A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer, that is capable of bending the light from the source as the light travels towards the observer. This effect is known as gravitational lensing, and the amount of bending is one of the predictions of Albert Einstein’s general theory of relativity.
This illustration shows how gravitational lensing works. The gravity of a large galaxy cluster is so strong, it bends, brightens and distorts the light of distant galaxies behind it. The scale has been greatly exaggerated; in reality, the distant galaxy is much further away and much smaller. Credit: NASA, ESA, L. Calcada
1° Strong lensing: where there are easily visible distortions such as the formation of Einstein rings, arcs, and multiple images.
Einstein ring. credit: NASA/ESA&Hubble
2° Weak lensing: where the distortions of background sources are much smaller and can only be detected by analyzing large numbers of sources in a statistical way to find coherent distortions of only a few percent. The lensing shows up statistically as a preferred stretching of the background objects perpendicular to the direction to the centre of the lens. By measuring the shapes and orientations of large numbers of distant galaxies, their orientations can be averaged to measure the shear of the lensing field in any region. This, in turn, can be used to reconstruct the mass distribution in the area: in particular, the background distribution of dark matter can be reconstructed. Since galaxies are intrinsically elliptical and the weak gravitational lensing signal is small, a very large number of galaxies must be used in these surveys.
The effects of foreground galaxy cluster mass on background galaxy shapes. The upper left panel shows (projected onto the plane of the sky) the shapes of cluster members (in yellow) and background galaxies (in white), ignoring the effects of weak lensing. The lower right panel shows this same scenario, but includes the effects of lensing. The middle panel shows a 3-d representation of the positions of cluster and source galaxies, relative to the observer. Note that the background galaxies appear stretched tangentially around the cluster.
3° Microlensing: where no distortion in shape can be seen but the amount of light received from a background object changes in time. The lensing object may be stars in the Milky Way in one typical case, with the background source being stars in a remote galaxy, or, in another case, an even more distant quasar. The effect is small, such that (in the case of strong lensing) even a galaxy with a mass more than 100 billion times that of the Sun will produce multiple images separated by only a few arcseconds. Galaxy clusters can produce separations of several arcminutes. In both cases the galaxies and sources are quite distant, many hundreds of megaparsecs away from our Galaxy.
Gravitational lenses act equally on all kinds of electromagnetic radiation, not just visible light. Weak lensing effects are being studied for the cosmic microwave background as well as galaxy surveys. Strong lenses have been observed in radio and x-ray regimes as well. If a strong lens produces multiple images, there will be a relative time delay between two paths: that is, in one image the lensed object will be observed before the other image.
As an exoplanet passes in front of a more distant star, its gravity causes the trajectory of the starlight to bend, and in some cases results in a brief brightening of the background star as seen by a telescope. The artistic concept illustrates this effect. This phenomenon of gravitational microlensing enables scientists to search for exoplanets that are too distant and dark to detect any other way.Credits: NASA Ames/JPL-Caltech/T. Pyle
Explanation in terms of space–time curvature
Simulated gravitational lensing by black hole by: Earther
In general relativity, light follows the curvature of spacetime, hence when light passes around a massive object, it is bent. This means that the light from an object on the other side will be bent towards an observer’s eye, just like an ordinary lens. In General Relativity the speed of light depends on the gravitational potential (aka the metric) and this bending can be viewed as a consequence of the light traveling along a gradient in light speed. Light rays are the boundary between the future, the spacelike, and the past regions. The gravitational attraction can be viewed as the motion of undisturbed objects in a background curved geometry or alternatively as the response of objects to a force in a flat geometry.
A galaxy perfectly aligned with a supernova (supernova PS1-10afx) acts as a cosmic magnifying glass, making it appear 100 billion times more dazzling than our Sun. Image credit: Anupreeta More/Kavli IPMU.
To learn more, click here.
Nesta fotografia a nossa casa galáctica, a Via Láctea, estende-se ao longo do céu por cima da paisagem dos Andes chilenos. Em primeiro plano, as estradas para o Observatório de La Silla do ESO encontram-se cravejadas de telescópios astronômicos de vanguarda que apontam na direção da Via Láctea. Vários telescópios multinacionais foram capturados nesta imagem. O telescópio de 3,6 metros do ESO aparece no pedestal central e é neste telescópio que está montado o instrumento High Accuracy Radial velocity Planet Searcher (HARPS) — o melhor “caçador” de exoplanetas no mundo. Junto à cúpula principal, encontra-se o Coudé Auxiliary Telescope (CAT), que era utilizado para alimentar um potente espectrógrafo Coudé Echelle; neste momento estão ambos desativados. No sopé do pequeno monte está o Rapid Action Telescope for Trasient Objects (TAROT) francês, que segue eventos altamente energéticos chamados explosões de raios gama. Estes fenômenos são também estudados pelotelescópio suíço de 1,2 metros Leonhard Euler instalado na cúpula à esquerda, embora o seu enfoque seja a busca de exoplanetas. Ao fundo à direita podemos ver ainda o Swedish-ESO Submillimetre Telescope (SEST) que foi desativado em 2003 e substituído pelo Atacama Pathfinder EXperiment (APEX), situado no planalto do Chajnantor. Um mapa com todas as instalações existentes em La Silla pode ser consultado neste link. A grande densidade de instrumentos nas estradas de La Silla mostram o quão desejável é este sítio para as observações astronômicas. O local encontra-se longe de cidades muito iluminadas — o efeito dramático de tênues luzes de freio de um único carro pode ser visto à esquerda — e a altitude elevada.
Fonte:
http://www.eso.org/public/brazil/images/potw1610a/
çõe@i�(l�
The Faint Rings of Uranus
Taken in January, 1986 by Voyager 2. Uranus assembled using orange, simulated green, and violet light. The rings were taken in clear (white) light, but colored red here.
Image Credit: NASA/JPL/Kevin M. Gill
Mercury is the smallest planet in our solar system and is only slightly larger than Earth’s moon. To give you some perspective, if the sun were as tall as a typical front door, Earth would be the size of a nickel and Mercury would be about as big as a green pea.
Mercury is the closest planet to the sun. Daytime temperatures can reach 430 degrees Celsius (800 degrees Fahrenheit) and drop to –180 degrees Celsius (-290 degrees Fahrenheit) at night.
Here are a few fun facts about Mercury:
Mercury takes only 88 Earth days to orbit the sun
If we could stand on Mercury’s surface when it is at its closest point to the sun, the sun would appear more than three times larger than it does here on Earth
Mercury is home to one of the largest impact basins in the solar system: the Caloris Basin. The diameter of this impact basin is the length of 16,404 football fields (minus the end zones) placed end to end!
Mercury is one of only two planets in our solar system that do not have moons (Venus is the other one)
Mercury completes three rotations for every two orbits around the sun. That means that if you wanted to stay up from sunrise to sunrise on Mercury, you’d be up for 176 Earth days…you’d need a LOT of coffee!
Two missions have visited Mercury:
Mariner 10 was the first mission to Mercury, and 30 years later, our MESSENGER mission was the second to visit the planet. Mariner 10 was also the first spacecraft to reach one planet by using the gravity of another planet (in this case, Venus) to alter its speed and trajectory.
MESSENGER was the first spacecraft to orbit Mercury, The spacecraft had its own shades to protect it from the light of the sun. This is important since sunlight on Mercury can be as much as 11 times brighter than it is here on Earth. The spacecraft was originally planned to orbit Mercury for one year, but exceeded expectations and worked for over four years capturing extensive data. On April 30, 2015, the spacecraft succumbed to the pull of solar gravity and impacted Mercury’s surface.
Water Ice?
The MESSENGER spacecraft observed compelling support for the long-held hypothesis that Mercury harbors abundant water ice and other frozen volatile materials in its permanently shadowed polar craters.
This radar image of Mercury’s north polar region. The areas shown in red were captured by MESSENGER, compared to the yellow deposits imaged by Earth-based radar. These areas are believed to consist of water ice.
For more than seven hours on Monday, May 9, Mercury will be visible as a tiny black dot crossing the face of the sun. This rare event – which happens only slightly more than once a decade – is called a transit.
Where: Skywatchers in Western Europe, South America and eastern North America will be able to see the entirety of the transit. The entire 7.5-hour path across the sun will be visible across the Eastern U.S. – with magnification and proper solar filters – while those in the West can observe the transit in progress at sunrise.
Watch: We will stream a live program on NASA TV and the agency’s Facebook page from 10:30 to 11:30 a.m. – an informal roundtable during which experts representing planetary, heliophysics and astrophysics will discuss the science behind the Mercury transit. Viewers can ask questions via Facebook and Twitter using #AskNASA. Unlike the 2012 Venus transit of the sun, Mercury is too small to be visible without magnification from a telescope or high-powered binoculars. Both must have safe solar filters made of specially-coated glass or Mylar; you can never look directly at the sun.
To learn more about our solar system and the planets, visit: http://solarsystem.nasa.gov/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Não é alinhamento e nem é tão raro assim, vai se repetir em Outubro de 2018, mas não deixa de ser um bom motivo para olhar para cima ao entardecer e observar 5 planetas a olho nu.
🌟 🎶 Esse amor não tem fim
Já faz parte de mim
Te amo CAPRICHOSO
E vai ser pra sempre assim
Nasci pra amar você
De azul até morrer
Não há um amor maior
Do amor que eu sinto por você! 🎶 💙
Pôr da Lua no Pôr do Sol! 🌙☀️
📅 Data de registro: 5 de agosto de 2024 às 18:23
Here are a few things you should know about our solar system this week:
1. Gearing Up for a Grand Finale
There’s just a year left until the Cassini mission begins its Grand Finale – the final phase of its mission, during which the spacecraft will dive repeatedly between the planet and the rings. To get ready, the Cassini team has launched an enhanced, mobile device-friendly version of the mission website. The site includes information about Cassini, Saturn, the moons and the rings – but it also tells the human stories behind one of the most ambitions expeditions of all time.
2.Caught in Transit
On Monday, May 9, the planet Mercury will cross directly in front of the sun, an event that hasn’t occurred since 2006 and won’t happen again until 2019. Find out how to watch HERE.
3. A Moon for Makemake
Our Hubble Space Telescope has spotted a small, dark moon orbiting Makemake (pronounced “MAH-kay MAH-kay). Make make is the second brightest icy dwarf planet – after Pluto – in the faraway Kuiper Belt.
4. The Age of the Aquarids
The Eta Aquarid meteor shower is the first of two showers that occur each year as a result of Earth passing through dust released by Halley’s Comet. This year, it should peak on the night of May 5/6. Get tips for watching HERE.
5. The Southern Lights of Saturn
On May 4, Cassini will reach periapse, the closest point to Saturn in the spacecraft’s orbit. At about this time, Cassini’s cameras will monitor Saturn’s south polar aurorae, and also image the bright limb of the planet to better understand its upper haze layers.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A vacina induz o organismo a criar defesas necessárias para neutralizar o vírus em uma eventual contaminação.
"··· É uma falsa equivalência equiparar o risco da vacina ao COVID. É 100.000 vezes mais perigoso não ser vacinado."
#VacinaSim
Fotografar um buraco negro, é possível? Óbvio que fotografar o interior de um buraco negro, ou o que acontece além do horizonte de eventos, é algo impossível, pois a partir do horizonte de eventos, nada consegue escapar, nem mesmo a luz.
Agora, fotografar o horizonte de eventos é sim algo possível, porém para realizar esse feito seria necessário um telescópio gigantesco, para se ter uma ideia, para fotografar o horizonte de eventos do buraco negro no centro da Via Láctea, seria necessário um telescópio que tivesse, virtualmente o diâmetro do planeta Terra.
E será que isso é possível? Não só é possível, como está pronto para operar.
A iniciativa se chama Event Horizon Telescope, ou Telescópio do horizonte de Eventos.
O objetivo é integrar os grandes radiotelescópios do mundo, e a através de uma técnica chamada de interferometria e assim conseguir observar o horizonte de eventos do buraco negro supermassivo no centro da Via Láctea.
Para quem não sabe, o buraco negro central da Via Láctea, se chama Sagitarius A*, está localizado a cerca de 26 mil anos-luz de distância da Terra, e obviamente nunca foi observado.
O que se tem são indícios de sua existência devido a observação das estrelas ao redor se movimentando de forma muito rápida, o que sugere um objeto extremamente denso no centro.
O seu horizonte de eventos tem cerca de 20 milhões de km, parece muito, mas na distância que ele está não é nada, é só mesmo, um telescópio do tamanho da Terra é capaz de observar.
O EHT usa uma técnica chamada de VLBI (Very Long baseline array interferometry).
Na verdade a técnica consiste em combinar o poder das maiores antenas de rádio telecópios do mundo todos olhando para um mesmo alvo ao mesmo tempo.
Com a recente adição do ALMA ao EHT sua sensibilidade foi extremamente melhorada.
além dos instrumentos, o local onde ficarão armazenados os dados já está pronto esperando a quantidade enorme de informação. A capacidade de armazenamento é equivalente a de 10000 laptops tradicionais.
Além de tudo isso, obviamente o algoritmo que irá fazer a análise dos dados já está bem desenvolvido.
E para ter uma certeza no sucesso do experimento, simulações já foram rodadas levando em consideração as equações de Einstein.
E o efeito que os astrônomos esperam observar é a sombra do buraco negro na matéria subjacente e quando essa sombra acontecer, o horizonte de eventos se tornará proeminente.
Agora a pergunta que não quer parar? Quando teremos essa imagem?
Os astrônomos pretendem fazer a campanha de observação entre 5 e 14 de Abril de 2017, mas devido à complexidade das análises, provavelmente a primeira imagem só fique pronta em 2018, ah, e só para lembrar não tem nada da NASA nisso.
Além obviamente de fazer a imagem do horizonte de eventos, que será algo extraordinário, esse experimento poderá provar mais uma vez a teoria da relatividade de Albert Einstein. Muitos efeitos só provados teoricamente poderão ser testados nessa observação.
E não existe melhor lugar para testar a teoria da relatividade do que o ambiente extremo nas vizinhanças de um buraco negro.
Será que esse ano conseguiremos esse fato extraordinário? vamos aguardar e estarei aqui anunciando para vocês as novidades.
(via https://www.youtube.com/watch?v=NFRk-1yq86Y)