As Estrelas Do Cruzeiro ✨

As Estrelas Do Cruzeiro ✨

As Estrelas do Cruzeiro ✨

A constelação do Cruzeiro do Sul, também conhecida como Crux, é uma das constelações mais conhecidas do hemisfério sul celeste. [...]

O Cruzeiro do Sul tem algumas estrelas que se destacam: A mais brilhante é Acrux (também conhecida como Alfa Crucis ou ainda como Estrela de Magalhães), com magnitude aparente de +0,81; Becrux (também conhecida por Beta Crucis ou ainda por Mimosa); Gacrux (Gama Crucis ou ainda Rubídea); Pálida (ou Delta Crucis) e Intrometida (ou Épsilon Crucis).

Esta constelação tem ainda outros objetos celestes bem interessantes. É o caso da NGC 4755, conhecida como “Caixa de Joias“, sendo este um aglomerado estelar aberto; nesta constelação está também a Nebulosa do Saco de Carvão. [...]

Esta foto foi tirada sob um céu nebuloso, fazendo com que as estrelas se tornassem grandes esferas brilhantes. [...]

📸 Créditos da imagem:

[1] https://upload.wikimedia.org/wikipedia/commons/c/cc/Deep_Crux_wide_field_with_fog.jpg

[2] http://www.iceinspace.com.au/forum/showthread.php?t=89854

📚 Créditos do texto:

[1] https://pt.wikipedia.org/wiki/Crux 2/11

[2] http://www.iau.org/public/constellations/#cru

[3] https://www.siteastronomia.com/cruzeiro-do-sul-constelacao

More Posts from Carlosalberthreis and Others

9 years ago

Travel Posters of Fantastic Excursions

What would the future look like if people were regularly visiting to other planets and moons? These travel posters give a glimpse into that imaginative future. Take a look and choose your destination:

The Grand Tour

image

Our Voyager mission took advantage of a once-every-175-year alignment of the outer planets for a grand tour of the solar system. The twin spacecraft revealed details about Jupiter, Saturn, Uranus and Neptune – using each planet’s gravity to send them on to the next destination.

Mars

image

Our Mars Exploration Program seeks to understand whether Mars was, is, or can be a habitable world. This poster imagines a future day when we have achieved our vision of human exploration of the Red Planet and takes a nostalgic look back at the great imagined milestones of Mars exploration that will someday be celebrated as “historic sites.”

Earth

image

There’s no place like home. Warm, wet and with an atmosphere that’s just right, Earth is the only place we know of with life – and lots of it. Our Earth science missions monitor our home planet and how it’s changing so it can continue to provide a safe haven as we reach deeper into the cosmos.

Venus

image

The rare science opportunity of planetary transits has long inspired bold voyages to exotic vantage points – journeys such as James Cook’s trek to the South Pacific to watch Venus and Mercury cross the face of the sun in 1769. Spacecraft now allow us the luxury to study these cosmic crossings at times of our choosing from unique locales across our solar system.

Ceres

image

Ceres is the closest dwarf planet to the sun. It is the largest object in the main asteroid belt between Mars and Jupiter, with an equatorial diameter of about 965 kilometers. After being studied with telescopes for more than two centuries, Ceres became the first dwarf planet to be explored by a spacecraft, when our Dawn probe arrived in orbit in March 2015. Dawn’s ongoing detailed observations are revealing intriguing insights into the nature of this mysterious world of ice and rock.

Jupiter

image

The Jovian cloudscape boasts the most spectacular light show in the solar system, with northern and southern lights to dazzle even the most jaded space traveler. Jupiter’s auroras are hundreds of times more powerful than Earth’s, and they form a glowing ring around each pole that’s bigger than our home planet. 

Enceladus

image

The discovery of Enceladus’ icy jets and their role in creating Saturn’s E-ring is one of the top findings of the Cassini mission to Saturn. Further Cassini discoveries revealed strong evidence of a global ocean and the first signs of potential hydrothermal activity beyond Earth – making this tiny Saturnian moon one of the leading locations in the search for possible life beyond Earth.

Titan

image

Frigid and alien, yet similar to our own planet billions of years ago, Saturn’s largest moon, Titan has a thick atmosphere, organic-rich chemistry and surface shaped by rivers and lakes of liquid ethane and methane. Our Cassini orbiter was designed to peer through Titan’s perpetual haze and unravel the mysteries of this planet-like moon.

Europa

image

Astonishing geology and the potential to host the conditions for simple life making Jupiter’s moon Europa a fascinating destination for future exploration. Beneath its icy surface, Europa is believed to conceal a global ocean of salty liquid water twice the volume of Earth’s oceans. Tugging and flexing from Jupiter’s gravity generates enough heat to keep the ocean from freezing.

You can download free poster size images of these thumbnails here: http://www.jpl.nasa.gov/visions-of-the-future/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

7 years ago

Our Most “Liked” Instagram Posts of 2017

Our Instagram page has over 2,200 images and is lucky enough to be followed by more than 29 million fans.

What images and videos were your favorite from this past year? Great question, and one we asked ourselves too!

Here’s a look at our most liked Instagram posts* of 2017…Enjoy!

#10 Black Hole Collision

image

What happens when two supermassive black holes collide? Until last year, we weren’t quite sure. Gravitational waves!  With 834,169  likes, this image is our 10th most liked of 2017.

#9 Italy Through the Space Station Cupola Window

image

European astronaut Paolo Nespoli (@Astro_Paolo) shared this image on social media of “Southern #Italy and Sicily framed by one of our Cupola windows” aboard the International Space Station. This image ranks #9 for 2017 with 847,365 likes.

#8 Black Hole Friday

image

For our 5th annual #BlackHoleFriday we’ll share awesome images and facts about black holes! A black hole is a place in space where gravity pulls so much that even light cannot get out. With 916,247 likes, this picture ranks #8 for 2017.

#7 The Elements of Cassiopeia A

image

Did you know that stellar explosions and their remains–“supernova remnants”–are a source of chemical elements essential for life here on Earth? A new Chandra X-ray Observatory image captures the location of several vital elements like silicon (red), sulfur (yellow), calcium (green) and iron (purple), located on Cassiopeia A–a supernova remnant ~11,000 light years from Earth.  This image ranks #7 for 2017 with 943,806 likes.

#6 Jupiter Blues

image

Jupiter, you’re bluetiful 💙 ! Churning swirls of Jupiter’s clouds are seen in striking shades of blue in this new view taken by our Juno spacecraft. This image ranks as our sixth most liked Instagram post of 2017 with 990,944 likes.

#5 An Interstellar Visitor

image

An interstellar visitor…scientists have confirmed that an intriguing asteroid that zipped through our solar system in October is the first confirmed object from another star! Observations suggest that this unusual object had been wandering through the Milky Way, unattached to any star system, for hundreds of millions of years before its chance encounter with our star system. With 1,015,721 likes, this image ranks #5 for 2017.

#4 Space Station Lunar Transit

image

Space station supermoon. This composite image made from six frames shows the International Space Station, with a crew of six onboard, as it transits the Moon at roughly five miles per second on Dec. 2. This image ranks #4 for 2017 with 1,037,520 likes.

#3 The Space Between Us

A post shared by NASA (@nasa) on Dec 20, 2017 at 2:56pm PST

The beautiful space between Earth and the International Space Station was immortalized by NASA astronaut Mark Vande Hei while orbiting 250 miles above the planet we call home. This majestic image ranks #3 for 2017 with 1,042,403 likes.

#2 The Moon Swallows the Sun

A post shared by NASA (@nasa) on Aug 21, 2017 at 2:03pm PDT

Today, the Sun disappeared, seemingly swallowed by our Moon–at least for a while. The August 21 solar eclipse cut through a swath of North America from coast to coast and those along the path of totality, that is where the Moon completely covered the Sun, were faced with a sight unseen in the U.S. in 99 years. Which might have something to do with this image ranking #2 for 2017 with 1,144,503 likes.

#1 Solar Eclipse Over Cascade Lake

A post shared by NASA (@nasa) on Aug 21, 2017 at 3:57pm PDT

Behold! This progression of the partial solar eclipse took place over Ross Lake, in Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. 

This photo was our #1 image of 2017 with 1,471,114 likes!

See them all here!

Do you want to get amazing images of Earth from space, see distant galaxies and more on Instagram? Of course you do! Follow us: https://www.instagram.com/nasa/

*Posts and rankings are were taken as of Dec. 28, 2017.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

8 years ago

Incoming! We’ve Got Science from Jupiter!

Our Juno spacecraft has just released some exciting new science from its first close flyby of Jupiter! 

image

In case you don’t know, the Juno spacecraft entered orbit around the gas giant on July 4, 2016…about a year ago. Since then, it has been collecting data and images from this unique vantage point.

image

Juno is in a polar orbit around Jupiter, which means that the majority of each orbit is spent well away from the gas giant. But once every 53 days its trajectory approaches Jupiter from above its north pole, where it begins a close two-hour transit flying north to south with its eight science instruments collecting data and its JunoCam camera snapping pictures.

image

Space Fact: The download of six megabytes of data collected during the two-hour transit can take one-and-a-half days!

image

Juno and her cloud-piercing science instruments are helping us get a better understanding of the processes happening on Jupiter. These new results portray the planet as a complex, gigantic, turbulent world that we still need to study and unravel its mysteries.

So what did this first science flyby tell us? Let’s break it down…

1. Tumultuous Cyclones

image

Juno’s imager, JunoCam, has showed us that both of Jupiter’s poles are covered in tumultuous cyclones and anticyclone storms, densely clustered and rubbing together. Some of these storms as large as Earth!

image

These storms are still puzzling. We’re still not exactly sure how they formed or how they interact with each other. Future close flybys will help us better understand these mysterious cyclones. 

image

Seen above, waves of clouds (at 37.8 degrees latitude) dominate this three-dimensional Jovian cloudscape. JunoCam obtained this enhanced-color picture on May 19, 2017, at 5:50 UTC from an altitude of 5,500 miles (8,900 kilometers). Details as small as 4 miles (6 kilometers) across can be identified in this image.

image

An even closer view of the same image shows small bright high clouds that are about 16 miles (25 kilometers) across and in some areas appear to form “squall lines” (a narrow band of high winds and storms associated with a cold front). On Jupiter, clouds this high are almost certainly comprised of water and/or ammonia ice.

2. Jupiter’s Atmosphere

Juno’s Microwave Radiometer is an instrument that samples the thermal microwave radiation from Jupiter’s atmosphere from the tops of the ammonia clouds to deep within its atmosphere.

image

Data from this instrument suggest that the ammonia is quite variable and continues to increase as far down as we can see with MWR, which is a few hundred kilometers. In the cut-out image below, orange signifies high ammonia abundance and blue signifies low ammonia abundance. Jupiter appears to have a band around its equator high in ammonia abundance, with a column shown in orange.

image

Why does this ammonia matter? Well, ammonia is a good tracer of other relatively rare gases and fluids in the atmosphere…like water. Understanding the relative abundances of these materials helps us have a better idea of how and when Jupiter formed in the early solar system.

This instrument has also given us more information about Jupiter’s iconic belts and zones. Data suggest that the belt near Jupiter’s equator penetrates all the way down, while the belts and zones at other latitudes seem to evolve to other structures.

3. Stronger-Than-Expected Magnetic Field

image

Prior to Juno, it was known that Jupiter had the most intense magnetic field in the solar system…but measurements from Juno’s magnetometer investigation (MAG) indicate that the gas giant’s magnetic field is even stronger than models expected, and more irregular in shape.

image

At 7.766 Gauss, it is about 10 times stronger than the strongest magnetic field found on Earth! What is Gauss? Magnetic field strengths are measured in units called Gauss or Teslas. A magnetic field with a strength of 10,000 Gauss also has a strength of 1 Tesla.  

image

Juno is giving us a unique view of the magnetic field close to Jupiter that we’ve never had before. For example, data from the spacecraft (displayed in the graphic above) suggests that the planet’s magnetic field is “lumpy”, meaning its stronger in some places and weaker in others. This uneven distribution suggests that the field might be generated by dynamo action (where the motion of electrically conducting fluid creates a self-sustaining magnetic field) closer to the surface, above the layer of metallic hydrogen. Juno’s orbital track is illustrated with the black curve. 

4. Sounds of Jupiter

Juno also observed plasma wave signals from Jupiter’s ionosphere. This movie shows results from Juno’s radio wave detector that were recorded while it passed close to Jupiter. Waves in the plasma (the charged gas) in the upper atmosphere of Jupiter have different frequencies that depend on the types of ions present, and their densities. 

Mapping out these ions in the jovian system helps us understand how the upper atmosphere works including the aurora. Beyond the visual representation of the data, the data have been made into sounds where the frequencies and playback speed have been shifted to be audible to human ears.

5. Jovian “Southern Lights”

image

The complexity and richness of Jupiter’s “southern lights” (also known as auroras) are on display in this animation of false-color maps from our Juno spacecraft. Auroras result when energetic electrons from the magnetosphere crash into the molecular hydrogen in the Jovian upper atmosphere. The data for this animation were obtained by Juno’s Ultraviolet Spectrograph. 

image

During Juno’s next flyby on July 11, the spacecraft will fly directly over one of the most iconic features in the entire solar system – one that every school kid knows – Jupiter’s Great Red Spot! If anybody is going to get to the bottom of what is going on below those mammoth swirling crimson cloud tops, it’s Juno.

image

Stay updated on all things Juno and Jupiter by following along on social media: Twitter | Facebook | YouTube | Tumblr

Learn more about the Juno spacecraft and its mission at Jupiter HERE.

3 years ago

Você Nunca Esteve Sozinha

Um jeito diferente de expressar.

Sempre firme com os seus princípios.

Fez o povo se encantar.

Por isso eu concordo e afirmo:

"Fenômenos não se explicam, fenômenos se admiram!"

#VocêNuncaEsteveSozinha #TeamJuliette #JulietteFreire #Globoplay

Você Nunca Esteve Sozinha
8 years ago

Juno: Inside the Spacecraft

image

Our Juno spacecraft was carefully designed to meet the tough challenges in flying a mission to Jupiter: weak sunlight, extreme temperatures and deadly radiation. Lets take a closer look at Juno:

It Rotates!

image

Roughly the size of an NBA basketball court, Juno is a spinning spacecraft. Cartwheeling through space makes the spacecraft’s pointing extremely stable and easy to control. While in orbit at Jupiter, the spinning spacecraft sweeps the fields of view of its instruments through space once for each rotation. At three rotations per minute, the instruments’ fields of view sweep across Jupiter about 400 times in the two hours it takes to fly from pole to pole.

It Uses the Power of the Sun

image

Jupiter’s orbit is five times farther from the sun than Earth’s, so the giant planet receives 25 times less sunlight than Earth. Juno will be the first solar-powered spacecraft we’ve designed to operate at such a great distance from the sun. Because of this, the surface area of the solar panels required to generate adequate power is quite large.

image

Three solar panels extend outward from Juno’s hexagonal body, giving the overall spacecraft a span of about 66 feet. Juno benefits from advances in solar cell design with modern cells that are 50% more efficient and radiation tolerant than silicon cells available for space missions 20 years ago. Luckily, the mission’s power needs are modest, with science instruments requiring full power for only about six out of each 11-day orbit.

It Has a Protective Radiation Vault

image

Juno will avoid Jupiter’s highest radiation regions by approaching over the north, dropping to an altitude below the planet’s radiation belts, and then exiting over the south. To protect sensitive spacecraft electronics, Juno will carry the first radiation shielded electronics vault, a critical feature for enabling sustained exploration in such a heavy radiation environment.

Juno Science Payload:

Gravity Science and Magnetometers – Will study Jupiter’s deep structure by mapping the planet’s gravity field and magnetic field.

image

Microwave Radiometer – Will probe Jupiter’s deep atmosphere and measure how much water (and hence oxygen) is there.

image

JEDI, JADE and Waves – These instruments will work to sample electric fields, plasma waves and particles around Jupiter to determine how the magnetic field is connected to the atmosphere, and especially the auroras (northern and southern lights).

JADE and JEDI

image

Waves

image

UVS and JIRAM – Using ultraviolet and infrared cameras, these instruments will take images of the atmosphere and auroras, including chemical fingerprints of the gases present.

UVS

image

JIRAM

image

JunoCam – Take spectacular close-up, color images.

image

Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

9 years ago

Science, Technology, Engineering and Math: STEM

Today is College Signing Day and we’re working with the White House to celebrate all graduating seniors and inspire more young people to Reach Higher and enroll in higher education.

image

Additionally, choosing a degree within a STEM (Science, Math, Engineering and Technology) field enables the United States to remain the global economic and technological leader. We feel that it’s our duty to help inspire the next generation of scientists, technologists, engineers and astronauts.

image

It’s important that each and every student feels empowered and equipped with the knowledge to solve tough problems, evaluate evidence and analyze information. These are all skills students can learn through studying a subjects in STEM.

College is one of the stepping stones to many careers, including becoming an astronaut! Here are a few of our astronauts on their college graduation day, along with their astronaut portrait. 

Astronaut Victor Glover

image

Undergraduate: California Polytechnic State University Graduate: Air University and Naval Postgraduate School Astronaut Class: 2013

Astronaut Reid Wiseman

image

Undergraduate: Rensselaer Polytechnic Institute Graduate: Johns hopkins University Astronaut Class: 2009

Astronaut Thomas Marshburn

image

Undergraduate: Davidson College Graduate: University of Virginia, Wake Forest University and University of Texas medical Branch Astronaut Class: 2004

Astronaut Karen Nyberg

image

Undergraduate: University of North Dakota Graduate: University of Texas at Austin Astronaut Class: 2000

Astronaut Bob Behnken

image

Undergraduate: Washington University Graduate: California Institute of Technology Astronaut Class: 2000

Astronaut Peggy Whitson

image

Undergraduate: Iowa Wesleyan College Graduate: Rice University Astronaut Class: 1996

Astronaut Joseph Acaba

image

Undergraduate: University of California Graduate: University of Arizona Astronaut Class: 2004

Astronaut Rex Walheim

image

Undergraduate: University of California, Berkeley Graduate: University of Houston Astronaut Class: 1996

Whether you want to be an astronaut, an engineer or the administrator of NASA, a college education opens a universe of possibilities:

Administrator Charles Bolden

image

Here, Administrator Bolden wears the jersey of Keenan Reynolds, a scholar athlete who graduates from the Naval Academy this year. His jersey is on its way to the college football hall of fame. Bolden holds a drawing of himself as a midshipman in the Navy. 

Deputy Administrator Dava Newman

image

Deputy Administrator Dava Newman sports her college shirt, along with Lisa Guerra, Technical Assistant to the Associate Administrator. Both women studied aerospace engineering at Notre Dame. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

9 years ago
Os 4 Planetas Alinhados No Horizonte De Utah. By Richard Keele

Os 4 planetas alinhados no horizonte de Utah. By Richard Keele

8 years ago
High Above Saturn

High above Saturn

via reddit

9 years ago

Solar System: 5 Things To Know This Week

Solar System: 5 Things To Know This Week

This month you can catch a rare sight in the pre-dawn sky: five planets at once! If you look to the south (or to the north if you’re in the southern hemisphere) between about 5:30 and 6 a.m. local time you’ll see Mercury, Venus, Saturn, Mars and Jupiter lined up like jewels on a necklace. They’re beautiful in the sky, and even more fascinating when you look closely.

This week we’re taking a tour of the planets with recent information about each:

1. Artistic License

Solar System: 5 Things To Know This Week

Craters on Mercury are named for writers and artists of all kinds. There are Tolstoy, Thoreau and Tolkien craters, for example, as well as those that bear the names of the Brontës, photographer Dorothea Lange and dancer Margot Fonteyn. See the complete roster of crater names HERE.

2. Lifting the Veil of Venus

Solar System: 5 Things To Know This Week

A thick covering of clouds made Venus a mystery for most of human history. In recent decades, though, a fleet of robotic spacecraft has helped us peer past the veil and learn more about this world that is so like the Earth in some ways — and in some ways it’s near opposite.

3. Curious?

Solar System: 5 Things To Know This Week

Have you ever wanted to drive the Mars Curiosity rover? You can take the controls using our Experience Curiosity simulation. Command a virtual rover as you explore the terrain in Gale Crater, all using real data and images from Mars. Try it out HERE.

4. Now That’s a Super Storm

Solar System: 5 Things To Know This Week

Winter weather often makes headlines on Earth — but on Jupiter there’s a storm large enough to swallow our entire planet several times over. It’s been raging for at least three hundred years! Learn about the Great Red Spot HERE.

5. Ring Watcher

Solar System: 5 Things To Know This Week

This week, the Cassini spacecraft will be making high-resolution observations of Saturn’s entrancing rings. This is a simulated look at Saturn, along with actual photos of the rings from the Cassini mission.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

8 years ago

What is it Like to Visit Jupiter?

Jupiter is the largest planet in our solar system. For some perspective, if it were hollow, more than 1,300 Earths could fit inside of it! The giant planet contains two-thirds of all the planetary mass in the solar system and holds more than dozens of moons in its gravitational grip. But what about a visit to this giant planet?

image

Let’s be honest…Jupiter is not a nice place to visit. It’s a giant ball of gas and there’s nowhere to land. Any spacecraft – or person – passing through the colorful clouds gets crushed and melted. On Jupiter, the pressure is so strong it squishes gas into liquid. Its atmosphere can crush a metal spaceship like a paper cup.

image

Jupiter’s stripes and swirls are cold, windy clouds of ammonia and water. Jupiter’s Great Red Spot is a giant storm BIGGER THAN EARTH! This storm has lasted hundreds of years.

image

Since Jupiter’s atmosphere is made up of mostly hydrogen and helium, it’s poisonous. There’s also dangerous radiation, more than 1,000 times the lethal level for a human.  

Scientists think that Jupiter’s core may be a thick, super hot soup…up to 50,000 degrees! Woah!

The Moons

image

Did you know that Jupiter has its own “mini solar system” of 50 moons? Scientists are most interested in the Galilean satellites – which are the four largest moons discovered by Galileo Galilei in 1610. 

Today, Galileo would be astounded to know some of the facts about these moons. The moon Io has active volcanos. Ganymede has its own magnetic field while Europa has a frozen crust with liquid-water underneath making it a tempting place to explore for future missions.

image

When Juno arrives to Jupiter on July 4, it will bring with it a slew of instruments such as infrared imager/spectrometer and vector magnetometer among the half a dozen other scientific tools in its payload.

Juno will avoid Jupiter’s highest radiation regions by approaching over the north, dropping to an altitude below the planet’s radiation belts – which are analogous to Earth’s Van Allen belts, but far more deadly – and then exiting over the south. To protect sensitive spacecraft electronics, Juno will carry the first radiation shielded electronics vault, a critical feature for enabling sustained exploration in such a heavy radiation environment.

Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Loading...
End of content
No more pages to load
  • jintteok
    jintteok liked this · 4 years ago
  • carlosalberthreis
    carlosalberthreis reblogged this · 5 years ago
carlosalberthreis - Carlos Alberth Reis
Carlos Alberth Reis

1994.4.26 • Parintins, Amazonas, Brasil

191 posts

Explore Tumblr Blog
Search Through Tumblr Tags