10 Technologies That Are Changing The Game

10 Technologies That Are Changing the Game

Earlier this year, we hosted a Game Changing Technology Industry Day for the aerospace industry, and in October our engineers and technologists visited Capitol Hill showcasing some of these exciting innovations. Check out these technology developments that could soon be making waves on Earth and in space.

1. Wearable technology

image

With smartwatches, glasses, and headsets already captivating users around the world, it’s no surprise that the next evolution of wearable technology could be used by first responders at the scene of an accident or by soldiers on a battlefield. The Integrated Display and Environmental Awareness System (IDEAS) is an interactive optical computer that works for smart glasses. 

image

It has a transparent display, so users have an unobstructed view even during video conferences or while visualizing environmental data. 

image

And while the IDEAS prototype is an innovative solution to the challenges of in-space missions, it won’t just benefit astronauts – this technology can be applied to countless fields here on Earth.

2. Every breath they take: life support technologies

Before astronauts can venture to Mars and beyond, we need to significantly upgrade our life support systems. The Next Generation Life Support project is developing technologies to allow astronauts to safely carry out longer duration missions beyond low-Earth orbit. 

image

The Variable Oxygen Regulator will improve the control of space suit pressure, with features for preventing decompression sickness. The Rapid Cycle Amine technology will remove carbon dioxide and humidity and greatly improve upon today’s current complex system.

image

3. 3-D printing (for more than just pizza)

New Advanced Manufacturing Technologies (AMT), such as 3-D printing, can help us build rocket parts more quickly and aid in building habitats on other planets. 

image

These manufacturing initiatives will result in innovative, cost-efficient solutions to many of our planetary missions. Back in 2014, the International Space Station’s 3-D printer manufactured the first 3-D printed object in space, paving the way to future long-term space expeditions. 

image

The object, a printhead faceplate, is engraved with names of the organizations that collaborated on this space station technology demonstration: NASA and Made In Space, Inc., the space manufacturing company that worked with us to design, build and test the 3-D printer.

image

4. Spacecraft landing gear

Large spacecraft entering the atmosphere of Mars will be traveling over five times the speed of sound, exposing the craft to extreme heat and drag forces. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is designed to protect spacecraft from this environment with an inflatable structure that helps slow a craft for landing. 

image

To get astronauts and other heavy loads to the surface safely, these components must be very strong. The inflatable consists of a material 15 times stronger than steel, while the thermal protection system can withstand temperatures over 1600°C.

5. From heat shield technology to firefighter shelters

image

For the Convective Heating Improvement for Emergency Fire Shelters (CHIEFS) project, we partnered with the U.S. Forest Service to develop safer, more effective emergency fire shelters for wild land firefighters. 

image

Using existing technology for flexible spacecraft heat shields like HIAD, we are building and testing new fire shelters composed of stacks of durable, insulated materials that could help protect the lives of firefighters.

image

6. Robots and rovers

Real life is looking a bit more like science fiction as Human Robotics Systems are becoming highly complex. They are amplifying human productivity and reducing mission risk by improving the effectiveness of human-robot teams. 

image

Our humanoid assistant Robonaut is currently aboard the International Space Station helping astronauts perform tasks.

image

A fleet of robotic spacecraft and rovers already on and around Mars is dramatically increasing our knowledge and paving the way for future human explorers. The Mars Science Laboratory Curiosity rover measured radiation on the way to Mars and is sending back data from the surface. 

image

This data will help us plan how to protect the astronauts who will explore Mars. 

image

Future missions like the Mars 2020 rover, seeking signs of past life, will demonstrate new technologies that could help astronauts survive on the Red Planet.

image

7. Robotic repairs

Currently, a satellite that is even partially damaged cannot be fixed in orbit. Instead, it must be disposed of, which is a lot of potential science lost.

image

Satellite Servicing technologies would make it possible to repair, upgrade, and even assemble spacecraft in orbit using robotics.

image

This can extend the lifespan of a mission, and also enable deeper space exploration. 

image

Restore-L, set to launch in 2020, is a mission that will demonstrate the ability to grab and refuel a satellite.

8. Low-cost spacecraft avionics controllers

Small satellites, or smallsats, are quickly becoming useful tools for both scientists and industry. However, the high cost of spacecraft avionics—the systems that guide and control the craft—often limits how and when smallsats can be sent into orbit by tagging along as payloads on larger launches. 

image

Using Affordable Vehicle Avionics (AVA) technology, we could launch many more small satellites using an inexpensive avionics controller. This device is smaller than a stack of six CD cases and weighs less than two pounds!

9. Making glass from metal

After a JPL research team of modern-day alchemists set about mixing their own alloys, they discovered that a glass made of metal had the wear resistance of a ceramic, was twice as strong as titanium, and could withstand the extreme cold of planetary surfaces, with temperatures below -150 degrees Fahrenheit.

image

Bulk Metallic Glass (BMG) gears would enable mechanisms to function without wasting energy on heaters. Most machines need to maintain a warmer temperature to run smoothly, which expends precious fuel and decreases the mission’s science return. 

image

By developing gearboxes made of BMG alloys, we can extend the life of a spacecraft and learn more about the far reaches of our solar system than ever before. Plus, given their extremely high melting points, metallic glasses can be cheaply manufactured into parts by injection molding, just like plastics.

10. Lighter, cheaper, safer spacecraft fuel tanks

Cryogenic propellant tanks are essential for holding fuel for launch vehicles like our Space Launch System—the world’s most powerful rocket. But the current method for building these tanks is costly and time-consuming, involving almost a mile of welded parts.

image

Advanced Near Net Shape Technology, part of our Advanced Manufacturing Technologies, is an innovative manufacturing process for constructing cryotanks, using cylinders that only have welds in one area. 

image

This makes the tank lighter, cheaper, and safer for astronauts, as there are fewer potentially defective welds.

Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 

More Posts from Catchconstellations-blog and Others

Solar System: Things to Know This Week

Earth is the ultimate ocean planet (that we know of), but it turns out that our solar system has water in some surprising places, with five ocean-bearing moons and potentially several more worlds with their own oceans. 

image

1. The Original “Alien Ocean”

Our Galileo spacecraft (1989-2003) detected the first evidence of an ocean beyond Earth under the ice of Jupiter’s icy moon Europa.

image

2. Lost Oceans

There are signs that Mars and Venus once had oceans, but something catastrophic may have wiped them out. Earth’s natural force field – our magnetosphere – acts like shield against the erosive force of the solar wind.

image

3. Earth, the Original Ocean World

The search for life beyond Earth relies, in large part, on understanding our home planet. Among the newest Earth ocean explorers us the Cyclone Global Navigation Satellite System, or CYGNSS–a constellation of microsatellites that will make detailed measurements of wind speeds over Earth’s oceans to help understand hurricanes. The spacecraft have moved into their science operations phase.

image

4. Sister Ships

It’s fitting the first mission to explore an alien ocean is named in honor of fast-sailing clipper ships of old. Our Europa Clipper spacecraft will seek signs of habitability on Jupiter’s moon Europa.

image

5. Game Changer

Scientists expected Saturn’s moon Enceladus to be a tiny, solid chunk of ice and rock. But, not long after arriving at Saturn, our Cassini spacecraft made a series of incremental discoveries, eventually confirming that a global subsurface ocean is venting into space, with signs of hydrothermal activity.

image

6. Why Ocean Worlds Matter

“The question of whether or not life exists beyond Earth, the question of whether or not biology works beyond our home planet, is one of humanity’s oldest and yet unanswered questions. And for the first time in the history of humanity, we have the tools and technology and capability to potentially answer this question. And, we know where to go to find it. Jupiter’s ocean world Europa.” - Kevin Hand, NASA Astrobiologist

image

7. More Alien Oceans

Scientists think Jupiter’s giant moons Ganymede and Callisto also hide oceans beneath their surfaces. Elsewhere in the solar system, scientists hope to look for hidden oceans on far-flung worlds from Ceres in the main asteroid belt to Pluto in the Kuiper Belt.

image

8. Cold Faithful(s)?

Thanks to our Cassini orbiter we know the tiny moon Enceladus is venting its ocean into space in a towering, beautiful plume. The Hubble Space Telescope also has seen tantalizing hints of plumes on Jupiter’s moon Europa. Plumes are useful because they provide samples of ocean chemistry for oceans that could be miles below the surface and difficult for spacecraft to reach. It’s like they’re giving out free samples!

image

9. Titanic Seas and Ocean

Saturn’s moon Titan not only has liquid hydrocarbon seas on its surface. It also shows signs of a global, subsurface saltwater ocean–making the giant moon a place to possibly look for life as we know it and life as we don’t know it … yet.

image

10. Oceans Beyond

Several of the thousands of planets discovered beyond our solar system orbit their stars in zones where liquid surface water is possible–including Proxima-b, a rocky planet orbiting the star nearest to our own.

BONUS: Adopt a bit of YOUR Ocean World

We invite everyone to help us celebrate Earth Day 2017 by virtually adopting a piece of Earth as seen from space. Your personalized adoption certificate will feature data from our Earth-observing satellites for a randomly assigned location, much of it ocean (it is 70 percent of the Earth’s surface after all!). Print it and share it, then explore other locations with our interactive map and get even more Earth science data from NASA’s Worldview website.

Visit go.nasa.gov/adopt to adopt your piece of the planet today!

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags

Let me start off by saying that I think Crash Course is a great resource for people who want to get the basic details of any subject the creators offer. CC’s series for astronomy is particularly wonderful. The science behind astronomy and space can be mind-boggling due to the complexities of physics, mathematics, photonics, and other relevant subjects; CC makes it easy and fun to learn about astronomy without being too technical or in-depth. Great series of videos if you have time to check them out!


Tags

My Constellation

I was born with stars in my eyes.

I mean this in a very literal sense! I was born in an island village that didn’t have any electricity, on a clear moonless night when millions of bright stars unfurled across the dark sky. And (according to my baby pictures) my hospital cradle was right next to the window which afforded a wide view of the ocean waves and – yep, that’s right – the stars. One of my earliest memories is that of the stars, though I’m not sure if that is from when I was a baby, or when I was slightly older.

Nevertheless, the night sky and its bright inhabitants have been constants in my life for as long as I can remember. From as early as my toddling years, I would always make it a point to my parents to let me stay outside long enough to stargaze. I didn’t know why I was so fascinated with the night sky – it was just instinctive to look up and be in wonder. My love for the stars became so apparent that my grandparents, aunts, and uncles decided to save enough money to buy me a secondhand telescope, a gift that I cherished until I had to move to the United States and leave it behind to my younger relatives.

That telescope opened up a new world for me, one where I only had to look through a pair of simple lens to excitedly meet my nighttime friends face-to-face. While the telescope wasn’t very advanced, it was strong enough to show me the faint outlines of neighboring planets, the tail-ends of occasional comets, and the blurry but beautiful glows of twinkling stars. “There’s stuff out there! STUFF!” I remember saying to my family after my first time looking through the telescope, “there’s a bunch of stuff! So much stuff!”

From there, it was inevitably easy to fall in love with outer space and all of its complications and mysteries. My curiosity and questions about the “stuff” I saw grew in leaps and bounds, propelling me to – in essence – attack our local library to get my hands on anything related to space. I was overjoyed to see an entire shelf dedicated to space science and astronomy. But when I finished devouring the texts there a few weeks later, I was devastated. Surely there was more to read, more to learn more out there?

Can you imagine, then, how I reacted when I was told that my parents and I were moving to America? The America that had sent people to the moon, built incredible spacecrafts and satellites that were currently circling the globe in low orbit, and helped found the International Space Station? I was ecstatic, and my hopes for the future far outweighed my reservations about leaving the only home I had ever known.

If there were any reservations, though, they disappeared the moment I woke up at some point during the 22-hour flight, looked out my tiny plane window, and saw with wide eyes…

… the stars – right there – right in front of me – right within my reach. At eight years old, I genuinely thought the plane was flying in a sea of stars, and kept my face mushed against the glass until a plane attendant asked me to close the window (I did close the window, but I opened it again after she left.)

It’s funny, looking back at that starry-eyed eight-year-old. I want to tell her that there’s only so much more to look forward to. I want to tell her that when she’s ten, she’s going to visit a place called Kennedy Space Center and firmly declare to everyone in the tour group that she will become an astronaut one day. I want to tell her that when she’s thirteen, she’ll visit another place called the Orlando Science Center and peek through an enormous telescope that will show her the distant planet of Saturn in color, and she’ll be so shocked that she’ll ask if the picture was a sticker on the lens. I want to tell her that when she’s eighteen, she’ll gain two mentors who will encourage her to pursue her love for the stars, and help her get started on the path to getting there… I want to tell her that the next eleven years won’t be easy, and there will be times when she’ll feel as if the stars could never be more far away or unreachable.

But I think she’ll end up just fine. She was born with stars in her eyes, after all.


Tags

Extraterrestrial Life May Be Closer Than We Think

Just when we think we have the universe somewhat figured out, it throws us a massive curveball from our very own backyard. Hold on to your telescopes, everyone, because one of our own planetary neighbors right around the corner may have the right conditions for extraterrestrial life.

On April 14, a paper published in Science Mag pointed out biochemical signatures of hydrogen production in the hydrothermal reactions in the form of plumes that erupt from the ice surface of Enceladus, one of Saturn’s moons. Molecular hydrogen is one of the building blocks of life because it is the ideal food source for microbes and bacteria, which are at the forefront of every food and energy chain (at least on Earth). This implies that the ocean beneath the ice has enough chemical activity and organic matter to maintain the right conditions to sustain life, at least on the molecular level. This kind of chemistry can indicate habitable zones in Enceladus’ ocean. 

To provide a bit of a context from here on Earth: our own oceans contain deep-sea hydrothermal vents that are home to complex and important ecosystems that allow microorganisms to live and grow by using energy from the minerals produced by these vents. These microorganisms are necessary for food and energy chains to form since larger organisms feed on these microorganisms and create entire ecological communities. Many scientists have pointed out these kinds of superheated environments as prime locations for life to begin. 

But having the right conditions for life doesn’t mean already harboring life. There is still a lot that we don’t know about what’s going on below the surface of Enceladus. While scientists have known about its ocean since 2005, it is only now that technology has improved to the point where it can pick up sensitive biochemical signatures and provide a more detailed picture of Saturn’s icy moon. 

Recently, NASA has announced a mission called Europa Clipper that will explore Europa, another one of Jupiter’s icy moons with an ocean. It will launch sometime in the 2020s. Perhaps NASA will consider stopping by Enceladus...who knows what we can find there?


Tags

List of Online Resources

Over the past week I’ve been compiling a short list of online resources I often use when I’m doing anything space-related online, whether it be writing summaries of news updates or trying to understand some complicated science topic. Hope these are useful!

On getting up-to-date news:

ScienceDaily

Space.com

Science Mag

On understanding scientific topics:

Crash Course

Khan Academy

Space Exploratorium

Of course, there are many resources out there, but these are the ones I use most often. 


Tags

Catch Constellations

Hello everyone! My name is Dianne and this is my blog on everything space related! While I am currently writing more about news updates and what’s currently going on in the space world than anything else, I hope to branch out  - catch other constellations, so to speak - and contribute more content such as quotes, commentaries, videos, explanations of scientific concepts, and more. 

I created this blog not only because I wanted to share my love for space with anyone who happens to find this little corner of the internet, but also because I wanted to do it in a way that isn’t too techno-jargon-filled or confusing. As a STEM major, I know how confusing trying to understand complicated scientific concepts can be, and that’s why I’ll do my best to make sure everyone and anyone can enjoy my posts! 

image

A little bit about me:

- I’m currently a sophomore at the University of Central Florida, studying biotechnology and planning to enter the astrobiology/sustainable energy fields one day. 

- I love space, which may seem obvious given this blog, but it is sincerely one of my life goals to become an astronaut and go beyond Earth. It has been ever since I was a little girl. There is so much out there that we don’t know, that we can explore, that we can learn from!

- When I’m not studying or planning to take over NASA, you can find me writing and journaling, buried in a book, singing my lungs out to Disney songs or Broadway soundtracks, or generally doing a bunch of nerdy stuff. 

- Rapid fire personality points! INFJ + Hufflepuff + Virgo

Alright! This will be it for my first blog post. I’ll be back soon with updates on some really cool space news. Until then, ad astra!

image

Tags

Thoughts on the ISS Water Systems

Recently, I was asked by my research mentor to conduct a literature review on the drinking water systems aboard the International Space Station. Let me say this: the technology and the people aboard the ISS really know how to recycle water!

Here are some cool facts I discovered while doing this research:

- Sweat, pee, and tears are all recycled through intensive chemical and physical processes

- There is no way to recycle/reuse solid waste like brine yet, so it is packaged and sent back down to Earth through payloads

- The ISS has a motherboard-like program called the Environmental Control and Life Support System (ECLSS) that basically outlines in detail all the processes that need to be in order to sustain life aboard the spacecraft

- The ISS is currently able to support six living crewmembers aboard, but it is not 100% sustainable because chemical resources (oxygen, water, etc.) are invariably lost over time

Just some things I found interesting. I was glad to do this kind of literature review because it gives me an outlook on how much progress we still need to make in trying to achieve long-term space travel and habitation. 


Tags
Milky Way Shows 84 Million Stars In 9 Billion Pixels
Milky Way Shows 84 Million Stars In 9 Billion Pixels

Milky Way Shows 84 Million Stars in 9 Billion Pixels

Side Note: The two images shown above are mere crop outs from ESA’s recent hit: The 9 Billion Pixel Image of 84 Million Stars. These two focus on the bright center of the image for the purpose of highlighting what a peak at 84,000,000 stars looks like.

Astronomers at the European Southern Observatory’s Paranal Observatory in Chile have released a breathtaking new photograph showing the central area of our Milky Way galaxy. The photograph shows a whopping 84 million stars in an image measuring 108500×81500, which contains nearly 9 billion pixels.

It’s actually a composite of thousands of individual photographs shot with the observatory’s VISTA survey telescope, the same camera that captured the amazing 55-hour exposure. Three different infrared filters were used to capture the different details present in the final image.

The VISTA’s camera is sensitive to infrared light, which allows its vision to pierce through much of the space dust that blocks the view of ordinary optical telescope/camera systems.

source


Tags

No pessimist ever discovered the secret of the stars, or sailed to an uncharted land, or opened a new doorway for the human Spirit.

Helen Keller

image

(via the-wolf-and-moon)


Tags
Loading...
End of content
No more pages to load
  • armistan
    armistan reblogged this · 5 years ago
  • ttww99
    ttww99 liked this · 6 years ago
  • lastextremeanonymous
    lastextremeanonymous liked this · 6 years ago
  • sexysub-marsha
    sexysub-marsha liked this · 6 years ago
  • christophmandl
    christophmandl liked this · 7 years ago
  • voz-vox-blog
    voz-vox-blog reblogged this · 7 years ago
  • thesideeffectsofbeingme
    thesideeffectsofbeingme liked this · 7 years ago
  • corvidmancer
    corvidmancer liked this · 7 years ago
  • colorfulbirdtree-blog
    colorfulbirdtree-blog reblogged this · 7 years ago
  • colorfulbirdtree-blog
    colorfulbirdtree-blog liked this · 7 years ago
  • trend-bot-blog
    trend-bot-blog liked this · 7 years ago
  • naomi-tajedler
    naomi-tajedler reblogged this · 8 years ago
  • bastionofbibliophiles
    bastionofbibliophiles reblogged this · 8 years ago
  • monsieurlemoo
    monsieurlemoo liked this · 8 years ago
  • iamems
    iamems reblogged this · 8 years ago
  • catchconstellations-blog
    catchconstellations-blog reblogged this · 8 years ago
  • alexismind
    alexismind liked this · 8 years ago
  • destroyedeverythingandlaughed24
    destroyedeverythingandlaughed24 liked this · 8 years ago
  • mrdchwlgry
    mrdchwlgry liked this · 8 years ago
  • key-floss-blog
    key-floss-blog liked this · 8 years ago
  • arsmay-blog
    arsmay-blog reblogged this · 8 years ago
  • freaknay
    freaknay liked this · 8 years ago
  • extractofgoodmusic
    extractofgoodmusic liked this · 8 years ago
  • stardustkook
    stardustkook liked this · 8 years ago
  • godlydevastation07
    godlydevastation07 liked this · 8 years ago
  • neilduncan
    neilduncan liked this · 8 years ago
  • madlymiscellaneous
    madlymiscellaneous reblogged this · 8 years ago
  • funny-strange-things
    funny-strange-things reblogged this · 8 years ago
  • lentpassionmoondevotee
    lentpassionmoondevotee liked this · 8 years ago
  • sortyourlifeoutmate
    sortyourlifeoutmate reblogged this · 8 years ago
  • random-stupid-person
    random-stupid-person reblogged this · 8 years ago
  • secretcyclewinner-4680d7f9-blog
    secretcyclewinner-4680d7f9-blog liked this · 8 years ago
catchconstellations-blog - a story of starlight
a story of starlight

CONSTELLATION: (noun) Group of stars that form a recognizable pattern to which a mythological or earth-based name is assigned Pattern of stars whose name or is associated with different stories and meanings Story told by stars connected across the infinite night sky, overlapping with countless other stories that have unfolded from ancient supernovas, whose imaginary lines urge our eyes up from the chaos of the world around us to the unknown vastness in which we are but a speck of dust -------- Hi! I’m a starry-eyed astrogeek named Dianne who loves absolutely everything that has to do with the stars and outer space. When I’m not studying or preparing to take over NASA one day, you can find me trying to stargaze despite city lights or happily planning my next road trip.

35 posts

Explore Tumblr Blog
Search Through Tumblr Tags