TumblrFeed

Curate, connect, and discover

Apollo 11 - Blog Posts

1 year ago
image

Let’s hear a round of applause for these badasses, who got strapped on top of a rocket and hurtled toward a giant rock in space.

Neil Armstrong, Michael Collins, and Buzz Aldrin


Tags
5 years ago

Apollo 12: The Next Step after the Giant Leap

Launched less than four months after Apollo 11 put the first astronauts on the Moon, Apollo 12 was more than a simple encore. After being struck by lightning on launch -- to no lasting damage, fortunately -- Apollo 12 headed for a rendezvous with a spacecraft that was already on the Moon. The mission would expand the techniques used to explore the Moon and show the coordination between robotic and human exploration, both of which continue today as we get return to return astronauts to the Moon by 2024. 

Launch Day

image

Apollo 12 lifted off at 11:22 a.m. EST, Nov. 14, 1969, from our Kennedy Space Center. Aboard the Apollo 12 spacecraft were astronauts Charles Conrad Jr., commander; Richard F. Gordon Jr., command module pilot; and Alan L. Bean, lunar module pilot.

Barely 40 seconds after liftoff, lightning struck the spacecraft. Conrad alerted Houston that the crew had lost telemetry and other data from the mission computers. As the Saturn V engines continued to push the capsule to orbit, ground controllers worked out a solution, restarting some electrical systems, and Apollo 12 headed toward the Moon.

image

Cameras at the Kennedy Space Center captured this image of the same lightning bolt that struck Apollo 12 striking the mobile platform used for the launch.

On the Moon

Apollo 12 landed on the Moon on Nov. 19, and on the second moonwalk Conrad and Bean walked approximately 200 yards to the Surveyor 3 spacecraft. One of seven Surveyor spacecraft sent to land on the Moon and to gather data on the best way to land humans there, Surveyor 3 had been on the Moon for more than two years, exposed to cosmic radiation and the vacuum of space. Scientists on the ground wanted to recover parts of the spacecraft to see what effects the environment had had on it.

image

Apollo 12 commander Pete Conrad examines the Surveyor 3 spacecraft before removing its camera and other pieces for return to Earth. In the background is the lunar module that landed Conrad and lunar module pilot Alan Bean on the Moon.

Splashdown

image

Apollo 12 splashed down on Nov. 24. When Artemis returns astronauts to the Moon in 2024, it will be building on Apollo 12 as much as any of the other missions. Just as Apollo 12 had to maneuver off the standard “free return” trajectory to reach its landing site near Surveyor, Artemis missions will take advantage of the Gateway to visit a variety of lunar locations. The complementary work of Surveyor and Apollo -- a robotic mission preparing the way for a crewed mission; that crewed mission going back to the robotic mission to learn more from it -- prefigures how Artemis will take advantage of commercial lunar landers and other programs to make lunar exploration sustainable over the long term.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Women in Exploration: From Human Computers to All-Woman Spacewalks

image

Since the 19th century, women have been making strides in areas like coding, computing, programming and space travel, despite the challenges they have faced. Sally Ride joined NASA in 1983 and five years later she became the first female American astronaut. Ride's accomplishments paved the way for the dozens of other women who became astronauts, and the hundreds of thousands more who pursued careers in science and technology. Just last week, we celebrated our very first #AllWomanSpacewalk with astronauts Christina Koch and Jessica Meir.

Here are just a couple of examples of pioneers who brought us to where we are today:

The Conquest of the Sound Barrier

image

Pearl Young was hired in 1922 by the National Advisory Committee for Aeronautics (NACA), NASA’s predecessor organization, to work at its Langley site in support in instrumentation, as one of the first women hired by the new agency. Women were also involved with the NACA at the Muroc site in California (now Armstrong Flight Research Center) to support flight research on advanced, high-speed aircraft. These women worked on the X-1 project, which became the first airplane to fly faster than the speed of sound. 

Young was the first woman hired as a technical employee and the second female physicist working for the federal government.

The Human Computers of Langley

image

The NACA hired five women in 1935 to form its first “computer pool”, because they were hardworking, “meticulous” and inexpensive. After the United States entered World War II, the NACA began actively recruiting similar types to meet the workload. These women did all the mathematical calculations – by hand – that desktop and mainframe computers do today.

Computers played a role in major projects ranging from World War II aircraft testing to transonic and supersonic flight research and the early space program. Women working as computers at Langley found that the job offered both challenges and opportunities. With limited options for promotion, computers had to prove that women could successfully do the work and then seek out their own opportunities for advancement.

Revolutionizing X-ray Astronomy

image

Marjorie Townsend was blazing trails from a very young age. She started college at age 15 and became the first woman to earn an engineering degree from the George Washington University when she graduated in 1951. At NASA, she became the first female spacecraft project manager, overseeing the development and 1970 launch of the UHURU satellite. The first satellite dedicated to x-ray astronomy, UHURU detected, surveyed and mapped celestial X-ray sources and gamma-ray emissions.

Women of Apollo

NASA’s mission to land a human on the Moon for the very first time took hundreds of thousands workers. These are some of the stories of the women who made our recent #Apollo50th anniversary possible:

image

• Margaret Hamilton led a NASA team of software engineers at the Massachusetts Institute of Technology and helped develop the flight software for NASA’s Apollo missions. She also coined the term “software engineering.” Her team’s groundbreaking work was perfect; there were no software glitches or bugs during the crewed Apollo missions. 

• JoAnn Morgan was the only woman working in Mission Control when the Apollo 11 mission launched. She later accomplished many NASA “firsts” for women:  NASA winner of a Sloan Fellowship, division chief, senior executive at the Kennedy Space Center and director of Safety and Mission Assurance at the agency.

• Judy Sullivan, was the first female engineer in the agency’s Spacecraft Operations organization, was the lead engineer for health and safety for Apollo 11, and the only woman helping Neil Armstrong suit up for flight.

Hidden Figures

Author Margot Lee Shetterly’s book – and subsequent movie – Hidden Figures, highlighted African-American women who provided instrumental support to the Apollo program, all behind the scenes.

image

• An alumna of the Langley computing pool, Mary Jackson was hired as the agency’s first African-American female engineer in 1958. She specialized in boundary layer effects on aerospace vehicles at supersonic speeds. 

• An extraordinarily gifted student, Katherine Johnson skipped several grades and attended high school at age 13 on the campus of a historically black college. Johnson calculated trajectories, launch windows and emergency backup return paths for many flights, including Apollo 11.

• Christine Darden served as a “computress” for eight years until she approached her supervisor to ask why men, with the same educational background as her (a master of science in applied mathematics), were being hired as engineers. Impressed by her skills, her supervisor transferred her to the engineering section, where she was one of few female aerospace engineers at NASA Langley during that time.

Lovelace’s Woman in Space Program

image

Geraldyn “Jerrie” Cobb was the among dozens of women recruited in 1960 by Dr. William Randolph "Randy" Lovelace II to undergo the same physical testing regimen used to help select NASA’s first astronauts as part of his privately funded Woman in Space Program.

Ultimately, thirteen women passed the same physical examinations that the Lovelace Foundation had developed for NASA’s astronaut selection process. They were: Jerrie Cobb, Myrtle "K" Cagle, Jan Dietrich, Marion Dietrich, Wally Funk, Jean Hixson, Irene Leverton, Sarah Gorelick, Jane B. Hart, Rhea Hurrle, Jerri Sloan, Gene Nora Stumbough, and Bernice Trimble Steadman. Though they were never officially affiliated with NASA, the media gave these women the unofficial nicknames “Fellow Lady Astronaut Trainees” and the “Mercury Thirteen.”

The First Woman on the Moon

image

The early space program inspired a generation of scientists and engineers. Now, as we embark on our Artemis program to return humanity to the lunar surface by 2024, we have the opportunity to inspire a whole new generation. The prospect of sending the first woman to the Moon is an opportunity to influence the next age of women explorers and achievers.

This material was adapted from a paper written by Shanessa Jackson (Stellar Solutions, Inc.), Dr. Patricia Knezek (NASA), Mrs. Denise Silimon-Hill (Stellar Solutions), and Ms. Alexandra Cross (Stellar Solutions) and submitted to the 2019 International Astronautical Congress (IAC). For more information about IAC and how you can get involved, click here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

High (Like 240,000 Miles) Fashion: What Astronauts Wear to the Moon

High (Like 240,000 Miles) Fashion: What Astronauts Wear To The Moon

We call it a spacesuit, almost as if it’s something an astronaut pulls out of the closet. It’s more accurate to think of it as an astronaut’s personal spacecraft: self-contained and functional, with a design focused on letting astronauts work safely in space. Just as we’ve been able to improve rockets, satellites and data systems over 60 years, we’ve made great improvements to spacesuits.

High (Like 240,000 Miles) Fashion: What Astronauts Wear To The Moon

When the first woman and next man step foot on the Moon in 2024, they will be wearing the next generation of spacesuit, called the Exploration Extravehicular Mobility Unit, or xEMU for short. The new suit can be used under different conditions for various tasks, including walking, driving rovers or collecting samples. The design will also allow the suits to be used for spacewalks on the space station, or Gateway – our upcoming spaceship that will orbit the Moon. Future missions to Mars can build on the core suit technologies with additional upgrades for use in the Martian atmosphere and greater gravity.

60 Years of Improvements

image

Even before we had astronauts, pilots were using pressurized suits to fly at high speeds at altitudes where the air was too thin to breathe. Our first spacesuits – shown here worn by the first NASA astronauts in 1959 – were variations of the suit used by Navy test pilots.

image

The Gemini spacesuit – shown here in a photo of astronaut Ed White making the first American spacewalk in 1965  – added a line that could connect the astronaut to the spacecraft for oxygen, and which also served as a tether when they left the capsule for a spacewalk.

image

The Apollo astronauts had to completely separate themselves from the lunar module, so we added a portable life support unit, which the astronauts carried on their backs. The photo above shows the life support system on the suit of Apollo 11 astronaut Buzz Aldrin as he deploys lunar experiments in 1969.

Though the bulky suits weren’t exactly easy to maneuver, astronauts still managed to get their jobs done and enjoy themselves doing it.

A Great Moment in Spacesuit History: Singing on the Moon

What, you wouldn’t sing if you were on the moon?

Different Suits for Different Functions

image

We have used different suits for different purposes. During the Space Shuttle program, astronauts inside the shuttle wore these orange “pumpkin” suits, which were designed to be worn within the cabin. 

image

On spacewalks, special suits – made to be worn only outside the spacecraft – provided high mobility, more flexibility and life support as the astronauts worked in zero gravity.

image

During construction of the International Space Station, we should have issued a hard hat and a pair of steel-toed boots with each suit. Astronauts conducted more than 200 spacewalks as part of building the station, which took place from 1998 until 2011. Above, an astronaut at the end of the shuttle’s robotic arm is maneuvered back into the shuttle’s payload bay with a failed pump during the shuttle’s final flight in 2011.

#MissionAccomplished

image

Spacesuits are rarely the story themselves, but they make it possible for our astronauts to get their jobs done, even when they have to improvise. In the picture above, astronauts on a 1992 space shuttle mission are conducting a spacewalk they hadn’t originally planned on. The crew was originally supposed to use a specially designed grab bar to capture the INTELSAT VI satellite. Two attempts to use the grab bar on two-person spacewalks failed, so we improvised a plan to add a third spacewalker and have all three go outside and literally grab the satellite.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

10 Ways to Observe the Moon for International Observe the Moon Night

On Saturday, October 5, we will host the 10th annual International Observe the Moon Night. One day each year, everyone on Earth is invited to observe and learn about the Moon together, and to celebrate the cultural and personal connections we all have with our nearest celestial neighbor! This year is particularly special as we mark the 50th anniversary of the Apollo 11 Moon landing while looking forward to our Artemis program, which will send the first woman and next man to the Moon.

There are many ways to participate in International Observe the Moon Night. You can attend an event, host your own or just look up! Here are 10 of our favorite ways to observe the Moon.

1. Look up

image

Image Credit: NASA’s Scientific Visualization Studio/Ernie Wright

The simplest way to observe the Moon is simply to look up. The Moon is the brightest object in our night sky, the second brightest in our daytime sky and can be seen from all around the world — from the remote and dark Atacama Desert in Chile to the brightly lit streets of Tokyo. On October 5, we have a first quarter Moon, which means that the near side of the Moon will be 50 percent illuminated. The first quarter Moon is a great phase for evening observing. Furthermore, the best lunar observing is typically along the Moon's terminator (the line between night and day) where shadows are the longest, rather than at full Moon. See the Moon phase on October 5 or any other day of the year!

2. Peer through a telescope or binoculars

image

Image Credit: NASA/Molly Wasser

With some magnification help, you will be able to focus in on specific features on the Moon. In honor of this year’s 50th Anniversary of the Apollo 11 Moon Landing, see if you can find Mare Tranquillitatis (Sea of Tranquility)! Download our Moon maps for some guided observing on Saturday.

3. Photograph the Moon

image

Image Credit: NASA/GSFC/Arizona State University

Our Lunar Reconnaissance Orbiter (LRO) has taken more than 20 million images of the Moon, mapping it in stunning detail. You can see featured, captioned images on LRO’s camera website, like the crater seen above. And, of course, you can take your own photos from Earth. Check out our tips on photographing the Moon!

4. Relax on your couch

image

Image Credit: NASA’s Scientific Visualization Studio/Ernie Wright

Is it cloudy? Luckily, you can observe the Moon from the comfort of your own home. The Virtual Telescope Project will livestream the Moon from above the Roman skyline. Or, you can take and process your own lunar images with the MicroObservatory Robotic Telescopes. Would you prefer a movie night? There are many films that feature our nearest neighbor. Also, you can spend your evening with our lunar playlist on YouTube or this video gallery, learning about the Moon’s role in eclipses, looking at the Moon phases from the far side and seeing the latest science portrayed in super high resolution.

5. Touch the topography

image

Image Credit: NASA GSFC/Jacob Richardson

Observe the Moon with your hands! If you have access to a 3D printer, you can peruse our library of 3D models and lunar landscapes. This collection of Apollo resources features 3D models of the Apollo landing sites using topographic data from LRO and the SELENE mission. The 3D printed model you see above is of the Ina D volcanic landform.

6. Make and admire Moon art

image

Image Credit: LPI/Andy Shaner

Enjoy artwork of the Moon and create your own! For messy fun, lunar crater paintings demonstrate how the lunar surface changes due to frequent meteorite impacts.

7. Listen to the Moon

Image Credit: NASA Explorers: Apollo/System Sounds

Treat your ears this International Observe the Moon Night. Our audio series, NASA Explorers: Apollo features personal stories from the Apollo era to now, including yours! You can participate by recording and sharing your own experiences of Apollo with us. Learn some lunar science with the second season of our Gravity Assist podcast with NASA Chief Scientist, Jim Green. Make a playlist of Moon-themed songs. For inspiration, check out this list of lunar tunes. We also recommend LRO’s official music video, The Moon and More, featuring Javier Colon, season 1 winner of NBC’s “The Voice.” Or you can watch this video featuring “Clair de Lune,” by French composer Claude Debussy, over and over.

8. Take a virtual field trip

image

Image Credit: NASA/SSERVI

Plan a lunar hike with Moon Trek. Moon Trek is an interactive Moon map made using NASA data from our lunar spacecraft. Fly anywhere you’d like on the Moon, calculate the distance or the elevation of a mountain to plan your lunar hike, or layer attributes of the lunar surface and temperature. If you have a virtual reality headset, you can experience Moon Trek in 3D.  

9. See the Moon through the eyes of a spacecraft

image

Image Credit: NASA/GSFC/MIT

Visible light is just one tool that we use to explore our universe. Our spacecraft contain many different types of instruments to analyze the Moon’s composition and environment. Review the Moon’s gravity field with data from the GRAIL spacecraft or decipher the maze of this slope map from the laser altimeter onboard LRO. This collection from LRO features images of the Moon’s temperature and topography. You can learn more about the different NASA missions to explore the Moon here.

10. Continue your observations throughout the year

image

Image Credit: NASA’s Scientific Visualization Studio/Ernie Wright

An important part of observing the Moon is to see how it changes over time. International Observe the Moon Night is the perfect time to start a Moon journal. See how the shape of the Moon changes over the course of a month, and keep track of where and what time it rises and sets. Observe the Moon all year long with these tools and techniques!

However you choose to celebrate International Observe the Moon Night, we want to hear about it! Register your participation and share your experiences on social media with #ObserveTheMoon or on our Facebook page. Happy observing!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

History Made: Apollo 11 Splashes Down Today in 1969

image

The Apollo 11 Command Module “Columbia” is hoisted onto its recovery ship the USS Hornet, following splashdown on July 24, 1969. Credit: NASA

Four days after their historic achievement, Apollo 11 astronauts Neil Armstrong, Buzz Aldrin and Michael Collins splashed down in the Pacific Ocean at 12:49 p.m. EDT, about 900 miles from Hawaii. The crew was recovered by the crew of the USS Hornet where President Richard Nixon was waiting to greet them. 

Watch a replay of the original live broadcast of the recovery on NASA TV starting at 12:45 p.m. EDT. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

#TBT to 1969: The Restoration of The Apollo Mission Control Center

On July 20, 1969 the Apollo Mission Control Center landed men on the Moon with only seconds of fuel left. 

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

Just after the spacecraft safely touched down on the lunar surface, Charlie Duke said to the crew, “Roger, Tranquility. We copy you on the ground. You got a bunch of guys about to turn blue—we’re breathing again. Thanks a lot.” The hard work and preparation of the men who stayed back on Earth was what made John F. Kennedy’s dreams of space exploration come true. 

Today, the facility these men worked in has been restored to its Apollo-era appearance, forever preserving this National Historic Landmark.

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

It took the restoration crew roughly six years to return the Apollo Mission Control Room to its original retro appearance. Every inch of the room was cleaned and restored by workers, enhancing the 1960s pistachio palette seen on the consoles, as well as ridding the room of 50-year-old gum stuck in places people thought would never be found. Let that be a lesson to us all.

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

From the artifacts sitting on the consoles to the displays projected at the front of the room, every detail has been carefully put in its proper place. Peep the American flag hanging in the back of the room—this flag went to the Moon on Apollo 17, was planted in the ground, then returned home as a souvenir. Next to the flag, a duplicate of the plaque placed on the Moon hangs on the wall.

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

Perhaps the only aspect of the room that wasn’t preserved was the thick stench of smoke, burnt coffee, banana peels and pizza boxes. But the ashtrays, pipes, cigarettes and coffee mugs sit in the room as reminders of the aroma. And yes, the Styrofoam cup is authentic to the ‘60s—it’s not an original artifact, but we’re certain this one will last for years to come.

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

In case you’re worried we didn’t get detailed enough, check the binders in the room. Each one is filled with authentic documents that would’ve been used during the Apollo missions. Some of the documents have been recreated, but many of them were copied from originals that employees had saved for 50 years.

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

Each console was rigged to send tubes throughout the building, often filled with important documents, but also stuffed with sandwiches and cake (all of the essentials to send men to the Moon).

#TBT To 1969: The Restoration Of The Apollo Mission Control Center

Several of the surviving Apollo alumni visited mission control for the grand opening of the room at the end of June. Except for the smoke, they say the room looks just as they remember it did 50 years ago. It’s one giant leap—back in time.

This week, you can watch us salute our #Apollo50th heroes and look forward to our next giant leap for future missions to the Moon and Mars. Tune in: https://go.nasa.gov/Apollo50thEvents

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago
As Neil Armstrong Became The First Human To Step Foot Onto Another World On July 20, 1969, Lunar Dust

As Neil Armstrong became the first human to step foot onto another world on July 20, 1969, lunar dust collected on the boots of his spacesuit. He peered through the gold coating of his visor and looked out across the surface of the Moon, an entirely different landscape than he was used to.

Now, just in time for the 50th anniversary of the Moon landing, you can experience the boots that stepped in Moon dust and the visor that saw the moonscape up close. Neil Armstrong’s spacesuit from the historic Apollo 11 Moon landing is on display for the first time in 13 years in its new display case in the Wright Brothers & the Invention of the Aerial Age Gallery of the National Air and Space Museum.

This week, you can also watch us salute our Apollo 50th heroes and look forward to our next giant leap for future missions to the Moon and Mars. Tune in to a special two-hour live NASA Television broadcast at 1 p.m. ET on Friday, July 19. Watch the program at www.nasa.gov/live.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago
50 Years Ago, Three Apollo Astronauts Rode This 363 Foot Tall Rocket, The Saturn V, Embarking On One

50 years ago, three Apollo astronauts rode this 363 foot tall rocket, the Saturn V, embarking on one of the greatest missions of mankind – to step foot on another world. On July 20, 1969, astronauts Buzz Aldrin, Michael Collins and Neil Armstrong made history when they arrived at the Moon. Thanks to the Saturn V rocket, we were able to complete this epic feat, returning to the lunar surface a total of six times. The six missions that landed on the Moon returned a wealth of scientific data and almost 400 kilograms of lunar samples. 

In honor of this historic launch, the National Air and Space Museum is projecting the identical rocket that took our astronauts to the Moon on the Washington Monument in Washington, D.C.

This week, you can watch us salute our Apollo 50th heroes and look forward to our next giant leap for future missions to the Moon and Mars. Tune in to a special two-hour live NASA Television broadcast at 1 p.m. ET on Friday, July 19. Watch the program at www.nasa.gov/live.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

We Like Big Rockets and We Cannot Lie: Saturn V vs. SLS

On this day 50 years ago, human beings embarked on a journey to set foot on another world for the very first time. 

image

At 9:32 a.m. EDT, millions watched as Apollo astronauts Neil Armstrong, Buzz Aldrin and Michael Collins lifted off from Launch Pad 39A at the Kennedy Space Center in Cape Canaveral, Florida, flying high on the most powerful rocket ever built: the mighty Saturn V.

image

As we prepare to return humans to the lunar surface with our Artemis program, we’re planning to make history again with a similarly unprecedented rocket, the Space Launch System (SLS). The SLS will be our first exploration-class vehicle since the Saturn V took American astronauts to the Moon a decade ago. With its superior lift capability, the SLS will expand our reach into the solar system, allowing astronauts aboard our Orion spacecraft to explore multiple, deep-space destinations including near-Earth asteroids, the Moon and ultimately Mars.

image

So, how does the Saturn V measure up half a century later? Let’s take a look.

Mission Profiles: From Apollo to Artemis 

Saturn V

image

Every human who has ever stepped foot on the Moon made it there on a Saturn V rocket. The Saturn rockets were the driving force behind our Apollo program that was designed to land humans on the Moon and return them safely back to Earth.

image

Developed at our Marshall Space Flight Center in the 1960s, the Saturn V rocket (V for the Roman numeral “5”)  launched for the first time uncrewed during the Apollo 4 mission on November 9, 1967. One year later, it lifted off for its first crewed mission during Apollo 8. On this mission, astronauts orbited the Moon but did not land. Then, on July 16, 1969, the Apollo 11 mission was the first Saturn V flight to land astronauts on the Moon. In total, this powerful rocket completed 13 successful missions, landing humans on the lunar surface six times before lifting off for the last time in 1973.

Space Launch System (SLS) 

image

Just as the Saturn V was the rocket of the Apollo generation, the Space Launch System will be the driving force behind a new era of spaceflight: the Artemis generation.

image

During our Artemis missions, SLS will take humanity farther than ever before. It is the vehicle that will return our astronauts to the Moon by 2024, transporting the first woman and the next man to a destination never before explored – the lunar South Pole. Over time, the rocket will evolve into increasingly more powerful configurations to provide the foundation for human exploration beyond Earth’s orbit to deep space destinations, including Mars.

SLS will take flight for the first time during Artemis 1 where it will travel 280,000 miles from Earth – farther into deep space than any spacecraft built for humans has ever ventured.

Size: From Big to BIGGER 

Saturn V

image

The Saturn V was big. 

In fact, the Vehicle Assembly Building at Kennedy Space Center is one of the largest buildings in the world by volume and was built specifically for assembling the massive rocket. At a height of 363 feet, the Saturn V rocket was about the size of a 36-story building and 60 feet taller than the Statue of Liberty!

Space Launch System (SLS)

image

Measured at just 41 feet shy of the Saturn V, the initial SLS rocket will stand at a height of 322 feet. Because this rocket will evolve into heavier lift capacities to facilitate crew and cargo missions beyond Earth’s orbit, its size will evolve as well. When the SLS reaches its maximum lift capability, it will stand at a height of 384 feet, making it the tallest rocket in the world.

Power: Turning Up the Heat 

Saturn V

For the 1960s, the Saturn V rocket was a beast – to say the least.

Fully fueled for liftoff, the Saturn V weighed 6.2 million pounds and generated 7.6 million pounds of thrust at launch. That is more power than 85 Hoover Dams! This thrust came from five F-1 engines that made up the rocket’s first stage. With this lift capability, the Saturn V had the ability to send 130 tons (about 10 school buses) into low-Earth orbit and about 50 tons (about 4 school buses) to the Moon.

Space Launch System (SLS)

image

Photo of SLS rocket booster test

Unlike the Saturn V, our SLS rocket will evolve over time into increasingly more powerful versions of itself to accommodate missions to the Moon and then beyond to Mars.

image

The first SLS vehicle, called Block 1, will weigh 5.75 million pounds and produce 8.8 million pounds of thrust at time of launch. That’s 15 percent more than the Saturn V produced during liftoff! It will also send more than 26 tons  beyond the Moon. Powered by a pair of five-segment boosters and four RS-25 engines, the rocket will reach the period of greatest atmospheric force within 90 seconds!

image

Following Block 1, the SLS will evolve five more times to reach its final stage, Block 2 Cargo. At this stage, the rocket will provide 11.9 million pounds of thrust and will be the workhorse vehicle for sending cargo to the Moon, Mars and other deep space destinations. SLS Block 2 will be designed to lift more than 45 tons to deep space. With its unprecedented power and capabilities, SLS is the only rocket that can send our Orion spacecraft, astronauts and large cargo to the Moon on a single mission.

Build: How the Rockets Stack Up

Saturn V

image

The Saturn V was designed as a multi-stage system rocket, with three core stages. When one system ran out of fuel, it separated from the spacecraft and the next stage took over. The first stage, which was the most powerful, lifted the rocket off of Earth’s surface to an altitude of 68 kilometers (42 miles). This took only 2 minutes and 47 seconds! The first stage separated, allowing the second stage to fire and carry the rest of the stack almost into orbit. The third stage placed the Apollo spacecraft and service module into Earth orbit and pushed it toward the Moon. After the first two stages separated, they fell into the ocean for recovery. The third stage either stayed in space or crashed into the Moon.

Space Launch System (SLS)

Much like the Saturn V, our Space Launch System is also a multi-stage rocket. Its three stages (the solid rocket boosters, core stage and upper stage) will each take turns thrusting the spacecraft on its trajectory and separating after each individual stage has exhausted its fuel. In later, more powerful versions of the SLS, the third stage will carry both the Orion crew module and a deep space habitat module.

A New Era of Space Exploration 

Just as the Saturn V and Apollo era signified a new age of exploration and technological advancements, the Space Launch System and Artemis missions will bring the United States into a new age of space travel and scientific discovery.

Join us in celebrating the 50th anniversary of the Apollo 11 Moon landing and hear about our future plans to go forward to the Moon and on to Mars by tuning in to a special two-hour live NASA Television broadcast at 1 p.m. ET on Friday, July 19. Watch the program at www.nasa.gov/live.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Remember the Women Who Made #Apollo50th Possible

As the world celebrates the 50th anniversary of the historic Moon landing, we remember some of the women whose hard work and ingenuity made it possible. The women featured here represent just a small fraction of the enormous contributions made by women during the Apollo era. 

Margaret Hamilton, Computer Programmer

image

Margaret Hamilton led the team that developed the building blocks of software engineering — a term that she coined herself. Her systems approach to the Apollo software development and insistence on rigorous testing was critical to the success of Apollo. In fact, the Apollo guidance software was so robust that no software bugs were found on any crewed Apollo missions, and it was adapted for use in Skylab, the Space Shuttle and the first digital fly-by-wire systems in aircraft.

In this photo, Hamilton stands next to a stack of Apollo Guidance Computer source code. As she noted, “There was no second chance. We all knew that.”

Katherine Johnson, Aerospace Technologist

image

As a very young girl, Katherine Johnson loved to count things. She counted everything, from the number of steps she took to get to the road to the number of forks and plates she washed when doing the dishes.

As an adult, Johnson became a “human computer” for the National Advisory Committee for Aeronautics, which in 1958, became NASA. Her calculations were crucial to syncing Apollo’s Lunar Lander with the Moon-orbiting Command and Service Module. “I went to work every day for 33 years happy. Never did I get up and say I don't want to go to work."

Judy Sullivan, Biomedical Engineer

image

This fabulous flip belongs to biomedical engineer Judy Sullivan, who monitored the vital signs of the Apollo 11 astronauts throughout their spaceflight training via small sensors attached to their bodies. On July 16, 1969, she was the only woman in the suit lab as the team helped Neil Armstrong suit up for launch.

Sullivan appeared on the game show “To Tell the Truth,” in which a celebrity panel had to guess which of the female contestants was a biomedical engineer. Her choice to wear a short, ruffled skirt stumped everyone and won her a $500 prize. In this photo, Sullivan monitors a console during a training exercise for the first lunar landing mission.

Billie Robertson, Mathematician

image

Billie Robertson, pictured here in 1972 running a real-time go-no-go simulation for the Apollo 17 mission, originally intended to become a math teacher. Instead, she worked with the Army Ballistic Missile Agency, which later became rolled into NASA. She created the manual for running computer models that were used to simulate launches for the Apollo, Skylab and Apollo Soyuz Test Project programs. 

Robertson regularly visited local schools over the course of her career, empowering young women to pursue careers in STEM and aerospace.

Mary Jackson, Aeronautical Engineer

image

In 1958, Mary Jackson became NASA’s first African-American female engineer. Her engineering specialty was the extremely complex field of boundary layer effects on aerospace vehicles at supersonic speeds.

In the 1970s, Jackson helped the students at Hampton’s King Street Community center build their own wind tunnel and use it to conduct experiments. “We have to do something like this to get them interested in science," she said for the local newspaper. "Sometimes they are not aware of the number of black scientists, and don't even know of the career opportunities until it is too late."

Ethel Heinecke Bauer, Aerospace Engineer

image

After watching the launch of Sputnik in October 1957, Ethel Heinecke Bauer changed her major to mathematics. Over her 32 years at NASA, she worked at two different centers in mathematics, aerospace engineering, development and more. 

Bauer planned the lunar trajectories for the Apollo program including the ‘free return’ trajectory which allowed for a safe return in the event of a systems failure  — a trajectory used on Apollo 13, as well as the first three Apollo flights to the Moon. In the above photo, Bauer works on trajectories with the help of an orbital model.

Follow Women@NASA for more stories like this one, and make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Rocket Fuel in Her Blood: The Story of JoAnn Morgan

As the Apollo 11 mission lifted off on the Saturn V rocket, propelling humanity to the surface of the Moon for the very first time, members of the team inside Launch Control Center watched through a window.

The room was crowded with men in white shirts and dark ties, watching attentively as the rocket thrust into the sky. But among them sat one woman, seated to the left of center in the third row in the image below. In fact, this was the only woman in the launch firing room for the Apollo 11 liftoff.

image

This is JoAnn Morgan, the instrumentation controller for Apollo 11. Today, this is what Morgan is most known for. But her career at NASA spanned over 45 years, and she continued to break ceiling after ceiling for women involved with the space program.

“It was just meant to be for me to be in the launching business,” she says. “I’ve got rocket fuel in my blood.”

image

Morgan was inspired to join the human spaceflight program when Explorer 1 was launched into space in 1958, the first satellite to do so from the United States. Explorer 1 was instrumental in discovering what has become known as the Van Allen radiation belt. 

“I thought to myself, this is profound knowledge that concerns everyone on our planet,” she says. “This is an important discovery, and I want to be a part of this team. I was compelled to do it because of the new knowledge, the opportunity for new knowledge.”

image

The opportunity came when Morgan spotted an advertisement for two open positions with the Army Ballistic Missile Agency. The ad listed two Engineer’s Aide positions available for two students over the summer.

 “Thank God it said ‘students’ and not ‘boys’” says Morgan, “otherwise I wouldn’t have applied.”

After Morgan got the position, the program was quickly rolled into a brand-new space exploration agency called NASA. Dr. Kurt Debus, the first director of Kennedy Space Center (KSC), looked at Morgan’s coursework and provided Morgan with a pathway to certification. She was later certified as a Measurement and Instrumentation Engineer and a Data Systems Engineer.

image

There was a seemingly infinite amount of obstacles that Morgan was forced to overcome — everything from obscene phone calls at her station to needing a security guard to clear out the men’s only restroom.

“You have to realize that everywhere I went — if I went to a procedure review, if I went to a post-test critique, almost every single part of my daily work — I’d be the only woman in the room,” reflects Morgan. “I had a sense of loneliness in a way, but on the other side of that coin, I wanted to do the best job I could.”

image

To be the instrumentation controller in the launch room for the Apollo 11 liftoff was as huge as a deal as it sounds. For Morgan, to be present at that pivotal point in history was ground-breaking: “It was very validating. It absolutely made my career.”

image

Much like the Saturn V rocket, Morgan’s career took off. She was the first NASA woman to win a Sloan Fellowship, which she used to earn a Master of Science degree in management from Stanford University in California. When she returned to NASA, she became a divisions chief of the Computer Systems division.

image

From there, Morgan excelled in many other roles, including deputy of Expendable Launch Vehicles, director of Payload Projects Management and director of Safety and Mission Assurance. She was one of the last two people who verified the space shuttle was ready to launch and the first woman at KSC to serve in an executive position, associate director of the center.

image

To this day, Morgan is still one of the most decorated women at KSC. Her numerous awards and recognitions include an achievement award for her work during the activation of Apollo Launch Complex 39, four exceptional service medals and two outstanding leadership medals. In 1995, she was inducted into the Florida Women's Hall of Fame.

After serving as the director of External Relations and Business Development, she retired from NASA in August 2003.

image

Today, people are reflecting on the 50th anniversary of Apollo 11, looking back on photos of the only woman in the launch firing room and remembering Morgan as an emblem of inspiration for women in STEM. However, Morgan’s takeaway message is to not look at those photos in admiration, but in determination to see those photos “depart from our culture.”

“I look at that picture of the firing room where I’m the only woman. And I hope all the pictures now that show people working on the missions to the Moon and onto Mars, in rooms like Mission Control or Launch Control or wherever — that there will always be several women. I hope that photos like the ones I’m in don’t exist anymore.”

image

Follow Women@NASA for more stories like this one, and make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Throwback Thursday: Apollo 11 Moon Landing Questions Answered

image

The Apollo 11 Moon landing was a feat for the ages. With the help of the NASA History Office, we’ve identified some of the most frequently asked questions surrounding the first time humans walked on the surface of another world. Click here to check out our post from last week. 

Is it true that the Apollo guidance computer had less computing power than a smartphone?

image

Believe it or not, yes! The Apollo guidance computer not only had less computing power than a smartphone, it had less computing power than the calculator you use in your algebra class. The computer, designed by MIT, had a fixed memory of 36 kilobytes and an erasable memory of 2 kilobytes. That’s fairly advanced for the time! 

Why did Buzz Aldrin take a picture of his bootprint?

image

A substantial portion of the Apollo 11 crew’s checklist was taking photographs. Taking closeup shots of the "very fine” moon dust was a critical component of mission objectives and helped scientists better understand the surface makeup of the Moon. 

image

Armstrong and Aldrin wore lunar overboots over their main spacesuit boots to protect them from ultraviolet radiation and hazardous rocks. To make room for the nearly 50 pounds (22 kilograms) of lunar samples, the crew left all their pairs of boots on the Moon. But don’t worry; they wouldn’t get charged an overweight baggage fee anyway. 

image

What were the first words spoken from the surface of the Moon?

image

That’s somewhat subject to interpretation. Once the Lunar Module’s surface sensor touched the surface, Buzz Aldrin called out "Contact Light” to Mission Control. After the engine shut down, he said “ACA out of detent,” simply meaning that the Eagle’s Attitude Control Assembly, or control stick, was moved from its center position. 

But the first words heard by the entire world after Apollo 11 touched down were delivered by Neil Armstrong: "Houston, Tranquility Base here. The Eagle has landed.” More than six hours later, Armstrong stepped off the Eagle’s footpad and delivered the most famous words ever spoken from the surface of another world: "That's one small step for [a] man, one giant leap for mankind."  And although we have a hard time hearing it in the recording, Armstrong clarified in a post-flight interview that he actually said, “That’s one small step for a man...”

What will the first woman and the next man to go to the Moon say when they first step on its surface?

image

We can’t say for sure what our next moonwalkers will decide to say, but perhaps the better question is: What would be your first words if you were to land on the Moon? There’s no doubt that the astronauts of the Artemis Generation will inspire a new crop of explorers the way Apollo Generation astronauts did 50 years ago.  Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Throwback Thursday: Frequently Asked Questions about Apollo

image

In celebration of the 50th anniversary of Apollo 11, we’ll be sharing answers to some frequently asked questions about the first time humans voyaged to the Moon. Answers have been compiled from archivists in the NASA History Office.

How many people worked on the Apollo program?

image

At the height of Apollo in 1965, about 409,900 people worked on some aspect of the program, but that number doesn’t capture it all.

It doesn’t represent the people who worked on mission concepts or spacecraft design, such as the engineers who did the wind tunnel testing of the Apollo Command Module and then moved on to other projects. The number also doesn’t represent the NASA astronauts, mission controllers, remote communications personnel, etc. who would have transferred to the Apollo program only after the end of Gemini program (1966-1967). There were still others who worked on the program only part-time or served on temporary committees. In the image above are three technicians studying an Apollo 14 Moon rock in the Lunar Receiving Laboratory at Johnson Space Center. From left to right, they are Linda Tyler, Nancy Trent and Sandra Richards.

How many people have walked on the Moon so far?

image

This artwork portrait done by spaceflight historian Ed Hengeveld depicts the 12 people who have walked on the Moon so far. In all, 24 people have flown to the Moon and three of them, John Young, Jim Lovell and Gene Cernan, have made the journey twice.  

But these numbers will increase.

Are the U.S. flags that were planted on the Moon still standing?

image

Every successful Apollo lunar landing mission left a flag on the Moon but we don’t know yet whether all are still standing. Some flags were set up very close to the Lunar Module and were in the blast radius of its ascent engine, so it’s possible that some of them could have been knocked down. Neil Armstrong and Buzz Aldrin both reported that the flag had been knocked down following their ascent. 

image

Our Lunar Reconnaissance Orbiter took photographs of all the Apollo lunar landing sites. In the case of the Apollo 17 site, you can see the shadow of the upright flag.

But why does it look like it’s waving?

image

The flags appear to “wave” or “flap” but actually they’re swinging. Swinging motions on Earth are dampened due to gravity and air resistance, but on the Moon any swinging motion can continue for much longer. Once the flags settled (and were clear of the ascent stage exhaust), they remained still.  And how is the flag hanging? Before launching, workers on the ground had attached a horizontal rod to the top of each flag for support, allowing it to be visible in pictures and television broadcasts to the American public. Armstrong and Aldrin did not fully extend the rod once they were on the Moon, giving the flag a ripple effect. The other astronauts liked the ripple effect so much that they also did not completely extend the rod. 

Why don’t we see stars in any of the pictures?

image

Have you ever taken a photo of the night sky with your phone or camera? You likely won’t see any stars because your camera’s settings are likely set to short exposure time which only lets it quickly take in the light off the bright objects closest to you. It’s the same reason you generally don’t see stars in spacewalk pictures from the International Space Station. There’s no use for longer exposure times to get an image like this one of Bruce McCandless in 1984 as seen from Space Shuttle Challenger (STS-41B).

The Hasselblad cameras that Apollo astronauts flew with were almost always set to short exposure times. And why didn’t the astronauts photograph the stars? Well, they were busy exploring the Moon!

When are we going back to the Moon?

image

The first giant leap was only the beginning. Work is under way to send the first woman and the next man to the Moon in five years. As we prepare to launch the next era of exploration, the new Artemis program is the first step in humanity’s presence on the Moon and beyond.

Keep checking back for more answers to Apollo FAQs.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags