Fazer o bem, faz bem!
Banner da Pastoral Social
Flying 250 miles above the Earth aboard the International Space Station has given me the unique vantage point from which to view our planet. Spending a year in space has given me the unique opportunity to see a wide range of spectacular storm systems in space and on Earth.
The recent blizzard was remarkably visible from space. I took several photos of the first big storm system on Earth of year 2016 as it moved across the East Coast, Chicago and Washington D.C. Since my time here on the space station began in March 2015, I’ve been able to capture an array of storms on Earth and in space, ranging from hurricanes and dust storms to solar storms and most recently a rare thunder snowstorm.
Blizzard 2016
Hurricane Patricia 2015
Hurricane Joaquin 2015
Dust Storm in the Red Sea 2015
Dust Storm of Gobi Desert 2015
Aurora Solar Storm 2015
Aurora Solar Storm 2016
Thunderstorm over Italy 2015
Lightning and Aurora 2016
Rare Thunder Snowstorm 2016
Follow my Year In Space on Twitter, Facebook and Instagram.
Que o último período seja de grandes realizações!
Lua e Terra fotografadas pela Apollo 17 em Dezembro de 1972.
Imagem feita com 8 frames com High Dynamic Range destacando os detalhes da superfície da Lua durante a totalidade do #Eclipse2017 - by @johnkrausphotos
This is not just an incredible view of Earth, it’s also a fantastic illustration of the terminator. (No not that one!) The terminator is the moving line that separates the day side from the dark night side of a planetary body. From this vantage point you can make out the gradual transition to darkness that is experienced as twilight on the surface. This image was captured on Aug. 31 by astronaut Jeff Williams (@Astro_Jeff) while on board the ISS.
A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer, that is capable of bending the light from the source as the light travels towards the observer. This effect is known as gravitational lensing, and the amount of bending is one of the predictions of Albert Einstein’s general theory of relativity.
This illustration shows how gravitational lensing works. The gravity of a large galaxy cluster is so strong, it bends, brightens and distorts the light of distant galaxies behind it. The scale has been greatly exaggerated; in reality, the distant galaxy is much further away and much smaller. Credit: NASA, ESA, L. Calcada
1° Strong lensing: where there are easily visible distortions such as the formation of Einstein rings, arcs, and multiple images.
Einstein ring. credit: NASA/ESA&Hubble
2° Weak lensing: where the distortions of background sources are much smaller and can only be detected by analyzing large numbers of sources in a statistical way to find coherent distortions of only a few percent. The lensing shows up statistically as a preferred stretching of the background objects perpendicular to the direction to the centre of the lens. By measuring the shapes and orientations of large numbers of distant galaxies, their orientations can be averaged to measure the shear of the lensing field in any region. This, in turn, can be used to reconstruct the mass distribution in the area: in particular, the background distribution of dark matter can be reconstructed. Since galaxies are intrinsically elliptical and the weak gravitational lensing signal is small, a very large number of galaxies must be used in these surveys.
The effects of foreground galaxy cluster mass on background galaxy shapes. The upper left panel shows (projected onto the plane of the sky) the shapes of cluster members (in yellow) and background galaxies (in white), ignoring the effects of weak lensing. The lower right panel shows this same scenario, but includes the effects of lensing. The middle panel shows a 3-d representation of the positions of cluster and source galaxies, relative to the observer. Note that the background galaxies appear stretched tangentially around the cluster.
3° Microlensing: where no distortion in shape can be seen but the amount of light received from a background object changes in time. The lensing object may be stars in the Milky Way in one typical case, with the background source being stars in a remote galaxy, or, in another case, an even more distant quasar. The effect is small, such that (in the case of strong lensing) even a galaxy with a mass more than 100 billion times that of the Sun will produce multiple images separated by only a few arcseconds. Galaxy clusters can produce separations of several arcminutes. In both cases the galaxies and sources are quite distant, many hundreds of megaparsecs away from our Galaxy.
Gravitational lenses act equally on all kinds of electromagnetic radiation, not just visible light. Weak lensing effects are being studied for the cosmic microwave background as well as galaxy surveys. Strong lenses have been observed in radio and x-ray regimes as well. If a strong lens produces multiple images, there will be a relative time delay between two paths: that is, in one image the lensed object will be observed before the other image.
As an exoplanet passes in front of a more distant star, its gravity causes the trajectory of the starlight to bend, and in some cases results in a brief brightening of the background star as seen by a telescope. The artistic concept illustrates this effect. This phenomenon of gravitational microlensing enables scientists to search for exoplanets that are too distant and dark to detect any other way.Credits: NASA Ames/JPL-Caltech/T. Pyle
Explanation in terms of space–time curvature
Simulated gravitational lensing by black hole by: Earther
In general relativity, light follows the curvature of spacetime, hence when light passes around a massive object, it is bent. This means that the light from an object on the other side will be bent towards an observer’s eye, just like an ordinary lens. In General Relativity the speed of light depends on the gravitational potential (aka the metric) and this bending can be viewed as a consequence of the light traveling along a gradient in light speed. Light rays are the boundary between the future, the spacelike, and the past regions. The gravitational attraction can be viewed as the motion of undisturbed objects in a background curved geometry or alternatively as the response of objects to a force in a flat geometry.
A galaxy perfectly aligned with a supernova (supernova PS1-10afx) acts as a cosmic magnifying glass, making it appear 100 billion times more dazzling than our Sun. Image credit: Anupreeta More/Kavli IPMU.
To learn more, click here.
#Eclipse2017
The eclipse should be visible to some extent across the continental U.S. Here’s map of its path.
Our eclipse page can help you find the best viewing locations by longitude and latitude: eclipse.gsfc.nasa.gov/SEgoogle/SEgoogle2001/SE2017Aug21Tgoogle.html
Want to know more about citizen science projects? Find a list of citizen science projects for the eclipse: https://eclipse.aas.org/resources/citizen-science
Get your eclipse viewing safety glasses beforehand: eclipse2017.nasa.gov/safety
In this interactive, 3D simulation of the total eclipse on August 21, 2017, you can see a view of the eclipse from anywhere on the planet:
http://eyes.jpl.nasa.gov/eyes-on-eclipse.html
Join the conversation on social media. Tag your posts: #Eclipse2017.
Twitter: @NASASolarSystem, @NASA, @NASASunEarth Facebook: NASA Solar System
Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Em Dezembro de 2015, a ESA lançou o LISA Pathfinder.
Depois de viajar 1.5 milhão de quilômetros e estacionar no ponto de Lagrange onde ficaria operacional, sua missão científica começou especificamente no dia 1 de Março de 2016.
Mas você conhece o LISA Pathfinder, sabe para que ele serve?
O LISA Pathfinder é um projeto da Agência Espacial Europeia que tem por objetivo provar uma tecnologia. A tecnologia de que é possível manter no espaço, dois cubos idênticos de ouro em queda livre, e não somente isso, mas a queda livre mais precisa já conseguida no espaço. Com as massas em um movimento sujeito apenas pela ação da gravidade, será possível realizar uma missão para medir as ondas gravitacionais do espaço.
Todo mundo deve lembrar que esse ano foi anunciado a detecção pela primeira vez das ondas gravitacionais, pelo LIGO, um experimento feito em Terra com dois equipamentos nos EUA. O ponto fundamental aqui é que as ondas gravitacionais ocorrem em um grande intervalo de frequências, e são necessários diferentes equipamentos para registrá-las.
A frequência das ondas gravitacionais detectadas pelo LIGO está na casa dos 100 Hz, com um experimento no espaço como o LISA será possível detectar ondas gravitacionais com frequência milhões de vezes menor do que essa.
Se vocês se lembram bem, o que causou as ondas gravitacionais detectadas pelo LIGO foi a fusão de dois buracos negros de massas estelares. Os astrônomos agora querem detectar colisões e eventos de objetos maiores, como a fusão de buracos negros supermassivos, eventos esses que geram uma frequência bem menor e só um experimento no espaço poderia detectar.
Os resultados mostram que o LISA Pathfinder conseguiu sim provar essa tecnologia, o LISA conseguiu colocar em queda livre protegido de todas as forças, somente com a gravidade atuando, dois cubos de metal com 46 centímetros de lado, com uma precisão 5 vezes maior do que aquela necessária, demonstrando que é sim possível realizar esse tipo de experimento no espaço.
Os resultados foram publicados na revista especializada Physical Review Letters e está animando os cientistas em todo o mundo, pois esses resultados superam em muito as expectativas mais otimistas sobre os resultados do LISA Pathfinder.
O LISA Patfinder é o início de um projeto muito mais ambicioso, o LISA, um sistema de detecção de ondas gravitacionais, que usará 3 naves, separadas por uma distância de 5 milhões de quilômetros entre elas e cada uma delas com cubos em queda livre, assim estará montado o detector de ondas gravitacionais que é o sonho dos astrônomos.
As ondas gravitacionais começaram a pouco a transformar a astronomia, nos dando a chance de conhecer o universo de um novo ponto de vista. E o LISA Pathfinder deu o primeiro passo, com sucesso para se detectar as ondas gravitacionais de baixa frequência do espaço.
(via https://www.youtube.com/watch?v=0KJR4-NP0kA)
Um jeito diferente de expressar.
Sempre firme com os seus princípios.
Fez o povo se encantar.
Por isso eu concordo e afirmo:
"Fenômenos não se explicam, fenômenos se admiram!"
#VocêNuncaEsteveSozinha #TeamJuliette #JulietteFreire #Globoplay