In case you don’t know, the Juno spacecraft entered orbit around the gas giant on July 4, 2016…about a year ago. Since then, it has been collecting data and images from this unique vantage point.
Juno is in a polar orbit around Jupiter, which means that the majority of each orbit is spent well away from the gas giant. But once every 53 days its trajectory approaches Jupiter from above its north pole, where it begins a close two-hour transit flying north to south with its eight science instruments collecting data and its JunoCam camera snapping pictures.
Space Fact: The download of six megabytes of data collected during the two-hour transit can take one-and-a-half days!
Juno and her cloud-piercing science instruments are helping us get a better understanding of the processes happening on Jupiter. These new results portray the planet as a complex, gigantic, turbulent world that we still need to study and unravel its mysteries.
Juno’s imager, JunoCam, has showed us that both of Jupiter’s poles are covered in tumultuous cyclones and anticyclone storms, densely clustered and rubbing together. Some of these storms as large as Earth!
These storms are still puzzling. We’re still not exactly sure how they formed or how they interact with each other. Future close flybys will help us better understand these mysterious cyclones.
Seen above, waves of clouds (at 37.8 degrees latitude) dominate this three-dimensional Jovian cloudscape. JunoCam obtained this enhanced-color picture on May 19, 2017, at 5:50 UTC from an altitude of 5,500 miles (8,900 kilometers). Details as small as 4 miles (6 kilometers) across can be identified in this image.
An even closer view of the same image shows small bright high clouds that are about 16 miles (25 kilometers) across and in some areas appear to form “squall lines” (a narrow band of high winds and storms associated with a cold front). On Jupiter, clouds this high are almost certainly comprised of water and/or ammonia ice.
Juno’s Microwave Radiometer is an instrument that samples the thermal microwave radiation from Jupiter’s atmosphere from the tops of the ammonia clouds to deep within its atmosphere.
Data from this instrument suggest that the ammonia is quite variable and continues to increase as far down as we can see with MWR, which is a few hundred kilometers. In the cut-out image below, orange signifies high ammonia abundance and blue signifies low ammonia abundance. Jupiter appears to have a band around its equator high in ammonia abundance, with a column shown in orange.
Why does this ammonia matter? Well, ammonia is a good tracer of other relatively rare gases and fluids in the atmosphere…like water. Understanding the relative abundances of these materials helps us have a better idea of how and when Jupiter formed in the early solar system.
This instrument has also given us more information about Jupiter’s iconic belts and zones. Data suggest that the belt near Jupiter’s equator penetrates all the way down, while the belts and zones at other latitudes seem to evolve to other structures.
Prior to Juno, it was known that Jupiter had the most intense magnetic field in the solar system…but measurements from Juno’s magnetometer investigation (MAG) indicate that the gas giant’s magnetic field is even stronger than models expected, and more irregular in shape.
At 7.766 Gauss, it is about 10 times stronger than the strongest magnetic field found on Earth! What is Gauss? Magnetic field strengths are measured in units called Gauss or Teslas. A magnetic field with a strength of 10,000 Gauss also has a strength of 1 Tesla.
Juno is giving us a unique view of the magnetic field close to Jupiter that we’ve never had before. For example, data from the spacecraft (displayed in the graphic above) suggests that the planet’s magnetic field is “lumpy”, meaning its stronger in some places and weaker in others. This uneven distribution suggests that the field might be generated by dynamo action (where the motion of electrically conducting fluid creates a self-sustaining magnetic field) closer to the surface, above the layer of metallic hydrogen. Juno’s orbital track is illustrated with the black curve.
Juno also observed plasma wave signals from Jupiter’s ionosphere. This movie shows results from Juno’s radio wave detector that were recorded while it passed close to Jupiter. Waves in the plasma (the charged gas) in the upper atmosphere of Jupiter have different frequencies that depend on the types of ions present, and their densities.
Mapping out these ions in the jovian system helps us understand how the upper atmosphere works including the aurora. Beyond the visual representation of the data, the data have been made into sounds where the frequencies and playback speed have been shifted to be audible to human ears.
The complexity and richness of Jupiter’s “southern lights” (also known as auroras) are on display in this animation of false-color maps from our Juno spacecraft. Auroras result when energetic electrons from the magnetosphere crash into the molecular hydrogen in the Jovian upper atmosphere. The data for this animation were obtained by Juno’s Ultraviolet Spectrograph.
During Juno’s next flyby on July 11, the spacecraft will fly directly over one of the most iconic features in the entire solar system – one that every school kid knows – Jupiter’s Great Red Spot! If anybody is going to get to the bottom of what is going on below those mammoth swirling crimson cloud tops, it’s Juno.
Learn more about the Juno spacecraft and its mission at Jupiter HERE.
In astronomy, parallax is the difference in the apparent position of an object seen by observers in different places. Stellar parallax is used to measure the distance of stars using the motion of the Earth in its orbit. Created by the different orbital positions of Earth, the extremely small observed shift is largest at time intervals of about six months, when Earth arrives at exactly opposite sides of the Sun in its orbit, giving a baseline distance of about two astronomical units between observations. The parallax itself is considered to be half of this maximum, about equivalent to the observational shift that would occur due to the different positions of Earth and the Sun, a baseline of one astronomical unit (AU).
Stellar parallax is so difficult to detect that its existence was the subject of much debate in astronomy for thousands of years. It was first observed by Giuseppe Calandrelli who reported parallax in α-Lyrae in his work “Osservazione e riflessione sulla parallasse annua dall’alfa della Lira”. Then in 1838 Friedrich Bessel made the first successful parallax measurement ever, for the star 61 Cygni, using a Fraunhofer heliometer at Königsberg Observatory.
Once a star’s parallax is known, its distance from Earth can be computed trigonometrically. But the more distant an object is, the smaller its parallax. Even with 21st-century techniques in astrometry, the limits of accurate measurement make distances farther away than about 100 parsecs (roughly 326 light years) too approximate to be useful when obtained by this technique. This limits the applicability of parallax as a measurement of distance to objects that are relatively close on a galactic scale. Other techniques, such as spectral red-shift, are required to measure the distance of more remote objects.
source
🌟 🎶 Esse amor não tem fim
Já faz parte de mim
Te amo CAPRICHOSO
E vai ser pra sempre assim
Nasci pra amar você
De azul até morrer
Não há um amor maior
Do amor que eu sinto por você! 🎶 💙
❝Os tambores vão tocar na aldeia
Pra fazer levantar poeira
Oê-oê-oê - aê-aê-aê
Meu povo! Mothokari vem do Sol!❞
A vacina induz o organismo a criar defesas necessárias para neutralizar o vírus em uma eventual contaminação.
"··· É uma falsa equivalência equiparar o risco da vacina ao COVID. É 100.000 vezes mais perigoso não ser vacinado."
#VacinaSim
A cidade de Parintins está nos dias de festa religiosa, e então, resolvi relembrar a visita no local mais alto da torre da catedral, onde está localizado a estátua de Nossa Senhora do Carmo. #TorredaCatedraldeParintins Data de registro: 16 de julho de 2018 às 18h18
A China lançou com sucesso um satélite de comunicação lunar, desenvolvido para ajudar na missão histórica que o país lançará ainda em 2018 de colocar um lander e um rover no lado distante (escuro, oculto) da Lua. Além de servir como relay de dados, esse satélite ainda fará experimentos astronômicos.
O satélite de relay da Chang’e-4, está sendo acompanhado por dois microssatélites, e tudo isso foi lançado a bordo de um foguete Long March 4C direto do Xichang Satellite Launch Centre, às 18:28 hora de Brasília, desse domingo, dia 20 de Maio de 2018.
A sonda foi inserida com sucesso na órbita de transferência lunar e se separou do estágio superior de seu foguete. O China Aerospace Science and Technology Corporation, o CASC, o principal contratante para o programa espacial, confirmou o sucesso em menos de uma hora após o lançamento.
Chamado de Queqiao, o satélite está agora numa jornada de 8 a 9 dias até o segundo ponto de Lagrange do sistema Terra-Lua, conhecido como E-M L2, que fica entre 60 e 80 mil quilômetros além da Lua, ou seja, a quase meio milhão de quilômetros da Terra.
O principal objetivo da missão é fornecer um meio de comunicação para as operações de um lander e de um rover lunar que serão colocados no lado distante da Lua, algo que nunca foi testado antes.
Como a Lua é travada gravitacionalmente com a Terra, esse lado distante, nunca está voltado para a Terra. Pousar missões ali, requer um sistema de comunicação com base nesses satélites que fazem o relay dos dados e que sempre estarão com as estações em Terra e com o lander e rover na sua linha de visada.
O ponto E-M L2 que é gravitacionalmente estável irá fornecer essa posição e a órbita adequada para o satélite realizar a sua função.
Queqiao, irá fazer um sobrevoo lunar para ser lançado para seu destino além da Lua e usará seu próprio sistema de propulsão para entrar numa órbita halo ao redor do ponto de Lagrange.
Uma vez no seu ponto, o satélite de 448 kg CAST100, desenvolvido pela China Academy of Space Technology, a CAST, uma empresa fabricante de sondas que trabalha para o CASC, irá testar sua antena parabólica de 4.2 metros de diâmetro e todas as funções antes que a missão levando o lander e o rover chegue na Lua.
O satélite enviado hoje, marca a quinta missão lunar chinesa, contando os dois módulos orbitais, Chang’e-1 em 2007, o Chang’e-2 em 2010, o rover e lander lunar da missão Chang’e-3 de 2013, e uma missão teste de retorno de amostras da Lua em 2014.
Em 2019, a China irá lançar a missão Chang’e-5 para coletar 2 kg de amostras do solo lunar e mandar de volta para Terra.
O lançamento desse domingo, dia 20 de Maio de 2018, marcou o décimo quinto lançamento da China em 2018, lembrando que a China pretende fazer cerca de 40 lançamentos nesse ano, o que dá quase 1 lançamento por semana.
Além de ajudar nas missões que pousarão na Lua, o satélite também irá usar 3 antenas de 5 metros de diâmetro de monopólio que serão usadas para realizar uma astronomia de frequência muito baixa que é impossível de ser feita na Terra, devido à atmosfera do nosso planeta.
A Netherlands-China Low frequency Explorer, ou NCLE, desenvolvido pela Readbound University, e outros, irá tentar detectar um sinal de baixa frequência proveniente da era negra do universo, algo que aconteceu poucas centenas de milhões de anos após o Big Bang, antes das primeiras estrelas brilharem.
Outros objetivos, disse Marc Klein Wolt, da Readbound University, e líder de projeto do NCLE, incluem, pesquisas do Sistema Solar nessas frequências, além de agir como uma base para futuras missões.
Perguntado se o NCLE poderia também, apesar de não ser o objetivo científico da equipe, contribuir para a pesquisa por inteligência extraterrestre, Klein Wolt, disse que, “em princípio poderia, já que nós estamos abrindo uma nova janela para o universo, mas eu não estou esperando encontrar qualquer ET”.
Dois microssatélites, o Longjiang-1 e 2, também estavam a bordo do foguete chinês, e tentarão entrar numa órbita lunar altamente elíptica para realizar suas tarefas astronômicas.
Os satélites pesando 45 kg e com dimensões de 50x50x40 cm, desenvolvidos pelo Harbin Institute of Technology, o HIT, em Heilongjiang , usará antenas de 1 metro para testar radioastronomia de baixa frequência e um tipo de interferometria baseada no espaço.
Principalmente usado como uma verificação técnica para futuras missões, o par de pequenos satélites também está levando experimentos de rádio amadores, além de uma pequena câmera óptica desenvolvida pela Arábia Saudita.
A Chang’e-4 era considerada primeiramente como uma missão reserva da Chang’e-3 que levou o rover Yutu para tocar o solo do Mare Imbrium em 2013.
Como a missão foi realizada com sucesso, apesar de uma falha mecânica no Yutu, a sonda Chang’e-4 foi então confirmada como sendo a missão para o lado distante da Lua.
O alvo para que a Chang’e-4 pouse na Lua é dentro da cratera Von Kármán, que fica na Bacia Aitken do Polo Sul, uma área intrigante do ponto de vista científico, que pode oferecer uma grande ideia sobre a história e sobre o desenvolvimento tanto da Lua como do nosso Sistema Solar.
As câmeras na Chang’e-3 mandaram imagens espetaculares do Mare Imbrium, e o mesmo espera-se da Chang’e-4. A Chang’e-3 fez inúmeras descobertas com seus instrumentos, incluindo múltiplas camadas distintas na superfície, sugerindo que a Lua teve uma história geológica mais complexa do que se pensava anteriormente.
Imaginem o que uma missão no lado distante da Lua não pode nos revelar.
Fonte:
https://gbtimes.com/china-launches-queqiao-relay-satellite-to-support-change-4-lunar-far-side-landing-mission
Imagem feita com 8 frames com High Dynamic Range destacando os detalhes da superfície da Lua durante a totalidade do #Eclipse2017 - by @johnkrausphotos
#Eclipse2017
The eclipse should be visible to some extent across the continental U.S. Here’s map of its path.
Our eclipse page can help you find the best viewing locations by longitude and latitude: eclipse.gsfc.nasa.gov/SEgoogle/SEgoogle2001/SE2017Aug21Tgoogle.html
Want to know more about citizen science projects? Find a list of citizen science projects for the eclipse: https://eclipse.aas.org/resources/citizen-science
Get your eclipse viewing safety glasses beforehand: eclipse2017.nasa.gov/safety
In this interactive, 3D simulation of the total eclipse on August 21, 2017, you can see a view of the eclipse from anywhere on the planet:
http://eyes.jpl.nasa.gov/eyes-on-eclipse.html
Join the conversation on social media. Tag your posts: #Eclipse2017.
Twitter: @NASASolarSystem, @NASA, @NASASunEarth Facebook: NASA Solar System
Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Se um dia a água percolou pela superfície de Marte, talvez, o Mawrth Vallis, seja uma das melhores feições que podem guardar os segredos dessa época remota do Planeta Vermelho.
O vale na verdade é um extenso canal com 600 km de comprimento, cercado por paredes com 2 km de altura.
Esse clássico canal, fica localizado na região de divisa entre as terras altas do sul e as planícies do norte marciano.
Esse belo vídeo, usa os dados da sonda Mars Express, para nos levar numa viagem pelo Mawrth Vallis.
A viagem começa na boca do canal que fica na Chryse Planitia e segue em direção a aparente fonte do canal que fica em Arabia Terra.
O platô com seus 4 bilhões de anos é caracterizado pela grande quantidade de crateras de impacto, indicando a elevada idade.
A sonda Mars Express mostra em zoom manchas mais claras e mais escuras pela superfície de Marte.
As manchas claras são camadas de sedimentos que estão entre os maiores afloramentos de minerais argilosos em MArte. A sua presença é a pista fundamental que nos diz que no passado a água líquida esteve presente nessa região.
A variedade de minerais aquosos, e a possibilidade de que essa região possa conter um registro de um antigo ambiente habitável em Marte, levou os cientistas a proporem o MAwrth Vallis como candidato para o pouso do rover da ExoMars 2020.
Esse nome estranho, Mawrth é na verdade a palavra galesa para Marte e Vallis, o latim para Vale, ou seja, o Vale de Marte.
A sonda Mars Express possui uma câmera estéreo que consegue fazer essas projeções tridimensionais juntamente com um modelo digital de terreno de Marte.
Espero que curtam a viagem!!!
(via https://www.youtube.com/watch?v=6JlG2OoReGA)