TumblrFeed

Curate, connect, and discover

Spacesuits - Blog Posts

3 years ago

From Racing Suits to Robotic Gloves: How to Gear Up with NASA Technology

Did you know you are surrounded by NASA technology? From your apartment building to the doctor’s office, and even in your cellphone camera, there is more space in your life than you think!

In the latest edition of Spinoff, we are introducing dozens of new ways NASA technology could cross your path. Whether you need an extra “hand” on the production line or a weatherproof jacket, check out how to gear up with technology made for space.

Grip-Strengthening Glove

A man in a blue polo shirt wears a white and yellow grip-strengthening glove, which he uses to lift and turn various objects, including a large wrench.

Robots are crucial to exploring space and other planets – they could even support astronauts and form the advance party for places humans have yet to reach. But the human machine is hard to replicate.

A collaboration with General Motors helped us build Robonaut 2 – and the design for this robot’s hands has been adapted into a robotic glove that helps manufacturing employees, such as automobile workers, reduce injuries and improve quality control.

The Swedish company Bioservo used the Robo-Glove technology to create the world’s first industrial-strength robotic glove for factory workers who perform repetitive manual tasks.

The Ironhand glove adds force to the user’s grip with artificial tendons and pressure sensors on the palm and the fingers.

The result? Reduced strain on the user’s own tendons and muscles, meaning fewer workplace stress injuries and better comfort for workers.

Temperature-Control Fabrics

NASA astronaut Anne McClain displays a U.S. spacesuit glove that consists of several layers for extra thermal protection and comfort. Thermofoil heaters are also attached inside each of the fingertips in one of the layers of the glove.

Spacesuits need major insulation and temperature control to protect astronauts on extravehicular activities, aka spacewalks. To help solve this, we created a phase-change material with help from the Triangle Research and Development Corporation.

With funding from a NASA Small Business Innovation Research contract, Triangle incorporated the material into a fabric glove insert that could maintain a steady temperature by absorbing and releasing heat, ensuring it feels just right.

While the invention never made it to orbit, it did make it into the driver’s seat.

Outlast Technologies exclusively licensed the material from Triangle and has incorporated it into outdoor gear, bedding, and now – auto racing suits with help from Cambridge, England-based Walero.

Cristiana Oprea, a racer, wears a black Walero racing undergarment while sitting on a red divider at the edge of a racetrack.

Due to extreme temperatures in the cockpit, drivers in almost every major racing championship wear Walero for its cooling properties. Cristiana Oprea (pictured) wears it while driving for the European Rally Championship. Credit: Walero

The race undergarments, bonded with fire-retardant material for added protection, help drivers maintain a lower core temperature and heart rate, which means fewer mistakes and better lap times.

The suits have been sold to both amateur racers and professional NASCAR drivers.

Lightweight Rain Jackets

Astronaut John Grunsfeld works on repairs to the Hubble Space Telescope.

The superinsulating material that makes up space blankets is one of our most ubiquitous spinoffs. Found everywhere from inside the walls and roofs of buildings to cryogenic tanks and MRI machines, radiant barrier technology was first created to insulate spacesuits and spacecraft. And now this NASA spinoff can be found in weatherproof jackets as well.

Inspired by her passion to run following a series of surgeries to help correct a life-threatening injury, Hema Nambiar launched her Larchmont, New York, start-up company 13-One. To create her jacket, she worked with Advanced Flexible Materials Inc.’s brand Heatsheets. The brand was already marketing products like the space blankets traditionally distributed after races to prevent dangerous drops in temperature.

A man wears a 13-One jacket.

The 13-One jackets are designed to be warm and weatherproof, but their thin, reflective lining lets them also be lightweight and easily portable. Credit: Lourenso Ramautar, Out of New York Studio

The resulting line of jackets has a black exterior and a lining to reflect body heat. They weigh less than a pound, are wind- and water-resistant, and easily pack into a small, built-in pouch.

Want to check out more NASA spinoffs? Be sure to find us on spinoff.nasa.gov and on Twitter.

Interested in licensing your own NASA technologies? Check out the NASA Technology Transfer program at technology.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago

5 Out of this World Experiments Awaiting Crew-1 Space Scientists

NASA astronauts Shannon Walker, Victor Glover, and Mike Hopkins, and JAXA (Japan Aerospace Exploration Agency) astronaut Soichi Noguchi embark on a historic mission on November 14, 2020 aboard the Crew Dragon. NASA’s Crew-1 mission marks the first certified crew rotation flight to the International Space Station. During their 6-month stay on orbit, these crew members will don their science caps and complete experiments in microgravity.  Check out five out of this world experiments you can expect to see these space scientists working on during Expedition 64.

1. Space Gardening

The Crew-1 astronauts will become space farmers with the responsibility of tending to the rad(ish) garden located in a facility known as the Advanced Plant Habitat (APH). Researchers are investigating radishes in the Plant Habitat-02 experiment as a candidate crop for spaceflight applications to supplement food sources for astronauts. Radishes have the benefits of high nutritional content and quick growth rates, making these veggies an intriguing option for future space farmers on longer missions to the Moon or Mars.

image

2. Micro Miners

Microbes can seemingly do it all, including digging up the dirt (so to speak).  The BioAsteroid investigation looks at the ability of bacteria to break down rock.  Future space explorers could use this process for extracting elements from planetary surfaces and refining regolith, the type of soil found on the moon, into usable compounds.  To sum it up, these microbial miners rock.

image

3. Cooler Exploration Spacesuits

The iconic spacesuits used to walk on the moon and perform spacewalks on orbit are getting an upgrade. The next generation spacesuit, the Exploration Extravehicular Mobility Unit (xEMU), will be even cooler than before, both in looks and in terms of ability to regulate astronaut body temperature.  The Spacesuit Evaporation Rejection Flight Experiment (SERFE) experiment is a technology demonstration being performed on station to look at the efficiency of multiple components in the xEMU responsible for thermal regulation, evaporation processes, and preventing corrosion of the spacesuits.

image
image
image

4. Chips in Space

Crew-1 can expect to get a delivery of many types of chips during their mission.  We aren’t referring to the chips you would find in your pantry.  Rather, Tissue Chips in Space is an initiative sponsored by the National Institutes of Health to study 3D organ-like constructs on a small, compact devices in microgravity. Organ on a chip technology allows for the study of disease processes and potential therapeutics in a rapid manner. During Expedition 64, investigations utilizing organ on a chip technology will include studies on muscle loss, lung function, and the blood brain barrier – all on devices the size of a USB flashdrive.

image
image

5. The Rhythm of Life

Circadian rhythm, otherwise known as our "internal clock," dictates our sleep-wake cycles and influences cognition. Fruit flies are hitching a ride to the space station as the subjects of the Genes in Space-7 experiment, created by a team of high school students.  These flies, more formally known as the Drosophila melanogaster, are a model organism, meaning that they are common subjects of scientific study. Understanding changes in the genetic material that influences circadian rhythm in microgravity can shed light on processes relevant to an astronaut’s brain function.

image
image

Make sure to follow us on Tumblr for your regular dose of space:  http://nasa.tumblr.com

For updates on other platforms, follow @ISS_Research, Space Station Research and Technology News, or our Facebook to keep up with the science happening aboard your orbiting laboratory, and step outside to see the space station passing over your town using Spot the Station.


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags