directions. But a new advance in metalens technology might get you the full electromagnetic spectrum after all, as they appear to have solved the problem of chromatic aberration with a light, small, and inexpensive solution. If we can combine these two technologies, metalenses and metamaterials, we just might realize the dream of a true invisibility cloak.

Whether you’re a Star Trek or Harry Potter fan, the ability to turn yourself invisible would be Earth-shattering. Come see how transformation optics might transform the world!

More Posts from T-sci-eng and Others

7 years ago
Elon Musk Announces New Hyperloop Approval Making NYC To DC Trip In Only 29 Minutes
Elon Musk Announces New Hyperloop Approval Making NYC To DC Trip In Only 29 Minutes

Elon Musk Announces New Hyperloop Approval Making NYC to DC Trip in Only 29 Minutes

7 years ago
Plastics made fireproof thanks to mother-of-pearl mimic
A method for quickly coating objects in a thin, environmentally safe mother-of-pearl-like film could protect food or electronics from the elements

It’s a technicolour dreamcoat for your crisp packet – a strong, flame-retardant and airtight new material that mimics mother of pearl.

The natural version, also called nacre, is found on the inner shell of some molluscs, where it is built up of layers of the mineral aragonite separated by organic polymers such as chitin. It is remarkably strong, without being brittle or dense.

We would like to use nacre and similar materials as a protective coating in many situations. However, making them is a slow and delicate process that is difficult to recreate at any useful scale. Artificial nacre-like materials are usually painstakingly built up layer by layer, but Luyi Sun at the University of Connecticut in Storrs and his colleagues found a way to do it all in one go.

Continue Reading.

7 years ago
Handy Tool Definitions
Handy Tool Definitions
Handy Tool Definitions
Handy Tool Definitions
Handy Tool Definitions
Handy Tool Definitions
Handy Tool Definitions
Handy Tool Definitions
Handy Tool Definitions
Handy Tool Definitions

Handy Tool Definitions

I found some handy definitions of tools on edn.com for those of you who are unclear about them. So, I put together this reference guide. 

http://ow.ly/VyRt30dOlwi 


Tags
7 years ago

On Monday, the Onion reported that the “Nation’s math teachers introduce 27 new trig functions”. It’s a funny read. The gamsin, negtan, and cosvnx from the Onion article are fictional, but the piece has a kernel of truth: there are 10 secret trig functions you’ve never heard of, and they have delightful names like ‘haversine’ and ‘exsecant’.

7 years ago
But That’s Not All It Can Do. Microsoft And NASA Teamed Up To “bring” You, Yes You, To Mars.
But That’s Not All It Can Do. Microsoft And NASA Teamed Up To “bring” You, Yes You, To Mars.
But That’s Not All It Can Do. Microsoft And NASA Teamed Up To “bring” You, Yes You, To Mars.
But That’s Not All It Can Do. Microsoft And NASA Teamed Up To “bring” You, Yes You, To Mars.
But That’s Not All It Can Do. Microsoft And NASA Teamed Up To “bring” You, Yes You, To Mars.
But That’s Not All It Can Do. Microsoft And NASA Teamed Up To “bring” You, Yes You, To Mars.
But That’s Not All It Can Do. Microsoft And NASA Teamed Up To “bring” You, Yes You, To Mars.
But That’s Not All It Can Do. Microsoft And NASA Teamed Up To “bring” You, Yes You, To Mars.
But That’s Not All It Can Do. Microsoft And NASA Teamed Up To “bring” You, Yes You, To Mars.
But That’s Not All It Can Do. Microsoft And NASA Teamed Up To “bring” You, Yes You, To Mars.

But that’s not all it can do. Microsoft and NASA teamed up to “bring” you, yes you, to Mars.

Follow @the-future-now

7 years ago
We Started Looking At Fluctuating Loads Last Time - That Is, Loads That Feature Some Combination Of Non-zero

We started looking at fluctuating loads last time - that is, loads that feature some combination of non-zero mean and alternating stresses - and how to account for them using a Goodman diagram. Let’s re-examine the bracket design problem we did earlier. This time, instead of a fully-reversed load, we’ll assume a fluctuating load with a mean force of 200 lbs, a minimum force of 50 lbs, and a maximum force of 350 lbs. We’ll say the dimensions of the bracket are those we calculated earlier that could handle the fully reversed load. (Problem adapted from Machine Design: An Integrated Approach, 4th Ed., by Robert L. Norton.)

Most of the calculations we did earlier will still hold. We won’t need to recalculate the endurance limit or stress concentration factors. The only new things we need to do are calculate the mean and alternating stresses and the new safety factors.

First step is to calculate the mean and alternating force.

image

From here, we get the mean and alternating moment.

image

We’re dealing with a situation of simple bending, so we can calculate mean and alternating stress using the basic bending stress equation.

image

The geometry of the part hasn’t changed, so we’ll apply the same stress concentration factors that we used before.

image

Great. We’ve got our new stresses. Now we need to figure out safety factors. As we mentioned earlier, this is now a slightly more complicated proposition. Which safety factor is appropriate will depend on how the alternating and mean stress behave in relation to each other. The possible failure states are shown as points A, B, C, and D on the Goodman diagram for this situation.

image

We’ll step through all the possible situations one by one using the new stresses we calculated and the endurance limit we got earlier.

Case 1: Constant alternating stress, variable mean stress.

image

Case 2: Variable alternating stress, constant mean stress.

image

Case 3: Alternating and mean stress are proportional to each other.

image

Case 4: Alternating and mean stress vary independently.

We take the worse case, with the failure state F being as close as possible to the current stress situation.

image

Our design will survive all four cases. Note that Case 4 is always the most conservative case - if you don’t know what your stresses are going to do, this is the one to go with.

7 years ago
On The Transpose Of A Matrix
On The Transpose Of A Matrix
On The Transpose Of A Matrix

On the transpose of a matrix

In this post, I would just like to highlight the fact an image can be represented in a matrix form and matrix transformations such as transpose, shearing, scaling, etc, from an image processing point of view are purely physical !

Check out this article from the klein project if this post interested you.

Have a great day!

* Interactive Felix the cat and matrix

7 years ago
In Mathematics There Is A Concept Known As ‘Conformal Mapping’ Which Allows You Convert A Given Shape
In Mathematics There Is A Concept Known As ‘Conformal Mapping’ Which Allows You Convert A Given Shape
In Mathematics There Is A Concept Known As ‘Conformal Mapping’ Which Allows You Convert A Given Shape
In Mathematics There Is A Concept Known As ‘Conformal Mapping’ Which Allows You Convert A Given Shape
In Mathematics There Is A Concept Known As ‘Conformal Mapping’ Which Allows You Convert A Given Shape

In mathematics there is a concept known as ‘Conformal Mapping’ which allows you convert a given shape to a completely different one by making a transformation.

In the joukowski transform you take all the points on a circle and apply the following transform:

image

And the resulting transformed points resemble an aerofoil shape. Pretty cool huh ?

** Conformal mappings are a really cool topic in complex analysis but also equally extensive. If you want to know more about them click here

7 years ago
This Room Starts Charging Your Phone As Soon As You Walk In. Inspired By Tesla’s Vision Of Global Wireless

This room starts charging your phone as soon as you walk in. Inspired by Tesla’s vision of global wireless power, scientists at Disney Research company explored how wireless charging works in large spaces. The copper pole at the room’s center sends currents through the walls and floor that charge phones and laptops without harming humans. Source Source 2

This Room Starts Charging Your Phone As Soon As You Walk In. Inspired By Tesla’s Vision Of Global Wireless

Devices can be charged regardless of their orientation in the room thanks to a new receiver design

This Room Starts Charging Your Phone As Soon As You Walk In. Inspired By Tesla’s Vision Of Global Wireless

The setup outside the room

This Room Starts Charging Your Phone As Soon As You Walk In. Inspired By Tesla’s Vision Of Global Wireless

The setup inside the room

7 years ago
PERIODIC SPONGE SURFACES AND UNIFORM SPONGE POLYHEDRA IN NATURE AND IN THE REALM OF THE THEORETICALLY
PERIODIC SPONGE SURFACES AND UNIFORM SPONGE POLYHEDRA IN NATURE AND IN THE REALM OF THE THEORETICALLY
PERIODIC SPONGE SURFACES AND UNIFORM SPONGE POLYHEDRA IN NATURE AND IN THE REALM OF THE THEORETICALLY
PERIODIC SPONGE SURFACES AND UNIFORM SPONGE POLYHEDRA IN NATURE AND IN THE REALM OF THE THEORETICALLY
PERIODIC SPONGE SURFACES AND UNIFORM SPONGE POLYHEDRA IN NATURE AND IN THE REALM OF THE THEORETICALLY
PERIODIC SPONGE SURFACES AND UNIFORM SPONGE POLYHEDRA IN NATURE AND IN THE REALM OF THE THEORETICALLY
PERIODIC SPONGE SURFACES AND UNIFORM SPONGE POLYHEDRA IN NATURE AND IN THE REALM OF THE THEORETICALLY
PERIODIC SPONGE SURFACES AND UNIFORM SPONGE POLYHEDRA IN NATURE AND IN THE REALM OF THE THEORETICALLY
PERIODIC SPONGE SURFACES AND UNIFORM SPONGE POLYHEDRA IN NATURE AND IN THE REALM OF THE THEORETICALLY

PERIODIC SPONGE SURFACES AND UNIFORM SPONGE POLYHEDRA IN NATURE AND IN THE REALM OF THE THEORETICALLY IMAGINABLE

By Michael Burt- Prof emeritus, Technion, I.I.T. Haifa Israel

The diversity of shapes and forms which meets the eye is overwhelming. They shape our environment: physical, mental, intellectual. Theirs is a dynamic milieu; time induced transformation, flowing with the change of light, with the relative movement to the eye, with physical and biological transformation and the evolutionary development of the perceiving mind. “Our study of natural form “the essence of morphology”, is part of that wider science of form which deals with the forms assumed by nature under all aspects and conditions, and in a still wider sense, with forms which are theoretically imaginable…..(On Growth and Form – D'Arcy Thompson), “Theoretically” to imply that we are dealing with causal- rational forms. “It is the business of logic to invent purely artificial structures of elements and relations. Sometimes one of these structures is close enough to a real situation to be allowed to represent it. And then, because the logic is so tightly drawn, we gain insight into the reality which was previously withheld from us” (C. Alexander). A particular interest should be focused on those structures which are shaped like solids or containers, with continuous two-manifold enveloping surfaces, enclosing a volume of space and thus subdividing the entire space into two complementary sub-spaces, sometimes referred to as interior and exterior, although telling which is which, is a relativistic notion. On each of these envelopes, topologically speaking, an infinite number of different maps composed of polygonal regions (faces), which are bounded by sets of edge segments and vertices, could be drawn, to represent what we call polyhedra, or polyhedral envelopes. We come to know them by various names and notations, evolving through many historical cultures up to our present times; each representing an individual figure-polyhedron, or a family, a group, a class or a domain; convex-finite, Platonic and Archimedean polyhedra; pyramids, prisms; anti-prisms; star polyhedra; deltahedra; zonohedra; saddle polyhedra, dihedral, polydigonal, toroidal, sponge like, finite and infinite polyhedra; regular, uniform, quasi-regular, and so forth; all inscribable in our 3-dimensional space. It is these structures and their extended derivatives which shape our physical-natural or artificial man-conceived environment and provide for our mental pictures of its architecture. The number of forms which had acquired a name or a specific notation through the ages is amounting to infinity, although the number of those which comprise our day to day formal vocabulary and design imagery is extremely (and regretfully) limited by comparison, even amongst designers and architects, whose profession, by definition, compels them to manipulate and articulate forms and space. Here it is right to observe that name-giving is part of the creative and generative process. The number of polyhedral forms which did not receive, as yet a proper name or a notation is also infinite. Infinite is also the number of potentially existing and possible imaginary periodic forms, not envisaged yet. Conspicuous are those relating to sponge-like labyrinthian, polyhedral, space dividing surfaces, which until quite recently were not even considered as a research topic. The interest in these forms has been prompted by our growing awareness of their abundance in nature and their importance, not only in describing micro and macro-physical and biological phenomena, but also in coping with morphological complexity and nature of our built environment and its emerging new architecture and the order and formal character of our living spaces, on either the building or the urban scale. Nature is saturated with sponge structures on every possible scale of physical-biological reality. The term was first adopted in biology: “Sponge: any member of the phylum Porifera, sessile aquatic animals, with single cavity in the body, with numerous pores. The fibrous skeleton of such an animal, remarkable for its power of sucking up water”. (Wordsworth dictionary). the entire study here

© Michael Burt- Prof emeritus, Technion, I.I.T. Haifa Israel

Loading...
End of content
No more pages to load
  • day-knight
    day-knight liked this · 4 years ago
  • physicla
    physicla liked this · 4 years ago
  • randomnightowl
    randomnightowl liked this · 4 years ago
  • parasecretdesires
    parasecretdesires reblogged this · 5 years ago
  • absolute-exclusivity
    absolute-exclusivity liked this · 5 years ago
  • psychic-turtle1
    psychic-turtle1 liked this · 5 years ago
  • quantum-man
    quantum-man liked this · 5 years ago
  • physics-posts
    physics-posts reblogged this · 5 years ago
  • physics-posts
    physics-posts liked this · 5 years ago
  • architectoffuture
    architectoffuture reblogged this · 5 years ago
  • ophiuchusdecay
    ophiuchusdecay reblogged this · 5 years ago
  • sex6six-blog1
    sex6six-blog1 liked this · 5 years ago
  • honovi18
    honovi18 reblogged this · 6 years ago
  • honovi18
    honovi18 liked this · 6 years ago
  • blazexboy55
    blazexboy55 reblogged this · 6 years ago
  • godmodliving
    godmodliving reblogged this · 6 years ago
  • godmodliving
    godmodliving liked this · 6 years ago
  • leissak-blog
    leissak-blog liked this · 6 years ago
  • uniqueshysky
    uniqueshysky reblogged this · 6 years ago
  • 619deathstroke-blog
    619deathstroke-blog liked this · 6 years ago
  • out-one
    out-one liked this · 6 years ago
  • terriblytransient
    terriblytransient liked this · 6 years ago
  • tesla2carter
    tesla2carter liked this · 6 years ago
  • woundeadshadow
    woundeadshadow reblogged this · 6 years ago
  • woundeadshadow
    woundeadshadow liked this · 6 years ago
  • fullstudent201719-blog
    fullstudent201719-blog liked this · 7 years ago
  • spankchunks
    spankchunks liked this · 7 years ago
  • demonin-ur-eye
    demonin-ur-eye liked this · 7 years ago
  • merlehs
    merlehs liked this · 7 years ago
  • doctor-basil-puntastic
    doctor-basil-puntastic reblogged this · 7 years ago
  • hajilemar
    hajilemar reblogged this · 7 years ago
  • kurzanenok-blog
    kurzanenok-blog liked this · 7 years ago
  • juukuu1710-blog
    juukuu1710-blog liked this · 7 years ago
  • 1000electricsheep
    1000electricsheep liked this · 7 years ago
  • intervallag
    intervallag liked this · 7 years ago
  • jaboticasworld
    jaboticasworld liked this · 7 years ago
  • zygmouth-blog
    zygmouth-blog liked this · 7 years ago
t-sci-eng - SCIENCE AND ENGINEERING
SCIENCE AND ENGINEERING

117 posts

Explore Tumblr Blog
Search Through Tumblr Tags