What’s Up For September?

What’s Up for September?

image

Stargazing and looking up into the night sky is always a fun thing to do. This month, it will be especially exciting because there will be a total eclipse of a supermoon, plus the opportunity to see planets and the late-summer Milky Way!

What is a supermoon?

image

A supermoon is a new or full moon that occurs when it is at, or near its closest approach to Earth in a given orbit. There are usually 4 to 6 supermoons every year.

Observers can view the total eclipse on September 27, starting at 10:11 p.m. EDT until 11:23 p.m. This event will be visible in North and South America, as well as Europe and Africa. So make sure to mark your calendars!

image

This month, you will also be able to see the planets! Look for Mercury, Saturn, Pluto and Neptune in the evening sky. Uranus and Neptune at midnight, and Venus, Mars and Jupiter in the pre-dawn sky.

image

Finally, if you’re able to escape to a dark location, you might be able to see a great view of our Milky Way!

So, make sure to get outside this month and take a look at everything our night sky has to offer.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

5 years ago
Even Star Systems Have Identity Crises. 🤷⁣ ⁣ According To Data From Observatories Like Our @nasachandraxray,
Even Star Systems Have Identity Crises. 🤷⁣ ⁣ According To Data From Observatories Like Our @nasachandraxray,

Even star systems have identity crises. 🤷⁣ ⁣ According to data from observatories like our @nasachandraxray, a double star system has been rapidly flipping between two alter egos: a low-mass X-ray binary and a millisecond pulsar. Astronomers found this volatile double system in a dense collection of stars known as Terzan 5.⁣ ⁣ The first image from @NASAHubble shows Terzan 5 in optical light. Swipe to see the new image where low, medium and high-energy X-rays detected by Chandra are colored red, green and blue respectively. Click the link in bio for more. ⁣ ⁣

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago
🏊‍♂️ Down For A Dip In The Cosmic Reef?

🏊‍♂️ Down for a dip in the Cosmic Reef?

Nicknamed the Cosmic Reef because it resembles an undersea world, this is a vast star-forming region in the Large Magellanic Cloud, a satellite galaxy of the Milky Way.

Released in April 2020 to celebrate the Hubble Space Telescope’s 30th anniversary, the reef showcases the beauty and mystery of space in this complex image of starbirth. Throughout its decades of discoveries, Hubble has yielded over 1.5 million observations, providing data that astronomers around the world have used to write more than 18,000 peer-reviewed scientific publications, making it the most prolific space observatory in history.

Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.

You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!

Image credits: NASA, ESA, and STScI


Tags
8 years ago

Five Things to Know About NASA Astronaut Kate Rubins

image

Among the newest crew on the International Space Station is U.S. astronaut Kate Rubins, who will assume the role of Flight Engineer for Expeditions 48 and 49. Here are five things you should know about her:

1. She was chosen from a pool of over 3,500 applicants to receive a spot on our 2009 astronaut training class.

image

After being selected, Rubins spent years training at Johnson Space Center to become an astronaut. She learned how to use the complex station systems, perform spacewalks, exercise in space and more. Some training even utilized virtual reality.

2. She has a degree in cancer biology.

image

After earning a Bachelor of Science degree in Molecular Biology from the University of California, San Diego in 1999, Rubins went on to receive a doctorate in Cancer Biology from Stanford University Medical School Biochemistry Department and Microbiology and Immunology Department in 2005. In other words, she’s extremely smart.

3. Her research has benefited humanity.

image

Rubins helped to create therapies for Ebola and Lassa viruses by conducting research collaboratively with the U.S. Army. She also aided development of the first smallpox infection model with the U.S. Army Medical Research Institute of Infectious Diseases and the Centers for Disease Control and Prevention. NBD. It will be exciting to see the research come out of a mission with a world-class scientist using a world-class, out-of-this-world laboratory!

4. She is scheduled to be the first person to sequence DNA in space.

image

During her time at the space station, Rubins will participate in several science experiments. Along with physical science, Earth and space science and technology development work, she will conduct biological and human research investigations. Research into sequencing the first genome in microgravity and how the human body’s bone mass and cardiovascular systems are changed by living in space are just two examples of the many experiments in which Rubins may take part.

5. In her spare time, she enjoys scuba diving and triathlons...among other things.

image

Rubins was on the Stanford Triathlon team, and also races sprint and Olympic distance. She is involved with health care/medical supply delivery to Africa and started a non-profit organization to bring supplies to Congo. Her recent pursuits involve flying airplanes and jumping out of them -- not simultaneously. 

image

Rubins is scheduled to arrive at the International Space Station at 12:12 a.m. Saturday, July 9. After her launch on Wednesday, July 6, the three crew members traveled 2 days before docking to the space station’s Rassvet module. 

Watch live coverage of docking and their welcoming starting at 11:30 p.m. EDT Friday, July 8 on NASA Television.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Extraordinary Materials: Developed for Space, Useful for Just About Everything on Earth

Did you know technologies developed for space show up all over Earth? Our Technology Transfer Program has one major goal: bring our technology down to Earth. We patent space innovations developed for missions so that companies, startups and entrepreneurs can spin them off into new commercial products.

Our engineers and scientists create all sorts of materials and coatings—in fact, it is one of the most licensed technology categories in our patent portfolio. From materials that improve industrial and household products, to coatings and insulations that protect satellites, machinery and firefighters, our technologies offer smart solutions for modern challenges.

These are a few of our most in-demand technologies.

Dust-Resistant Coatings

Made by innovators at our Langley Research Center, this tech was first created for exploring dusty, dirty surfaces like the Moon, Mars and asteroids. Lunar dust has been shown to cause big problems with mechanical equipment, like clogging filters and damaging seals. This technology can be used in the production of films, coatings and surface treatments to create dust-resistant and self-cleaning products for biomedical devices, aircraft, cars and much more. This tech could be a game-changer when battling dirt and grime.

image

Smart, Environmentally-Friendly Coating System

Looking for a technology to ward off corrosion that’s also safe for the environment? Developed to protect our launch pads at Kennedy Space Center from extreme heat and exhaust from rockets, this “smart” coating can detect and prevent corrosion. It can even be painted on damaged surfaces to heal and protect them going forward. This tech has commercial potential in building safer bridges, automobiles and machinery.  While it may seem like magic, this technology will reduce maintenance cost and improve safety.

image

Multilayer Fire Protection System

Made to protect astronauts and vehicles during the dangerously hot task of reentry, scientists at Langley developed a flexible, lightweight and portable thermal protection system that can serve as a personal emergency fire shelter.

The flexible technology is made up of multilayer thermal blankets designed to handle external temperatures of up to 2,000°F – that’s as hot as magma found in some volcanos! The system can be formed as a sleeping bag, a tent, a blanket, a curtain, a flexible roll-up doorway or even for fire protection in housing structures.

image

Super-Strength Aluminums

This award-winning tech was initially developed by researchers at our Marshall Space Flight Center to help reduce vehicle exhaust emissions. This special alloy is flexible and strong—even at temperatures of over 500°F. That means it can withstand more wear and tear than other similar materials. Currently, this tech can be found improving motors on fishing boats as well as in all kinds of different engines.

image

Oil-Free Lubricants

Not all lubricants are liquids, for example, the non-stick coating on a frying pan. Truly in a class of its own, innovators at our Glenn Research Center have created solid lubricant materials to reduce friction and wear in mechanical parts, especially in extremely high heat. This tech could be useful in large engines, valves, turbines and power generation.

image

High-Strength Super Elastic Compounds

We needed a better material than iron or steel to prevent corrosion and rust in the International Space Station’s wastewater treatment system. Enter: our high-strength, super elastic compounds. Shock-proof, lightweight, durable and immune to rust, this durable tech has applications in ships, machines, industrial knives and cutters, and engine bearings here on Earth. They also don’t chemically degrade or break down lubricants, a common problem with existing bearing materials.

image

Interested in licensing the tech mentioned above? Follow the links to apply through our website, http://technology.nasa.gov.

You can also browse our entire materials and coatings portfolio at http://technology.nasa.gov/materials_and_coatings/.

Follow our NASA Technology Transfer Program on Twitter (@NASAsolutions) for the latest updates on technologies available for licensing.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

How does a microgravity garden grow when there's no up or down? An advanced chamber, about the size of a mini-fridge, is giving us a clearer perspective of plant growth habits. Without gravity and the addition of a wide variety of light and humidity settings, the plants cultivated on the International Space Station provide a world of opportunity to study space-based agricultural cycles.

Learn more about our space garden HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: Things to Know This Week

Our solar system is huge, so let us break it down for you. Here are five things you need to know this week:

1. The Lure of the Rings

image

Scientists and stargazers alike can’t resist the call of Saturn’s rings, or of its moon Titan. Both have been under close scrutiny by the Cassini spacecraft lately, and there are striking new pictures to prove it. Check out the latest images HERE.

2. A New Moon Rises

image

The Lunar Reconnaissance Orbiter has captured dramatic landscapes on the moon for more than six years. “A New Moon Rises,” now on display at the Smithsonian National Air and Space Museum in Washington, DC, showcases those images ranging from Apollo landing sites to mountains that rise out of the darkness of the lunar poles. See an online version of the exhibit HERE.  

3. Around the (Giant) World in (Just Under) 88 Days

image

The Juno mission is closing in on Jupiter. On July 4, the spacecraft enters orbit around the king of planets. Learn more about Juno HERE.

4. Spiders and Volcanoes and Glaciers, Oh My

image

The more data that New Horizons spacecraft sends down about Pluto and its moons, the more there is to fascinate explorers, from spider-shaped canyons to signs of glacial flow. Take a peek at the new finds on Pluto HERE.

5. World of Wonders

image

Hexagonal craters, mysterious mountains, eye-catching bright patches — the dwarf planet Ceres is proving to be an intriguing place. The Dawn mission is looking for clues to how it works. See the latest from Ceres HERE.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

New Glovebox Facility Heads to Space for Biological Research

The Japan Aerospace Exploration Agency H-IIB rocket is zooming toward the International Space Station carrying NASA’s Life Sciences Glovebox, a state-of-the-art microgravity research facility.

image

JAXA’s HTV3, taken during Expedition 32

NASA's Marshall Space Flight Center in Huntsville, Alabama, and their partners around the world are excited to initiate new, high-value biological research in low-Earth orbit.

The Japanese rocket, hauling the research facility and other cargo via the HTV-7 transfer vehicle, successfully lifted off at 1:52 p.m. EDT from Tanegashima Space Center off the coast of Japan.

image

Its launch marks a first for hauling bulky equipment to space. Roughly the size of a large fish tank, the Life Sciences Glovebox comes in at 26 inches high, 35 inches wide and 24 inches deep, with 15 cubic feet of available workspace.

image

"The Life Sciences Glovebox is on its way to the space station to enable a host of biological and physiological studies, including new research into microgravity's long-term impact on the human body," said Yancy Young, project manager at Marshall. "This versatile facility not only will help us better protect human explorers on long voyages into deep space, but it could aid medical and scientific advances benefiting the whole world."

image

Boeing engineers at Marshall modified a refrigerator-freezer rack to house the core facility, using state-of-the-art, 3D-printing technology to custom design key pieces of the rack to secure the unit in its protective foam clamshell.

image

NASA is now determining the roster of science investigations lined up to make use of the facility, beginning as early as late 2018. "We've already got more than a dozen glovebox experiments scheduled in 2019, with many more to follow," said Chris Butler, payload integration manager for the glovebox at Marshall.

The Life Sciences Glovebox will be transferred to a zero-gravity stowage rack in the station's Kibo module, where up to two crew members can conduct experiments simultaneously, overseen in real-time by project researchers on Earth.

Check out more pictures of the Glovebox HERE!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Solar System: 10 Things to Know

All About Ice

1. Earth's Changing Cryosphere

image

This year, we will launch two satellite missions that will increase our understanding of Earth's frozen reaches. Snow, ice sheets, glaciers, sea ice and permafrost, known as the cryosphere, act as Earth's thermostat and deep freeze, regulating temperatures by reflecting heat from the Sun and storing most of our fresh water.

2. GRACE-FO: Building on a Legacy and Forging Ahead

image

The next Earth science satellites set to launch are twins! The identical satellites of the GRACE Follow-On mission will build on the legacy of their predecessor GRACE by also tracking the ever-changing movement of water around our planet, including Earth's frozen regions. GRACE-FO, a partnership between us and the German Research Center for Geosciences (GFZ), will provide critical information about how the Greenland and Antarctic ice sheets are changing. GRACE-FO, working together, will measure the distance between the two satellites to within 1 micron (much less than the width of a human hair) to determine the mass below. 

Solar System: 10 Things To Know

Greenland has been losing about 280 gigatons of ice per year on average, and Antarctica has lost almost 120 gigatons a year with indications that both melt rates are increasing. A single gigaton of water would fill about 400,000 Olympic-sized swimming pools; each gigaton represents a billion tons of water.

3. ICESat-2: 10,000 Laser Pulses a Second

image

In September, we will launch ICESat-2, which uses a laser instrument to precisely measure the changing elevation of ice around the world, allowing scientists to see whether ice sheets and glaciers are accumulating snow and ice or getting thinner over time. ICESat-2 will also make critical measurements of the thickness of sea ice from space. Its laser instrument sends 10,000 pulses per second to the surface and will measure the photons' return trip to satellite. The trip from ICESat-2 to Earth and back takes about 3.3 milliseconds.

4. Seeing Less Sea Ice

image

Summertime sea ice in the Arctic Ocean now routinely covers about 40% less area than it did in the late 1970s, when continuous satellite observations began. This kind of significant change could increase the rate of warming already in progress and affect global weather patterns.

5. The Snow We Drink

image

In the western United States, 1 in 6 people rely on snowpack for water. Our field campaigns such as the Airborne Snow Observatory and SnowEx seek to better understand how much water is held in Earth's snow cover, and how we could ultimately measure this comprehensively from space.

6. Hidden in the Ground

image

Permafrost - permanently frozen ground in the Arctic that contains stores of heat-trapping gases such as methane and carbon dioxide - is thawing at faster rates than previously observed. Recent studies suggest that within three to four decades, this thawing could be releasing enough greenhouse gases to make Arctic permafrost a net source of carbon dioxide rather than a sink. Through airborne and field research on missions such as CARVE and ABoVE - the latter of which will put scientists back in the field in Alaska and Canada this summer - our scientists are trying to improve measurements of this trend in order to better predict global impact.

7. Breaking Records Over Cracking Ice 

image

Last year was a record-breaking one for Operation IceBridge, our aerial survey of polar ice. For the first time in its nine-year history, the mission carried out seven field campaigns in the Arctic and Antarctic in a single year. In total, the IceBridge scientists and instruments flew over 214,000 miles, the equivalent of orbiting the Earth 8.6 times at the equator. 

Solar System: 10 Things To Know

On March 22, we completed the first IceBridge flight of its spring Arctic campaign with a survey of sea ice north of Greenland. This year marks the 10th Arctic spring campaign for IceBridge. The flights continue until April 27 extending the mission's decade-long mapping of the fastest-changing areas of the Greenland Ice Sheet and measuring sea ice thickness across the western Arctic basin.

8. OMG

image

Researchers were back in the field this month in Greenland with our Oceans Melting Greenland survey. The airborne and ship-based mission studies the ocean's role in melting Greenland's ice. Researchers examine temperatures, salinity and other properties of North Atlantic waters along the more than 27,000 miles (44,000 km) of jagged coastline.

9. DIY Glacier Modeling

image

Computer models are critical tools for understanding the future of a changing planet, including melting ice and rising seas. Our new sea level simulator lets you bury Alaska's Columbia glacier in snow, and, year by year, watch how it responds. Or you can melt the Greenland and Antarctic ice sheets and trace rising seas as they inundate the Florida coast.

10. Ice Beyond Earth

image

Ice is common in our solar system. From ice packed into comets that cruise the solar system to polar ice caps on Mars to Europa and Enceladus-the icy ocean moons of Jupiter and Saturn-water ice is a crucial ingredient in the search for life was we know it beyond Earth.

Read the full version of this week’s 10 Things to Know HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Hostile and Closed Environments, Hazards at Close Quarters

A human journey to Mars, at first glance, offers an inexhaustible amount of complexities. To bring a mission to the Red Planet from fiction to fact, NASA’s Human Research Program has organized some of the hazards astronauts will encounter on a continual basis into five classifications.

Hostile And Closed Environments, Hazards At Close Quarters

A spacecraft is not only a home, it’s also a machine. NASA understands that the ecosystem inside a vehicle plays a big role in everyday astronaut life.

Hostile And Closed Environments, Hazards At Close Quarters

Important habitability factors include temperature, pressure, lighting, noise, and quantity of space. It’s essential that astronauts are getting the requisite food, sleep and exercise needed to stay healthy and happy. The space environment introduces challenges not faced on Earth.

Hostile And Closed Environments, Hazards At Close Quarters

Technology, as often is the case with out-of-this-world exploration, comes to the rescue! Technology plays a big role in creating a habitable home in a harsh environment and monitoring some of the environmental conditions.

Hostile And Closed Environments, Hazards At Close Quarters

Astronauts are also asked to provide feedback about their living environment, including physical impressions and sensations so that the evolution of spacecraft can continue addressing the needs of humans in space.

Hostile And Closed Environments, Hazards At Close Quarters
Hostile And Closed Environments, Hazards At Close Quarters

Exploration to the Moon and Mars will expose astronauts to five known hazards of spaceflight, including hostile and closed environments, like the closed environment of the vehicle itself. To learn more, and find out what NASA’s Human Research Program is doing to protect humans in space, check out the "Hazards of Human Spaceflight" website. Or, check out this week’s episode of “Houston We Have a Podcast,” in which host Gary Jordan further dives into the threat of hostile and closed environments with Brian Crucian, NASA immunologist at the Johnson Space Center.

Hostile And Closed Environments, Hazards At Close Quarters

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

can you describe how earth looks like from space?


Tags
Loading...
End of content
No more pages to load
  • sweetbutterbliss
    sweetbutterbliss liked this · 1 year ago
  • krystttle
    krystttle reblogged this · 5 years ago
  • krystttle
    krystttle liked this · 5 years ago
  • grillescheesecats
    grillescheesecats liked this · 6 years ago
  • wannabeyour-slut
    wannabeyour-slut liked this · 6 years ago
  • wayward-friend935
    wayward-friend935 liked this · 7 years ago
  • svnrae
    svnrae liked this · 7 years ago
  • lost-dreamer-97
    lost-dreamer-97 liked this · 7 years ago
  • thekid-1921
    thekid-1921 liked this · 7 years ago
  • amazingglobe
    amazingglobe reblogged this · 8 years ago
  • imyourbluesky
    imyourbluesky reblogged this · 8 years ago
  • luckycricket101-blog
    luckycricket101-blog liked this · 8 years ago
  • letmeinspireyou7-blog
    letmeinspireyou7-blog liked this · 8 years ago
  • lil-pea-nuts
    lil-pea-nuts liked this · 8 years ago
  • cobweb-forests-blog
    cobweb-forests-blog liked this · 8 years ago
  • no-more-diamond
    no-more-diamond liked this · 8 years ago
  • cirillastark
    cirillastark liked this · 8 years ago
  • the-theory-of-design
    the-theory-of-design liked this · 8 years ago
  • the-void-sends-mail
    the-void-sends-mail reblogged this · 8 years ago
  • ericzee19
    ericzee19 liked this · 8 years ago
  • oculussie
    oculussie liked this · 8 years ago
  • marshmallowb
    marshmallowb liked this · 8 years ago
  • vituperaris
    vituperaris reblogged this · 8 years ago
  • vituperaris
    vituperaris liked this · 8 years ago
  • babyspiicee
    babyspiicee liked this · 8 years ago
  • duhhn
    duhhn reblogged this · 8 years ago
  • buckysbarnestrash-blog
    buckysbarnestrash-blog liked this · 8 years ago
  • imyourbluesky
    imyourbluesky liked this · 8 years ago
  • perrysara
    perrysara liked this · 8 years ago
  • perrysara
    perrysara reblogged this · 8 years ago
  • alonewithdestiny-blog
    alonewithdestiny-blog liked this · 8 years ago
  • cookielicous24-blog
    cookielicous24-blog liked this · 8 years ago
  • yahirceballos-blog
    yahirceballos-blog liked this · 8 years ago
  • pinkabrar
    pinkabrar liked this · 8 years ago
  • cloudgeorge
    cloudgeorge liked this · 8 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags