We’re Honored To Be Recognized As One Of 2015’s New And Notable Tumblrs! Thanks For Following Along

We’re honored to be recognized as one of 2015’s new and notable Tumblrs! Thanks for following along as we explore the universe and discover our home planet.

New And Notable Tumblrs Of 2015 - Part 1

New and Notable Tumblrs of 2015 - Part 1

We’d like to recognize these distinguished Tumblrs for achievement in Being So Good.

NASA

GISHWHES

Sheldon the Tiny Dinosaur

Afro Arts

Karlie Kloss

Actual Dog Vines

Nike Women

Magic: The Gathering

Post It Forward

Book Quotes

Good Things by Ellen

Just Bad Puns

How to Get Away with Paint

Google Sheep View

More Posts from Nasa and Others

4 years ago

Earth Facts that Live Rent-Free in Our Heads

Earth is a big weird planet. With so much going on, it’s easy to forget some of the many, many processes happening here. But at the same time, some stuff is so unexpected and just plain strange that it’s impossible to forget. We asked around and found out lots of people here at NASA have this problem.

image

Here are some facts about Earth that live rent free in our heads:

Earth has a solid inner core that is almost as hot as the surface of the Sun. Earth’s core gets as high as 9,800 degrees Fahrenheit, while the surface of the Sun is about 10,000 degrees Fahrenheit.

image

Dust from the Sahara fertilizes the Amazon rainforest. 27.7 million tons blow all the way across the Atlantic Ocean to the rainforest each year, where it brings phosphorus -- a nutrient plants need to grow.

image

Ice in Antarctica looks solid and still, but it’s actually flowing -- in some places it flows so fast that scientific instruments can move as much as a kilometer (more than half a mile!) a year.

image

Speaking of Antarctica: Ice shelves (the floating part of ice sheets) can be as big as Texas. Because they float, they rise and fall with the tide. So floating ice as big as Texas, attached to the Antarctic Ice Sheet, can rise and fall up to ~26 feet!

image

Melting ice on land makes its way to the ocean. As polar glaciers melt, the water sloshes to the equator, and which can actually slow the spin of Earth.

image

Even though it looks it, the ocean isn’t level. The surface has peaks and valleys and varies due to changes in height of the land below, winds, temperature, saltiness, atmospheric pressure, ocean circulation, and more.

image

Earth isn’t the only mind-blowing place out there. From here, we look out into the rest of the universe, full of weird planets and galaxies that surprise us.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Which is scarier? Launch VS re-entry?


Tags
8 years ago

Our Most “Liked” Instagram Posts of 2016

Our Instagram page has over 1,800 images and is lucky enough to be followed by more than 18 million fans.

What images and videos were your favorite from this past year? Great question, and one we asked ourselves too! 

Here’s a look at our most liked Instagram posts* of 2016…Enjoy!

#10

image

Colorful “last hurrah’ of a star: The Hubble Space Telescope shows off the colorful “last hurrah” of a star like our sun. The star is ending its life by casting off its outer layers of gas, which formed a cocoon around the star’s remaining core. With 513,672 likes, this image is our 10th most liked of 2016.

#9

image

Vivid glowing auroras in Jupiter’s atmosphere! Astronomers are using the Hubble Space Telescope to study auroras – stunning light shows in a planet’s atmosphere – on the poles of the largest planet in the solar system. This image ranks #9 for 2016 with 515,339 likes.

#8

image

Astronomers found evidence for what is likely one of the most extreme pulsars, or rotating neutron stars, ever detected. The source exhibits properties of a highly magnetized neutron star, or magnetar, yet its deduced spin period is thousands of times longer than any pulsar ever observed. With 517,995 likes, this picture ranks #8 for 2016.

#7

image

Fiery South Atlantic Sunset! An astronaut aboard the International Space Station photographed a sunset that looks like a vast sheet of flame. With Earth’s surface already in darkness, the setting sun, the cloud masses, and the sideways viewing angle make a powerful image of the kind that astronauts use to commemorate their flights. This image ranks #7 for 2016 with 520,553 likes.

#6

Go floating! Join us for a fly-through of the International Space Station! This footage was shot using a fisheye lens for extreme focus and depth of field. This video ranks as our sixth most liked Instagram post of 2016 with 541,418 likes.

#5

image

This #BlackFriday post helped us celebrate our 4th annual #BlackHoleFriday! Each year we pose awesome content about black holes on the Black Friday shopping holiday. A black hole is a place in space where gravity pulls so much that even light cannot get out. With 549,910 likes, this image ranks #5 for 2016.

#4

image

A cluster of young stars – about one to two million years old – located about 20,000 light years from Earth. Data in visible light from the Hubble Space Telescope (green and blue) reveal thick clouds where the stars are forming. This image ranks #4 for 2016 with 573,002 likes.

#3

image

Supermoon is a spectacular sight! The Nov. 14 supermoon was especially “super” because it was the closest full moon to Earth since 1948. We won’t see another supermoon like this until 2034. Which might have something to do with this image ranking #3 for 2016 with 695,343 likes.

#2

image

Supermoon seen from space! Aboard the International Space Station, NASA astronaut Peggy Whitson posted this image on Dec. 14 captured by European Space Agency astronaut Thomas Pesquet. This stunning image ranks #2 for 2016 with 704,530 likes.

#1

image

It’s a bird, it’s a plane…no, it’s a #supermoon! The moon, or supermoon, is seen rising behind the Soyuz rocket at the Baikonur Cosmodrome launch pad in Kazakhstan ahead of the November crew launch to the International Space Station. This photo was our #1 image of 2016 with 746,981 likes.

Thanks for joining us as we traveled through the space events of 2016. We’re looking forward to all of the interstellar fun that 2017 will bring. Happy Holidays!

Do you want to get amazing images of Earth from space, see distant galaxies and more on Instagram? Of course you do! Follow us: https://www.instagram.com/nasa/

*Posts and rankings are were taken as of Dec. 21, 2016.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Houston, We Have a Launch!

Today, three new crew members will launch to the International Space Station. NASA astronaut Jeff Williams, along with Russian cosmonauts Alexey Ovchinin and Oleg Skripochka, are scheduled to launch from the Baikonur Cosmodrome in Kazakhstan at 5:26 p.m. EDT. The three Expedition 47 crew members will travel in a Soyuz spacecraft, rendezvousing with the space station six hours after launch.

Houston, We Have A Launch!

Traveling to the International Space Station is an exciting moment for any astronaut. But what if you we’re launching to orbit AND knew that you were going to break some awesome records while you were up there? This is exactly what’s happening for astronaut Jeff Williams.

This is a significant mission for Williams, as he will become the new American record holder for cumulative days in space (with 534) during his six months on orbit. The current record holder is astronaut Scott Kelly, who just wrapped up his one-year mission on March 1.

On June 4, Williams will take command of the station for Expedition 48. This will mark his third space station expedition…which is yet another record!

Want to Watch the Launch?

image

You can! Live coverage will begin at 4:30 p.m. EDT on NASA Television, with launch at 5:26 p.m.

Tune in again at 10:30 p.m. to watch as the Soyuz spacecraft docks to the space station’s Poisk module at 11:12 p.m.

Hatch opening coverage will begin at 12:30 a.m., with the crew being greeted around 12:55 a.m.

NASA Television: https://www.nasa.gov/nasatv

Follow Williams on Social!

image

Astronaut Jeff Williams will be documenting his time on orbit, and you can follow along on Facebook, Instagram and Twitter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

5 Myths About Becoming an Astronaut

Editor’s Note: This post was updated on March 15, 2024, to reflect new URLs and updated qualifications for applicants.

Have you ever wondered if you have what it takes to become a NASA astronaut? The term “astronaut” derives from the Greek word meaning “star sailor.”

We’re looking for a new class of astronauts to join the NASA team, and if you’re thinking about applying, there are a few things you should know.

Here are a few myths about becoming an astronaut:

MYTH: All astronauts have piloting experience.

FACT: You don’t need to be a pilot to be an astronaut. Flying experience is not a requirement, but it could be beneficial to have.

image

MYTH: All astronauts have perfect vision.

FACT: It’s OK if you don’t have 20/20 vision. As of September 2007, corrective surgical procedures of the eye (PRK and LASIK), are now allowed, providing at least one year has passed since the date of the procedure with no permanent adverse aftereffects.

image

MYTH: All astronauts have advanced degrees, like a PhD.

FACT: While a master’s degree from an accredited university is typically necessary to become an astronaut, an exception exists if you have completed a medical degree or test pilot school.

image

MYTH: Astronauts are required to have military experience to be selected.

FACT: Military experience is not required to become an astronaut.

image

MYTH: You must be a certain age to be an astronaut. 

FACT: There are no age restrictions. Astronaut candidates selected in the past have ranged between the ages of 26 and 46, with the average age being 34.

image

OK, but what are the requirements?

image

Basic Qualification Requirements

Applicants must meet the following minimum requirements before submitting an application:

Be a U.S. citizen.

Have completed a master’s degree (or foreign equivalent) in an accredited college or university with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.

The master’s degree requirement can also be met by having:

Completed at least two years (36 semester hours or 54 quarter hours) in an accredited PhD or related doctoral degree program (or foreign equivalent) with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.

Completed a Doctor of Medicine, Doctor of Osteopathic Medicine, or related medical degree (or foreign equivalent) in an accredited college or university.

Completed or be currently enrolled in a Test Pilot School (TPS) program (nationally or internationally recognized) and will have completed this program by June 2025. (Must submit proof of completion or enrollment.)

If TPS is your only advanced technical degree, you must have also completed a bachelor’s degree or higher (or foreign equivalent) at an accredited college or university with major study in an appropriate technical field of engineering, biological science, physical science, computer science, or mathematics.

Have at least three years of related professional experience obtained after degree completion (or 1,000 Pilot-in-Command hours with at least 850 of those hours in high-performance jet aircraft for pilots). For medical doctors, time in residency can count toward experience and must be completed by June 2025.

Be able to pass the NASA long-duration flight astronaut physical.

Applications for our next astronaut class are open through April 16! Learn more about our Astronaut Selection Program and check out current NASA astronaut Anne McClain’s advice in “An Astronaut’s Guide to Applying to Be an Astronaut.”

Make sure to follow us on Tumblr for your regular dose of space!

Image Descriptions 1. GIF showing a first-person view from the cockpit of a T-38 NASA training jet. The camera pans 360 degrees to show the the sky, the jet’s wing, and the astronaut in training wearing a flight helmet. The sky is reflected n the astronaut’s visor. Credit: NASA

2. Two astronauts smiling inside a module aboard the International Space Station. They’re wearing casual clothes. At left, the man is wearing a navy blue crew neck shirt. At right, the woman is wearing a red crew neck shirt. Credit: NASA

3. Four astronauts floating inside a module aboard the International Space Station. The two outermost astronauts are wearing shirts that say M.I.T. on them. The two in the middle have hats that say M.I.T. on them. The second astronaut from the left holds up a red flag representing M.I.T. They’re all smiling. Credit: NASA

4. Two astronauts float inside a module aboard the International Space Station. They’re both wearing t-shirts that say NAVY on them. Credit: NASA

5. GIF showing six International Space Station crew members having a meal together. They’re eating and drinking from food pouches. Credit: NASA

6. A graphic displaying NASA's astronaut requirements, which are detailed in the text below the image. An astronaut in a spacesuit, pointing to the reader, is peeking out of the right side of the image, and the surface of the Moon takes up most of the image's background. "NASA's 2024 Astronaut Recruitment" is in large text in the image's bottom-left corner. Credit: NASA


Tags
3 years ago

Watching Water in the West

If you’ve eaten a piece of fruit, a vegetable, or a handful of nuts in the past week, it’s very likely they all came from “America’s Salad Bowl.” California’s Central Valley and Central Coast is where more than one-third of all vegetables in the U.S. are grown––and two-thirds of our fruits and nuts.

Watching Water In The West

Keeping this area fertile takes a lot of water, and we provide farmers with NASA data that helps them manage increasingly scarce supplies. Working with farmers and conservation groups, we developed a new website called OpenET to transform how water is managed in the West! It covers 17 western U.S. states, putting satellite and other Earth science data into their hands. The website gives them daily and monthly views of water usage, down to the resolution of a single field of vegetables.

Watching Water In The West

The ET in OpenET doesn’t stand for extraterrestrial, but “evapotranspiration.” Evapotranspiration is a measurement that farmers can use to estimate the amount of water being used by their fields and crops. This water will usually need to be replaced through irrigation or rainfall.

We work closely with partners and people around the world, connecting them with NASA Earth data to solve our planet’s most pressing issues.

Learn more about our Applied Sciences program, here! We are Earth. Science. Action.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

Kirk vs. Spock: NASA Trivia Time!

Star Trek has inspired generations of NASA employees to boldly go exploring strange new worlds and develop the technologies for making science fiction become science reality. We recently caught up with Star Trek Beyond actors Chris Pine (Kirk) and Zachary Quinto (Spock) and quizzed them on some NASA trivia. Before you take a look at their answers (video at bottom of post), take a stab at answering them yourself! See how well you do: 

image

1. What does the first “A” in NASA stand for?  A) Adventure B) Aeronautics

2. On July 4 this year, we sent a spacecraft into orbit around what planet? A) Jupiter B) Pluto

3. What do scientists call a planet that orbits a star outside our solar system? A) Exoplanet B) Nebula

4. Although it never flew in space, what was the name of the first space shuttle? A) Discovery B) Enterprise

5. What is a light-year a measurement of? A) Time B) Distance

6. When looking for habitable worlds around other stars, we want to find planets that are what? A) Goldilocks zone planets B) Class M Planets

7. Olympus Mons is the largest known volcano in our solar system. What planet is it on? A) Mars B) Earth

8. Which NASA satellite made an appearance in Star Trek the Motion Picture? A) Voyager B) Galileo

9. Who was the first American woman in space? A) Sally Ride B) Janice Lester

10. While developing life support for Mars missions, what NASA Spinoff was developed? A) Enriched baby food B) Anti-gravity boots

11. What technology makes replication of spare parts a reality on the International Space Station? A) Closed-Loop System B) 3-D Printer

12. What two companies are contracted by NASA to carry astronauts to and from the space station? A) Boeing and SpaceX B) Amazon and Virgin Galactic

ANSWERS: 1:B, 2:A, 3:A, 4:B, 5:B, 6:A, 7:A, 8:A, 9:A, 10:A, 11:B, 12:A

Now that you’ve tested your own space knowledge, find out how Zachary and Chris did at NASA Trivia: 

Learn more about NASA + Star Trek at: http://www.nasa.gov/startrek

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
Ever Want To Ask A Real Life Astronaut A Question? Here’s Your Chance!

Ever want to ask a real life astronaut a question? Here’s your chance!

Astronaut Jeanette Epps will be taking your questions in an Answer Time session on Friday, May 5 from 10am - 11am ET here on NASA’s Tumblr. See the questions she’s answered by visiting nasa.tumblr.com/tagged/answertime!

NASA astronaut Jeanette J. Epps (Ph.D.) was selected as an astronaut in 2009. She has been assigned to her first spaceflight, which is scheduled to launch in May 2018. Her training included scientific and technical briefings, intensive instruction in International Space Station systems, spacewalk training, robotics, T‐38 flight training and wilderness survival training.

Before becoming an astronaut, Epps worked as a Technical Intelligence Officer at the Central Intelligence Agency (CIA).

Born in Syracuse, New York. Enjoys traveling, reading, running, mentoring, scuba diving and family.

She has a Bachelor of Science in Physics from LeMoyne College, as well as a Master of Science and Doctorate of Philosophy in Aerospace Engineering from the University of Maryland. 

Follow Jeanette on Twitter at @Astro_Jeanette and follow NASA on Tumblr for your regular dose of space.


Tags
5 years ago

Celestial Mechanics Around the Solar System During December 2019

The dance of planets, moons and spacecraft around the solar system creates a host of rare alignments in late December 2019. Here's what's coming up.

Dec. 21: Winter solstice in the Northern Hemisphere

Dec. 21 is the 2019 winter solstice for the Northern Hemisphere. A solstice marks the point at which Earth's tilt is at the greatest angle to the plane of its orbit, also the point where half of the planet is receiving the longest stretch of daylight and the other the least. There are two solstices a year, in June and December: the summer and winter solstices, respectively, in the Northern Hemisphere.

image

The winter solstice is the longest night of the year, when that hemisphere of Earth is tilted farthest from the Sun and receives the fewest hours of sunlight in a given year. Starting Dec. 21, the days will get progressively longer until the June solstice for those in the Northern Hemisphere, and vice versa for the Southern Hemisphere.  

Dec. 26: Annular solar eclipse visible in Asia

On Dec. 26, an annular solar eclipse will be visible in parts of Asia. During an annular eclipse, the Moon's apparent size is too small to completely cover the face of the Sun, creating a "ring of fire" around the Moon's edge during the eclipse.

image

Credit: Dale Cruikshank

Solar eclipses happen when the Moon lines up just right with the Sun and Earth. Though the Moon orbits Earth about once a month, the tilt in its orbit means that it's relatively rare for the Moon to pass right in line between the Sun and Earth — and those are the conditions that create an eclipse. Depending on the alignment, the Moon can create a partial, total or annular solar eclipse.

image

On Dec. 26, the Moon will be near perigee, the point in its orbit when it's farthest from Earth. That means its apparent size from Earth is just a bit smaller — and that difference means that it won't completely cover the Sun during the Dec. 26 eclipse. Instead, a ring of the bright solar surface will be visible around the Moon during the point of greatest eclipse. This is called an annular eclipse.

It is never safe to look directly at an annular solar eclipse, because part of the Sun is always visible. If you're in the path of the annular eclipse, be sure to use solar viewing glasses (not sunglasses) or another safe viewing method to watch the eclipse.

Dec. 26: Parker Solar Probe flies by Venus

After the eclipse, more than 100 million miles away from Earth, Parker Solar Probe will pull off a celestial maneuver of its own. On Dec. 26, the spacecraft will perform the second Venus gravity assist of the mission to tighten its orbit around the Sun.

image

During the seven gravity assists throughout the mission, Parker Solar Probe takes advantage of Venus's gravity to slow down just the right amount at just the right time. Losing some of its energy allows the spacecraft to be drawn closer by the Sun's gravity: It will fly by the Sun's surface at just 11.6 million miles during its next solar flyby on Jan. 29, 2020. During this flyby, Parker Solar Probe will break its own record for closest-ever spacecraft to the Sun and will gather new data to build on the science already being shared from the mission.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Sample Return Robot Challenge

It’s been a long, technical journey for the seven teams competing this week in Level 2 of our Sample Return Robot Challenge. Over the past five years, more than 50 teams have attempted the $1.5 million competition, which is looking to develop autonomous capabilities in robotics. Basically, we want robots that can think and act on their own, so they can travel to far off places – like Mars – and we can rely on them to work on their own when a time delay or unknown conditions could be factors.

This challenge has two levels, both requiring robots to navigate without human control and Earth-based tools (like GPS or magnetic compassing). The robot has to find samples, pick them up and deliver them to home base. Each of the final seven teams succeeded at Level 1, where they had to find one sample, during previous competition years. Now, they have a shot at the much more difficult Level 2, where they have a two-hour window to locate up to 10 samples of varying point values, but they don’t know where to look or what exactly they’re looking for.

Get to know the final seven, and be sure to cheer them on as we live-stream the competition all day Sept. 4 and 5.

image

West Virginia University Mountaineers Hailing from: Morgantown, West Virginia # of Team Members:  12

Behind the Name: In West Virginia, we call ourselves mountaineers. We like to explore unknown places and be inspired by nature.

Motivation: To challenge ourselves. Through this venture, we are also hoping to create research and career opportunities for everyone on the team.

Strategy: Keeping things simple. Through participating in SRR challenge during the last three years, we have gone a long way in streamlining our system.

Obstacles: One of the biggest challenges was finding and nurturing the talent of individual team members and coordinating the team in making real progress on time.

Prize Plans: We donated 50 percent of our 2015 Level 2 prize money to create an undergraduate “Robotics Achievement Fellowship” at WVU. The rest of the funding was allocated to support team member professional development, such as traveling to conferences. A similar model will be used if we win in 2016.

Extra Credit:  We did an Easter egg hunt with our robot, Cataglyphis (named after a desert ant with extraordinary navigation capabilities), last year.

image

Survey Hailing from: Los Angeles, California # of Team Members: Jascha Little

Behind the Name: It's short, simple, and what the robot spends a lot of its time doing.

Team History: We work together, and we all thought the challenge sounded like an excellent way to solve the problem of what to do with all our free time.

Motivation: We are all engineers and software developers that already work on robotics projects. Reading too much sci-fi when we were kids probably got us to this point.

Strategy: We are trying to solve the search-and-return problem primarily with computer vision. This is mostly to reduce cost. Our budget can't handle high quality IMUs or LIDAR.

Prize Plans: Probably build more robots.

Extra Credit: Favorite pop culture robot is Bender (Futurama). Alcoholic robots are the best.

image

Alabama Astrobotics (The University of Alabama) Hailing from: Tuscaloosa, Alabama # of Team Members: 33

Behind the Name: “Alabama Astrobotics” was chosen to reflect our school affiliation and our mission to design robotics for various space applications.

Team History: Alabama Astrobotics has been involved with other NASA robotics competitions in the past.  So, the team is accustomed to the competition environment.  

Motivation: We are pleased to have advanced to Level 2 in our first year in the competition (the first team to do so), but we are also not satisfied with just advancing.  Our goal is to try to solve Level 2.

Strategy: Our strategy is similar to that used in Level 1.  Our Level 1 approach was chosen so that it would translate to Level 2 as well, thus requiring fewer customizations from Level 1 to Level 2.

Obstacles: As a university team, the biggest challenge was not having all our team members available to work on the robot during the time since Level 1 completed in June. Most of my team members have either graduated or have summer internships, which took them away from campus after Level 1.  Thus, we didn’t have the manpower to address the additional Level 2 technical challenges.

Prize Plans: Any prize money would be donated to the University of Alabama College of Engineering.

Extra Credit: Alabama Astrobotics also competes in the annual NASA Robotic Mining Competition held at the Kennedy Space Center each May.  We have been fortunate enough to win that competition three times in its seven year history, and we are the only team to win it more than once.

image

MAXed-Out Hailing From: Santa Clara, California # of Team Members: 4

Behind the Name: Several reasons: Team leader is Greg Maxwell, and his school nick name was Max. Our robot’s name is Max, which is one of the most common name for a dog, and it is a retriever. Our efforts on this has been too the max…. i.e. MAXed-Out. Our technology requirements have been pushed to their limits - Maxed-Out.

Team History: Greg Maxwell started a Meet-up “Silicon-Valley Robot Operating System” SV-ROS that was to help teach hobbyists how to use ROS on their robots. We needed a project to help implement and make real what we were teaching. This is the third contest we have participated in.

Motivation: There is still such a long way to go to make robots practical. Every little bit we can contribute makes them a little bit better and smarter. Strategy: Level 1 was a test, as a minimum viable product to prove the tech worked. For Level 2, we had to test and add obstacle avoidance to be able to cover the larger area with trees and slopes, plus add internal guidance to allow for Max to be out of the home base camera tracking system.

Obstacles: Lack of a cost effective robot platform that met all the requirements; we had to build our own. Also time and money. The two months (between Level 1 and 2) went really fast, and we had to abandon lots of cool ideas and focus on the basics.

Prize Plans: Not sure, but pay off the credit cards comes to mind. We might open-source the platform since it works pretty well. Or we will see if it works as expected. We may also take a break / vacation away from robots for a while.

Extra Credit: My nephew, Max Hieges, did our logo, based on the 1960-era Rat Fink sticker.

image

Mind & Iron Hailing From: Seattle, Washington # of Team Members: 5

Behind the Name: It was the original title for Isaac Asimov’s “I Robot,” and we thought it was a good combination of what a robot actually is – mechanical and brains.

Team History: Three of us were WPI undergrads and met at school; two of us did our master’s degrees at the University of Washington, where we met another member, and then another of us brought on a family member.

Motivation: We saw that there was an opportunity to compete in a challenge that seemed like there was a reasonable solution that we could tackle with a limited budget. We saw three years of competition and thought that we had some better ideas and a pretty good shot at it. Strategy: The samples and the terrain are much more complex in Level 2, and we have to be more careful about our navigation. We are using the same tools, just expanding their capability and scope.

Obstacles: The team being spread over three different time zones has been the biggest challenge. We are all doing this in our free time after work. The internet has been really handy to get things done.

Prize Plans: Probably invest in more robot stuff! And look for other cool projects we can work on, whether it’s another NASA challenge or other projects.

Extra Credit: We are hoping to collaborate with NASA on the professional side with surgical robots to exoskeletons. Challenge-related, our robot is mostly made of plywood – it is a composite fiber material that works well for fast development using cheap materials.

image

Sirius Hailing From: South Hadley, Massachusetts # of Team Members: 4

Team History: We are a family. Our kids are both robot builders who work for Boston Dynamics, and they have a lot of robot expertise. Both of our kids are robotics engineers, and my wife is intrinsically brilliant, so the combination of that makes for a good team.

Motivation: Because it’s a really hard challenge. It’s one thing to drive a robot with a remote control; it’s another to do the whole thing autonomously. If you make a single change in a robot, it could throw everything off. You have to think through every step for the robot. On a basic level, to learn more about robotics and to win the prize. Strategy: Very similar to Level 1. We approached Level 1 knowing Level 2 was there, so our strategy was no different.

Obstacles: It is very difficult to do object recognition under unpredictable conditions – sun, clouds, weather, sample location. The biggest challenge was trying to recognize known and unknown objects under such a wide variety of environmental possibilities. And the terrain is very different – you don’t know what you’re going to find out there.

Prize Plans: We haven’t really thought about it, but we will give some away, and we’ll invest the rest in our robotics company.

Extra Credit: The first robot we had was called Robo-Dad. Dan was training to be an astronaut in the 1990s, so we built a toy remote-controlled truck that Dan - in Texas - could control via the internet in the house. Robo-Dad had a camera that Dan could see the house with. It had two-way communication; it was a little before it’s time – the internet was very slow.

image

Team AL Hailing From: Ontario, Canada # of Team Members: 1

Team History: I was looking for competitions that were open, and my dad had followed the Centennial Challenges for a while, so he alerted me to this one. I was already doing rover projects, and it was appropriate and awesome and interesting. I felt like I could do it as a team of one.

Motivation: Difficult challenges. I’m definitely inspired seeing really cool robots that other people are building. New emerging tech really motives me to create new things.

Strategy: I showed up with another robot to Level 2. I built three, but ran with only two. It did make it more complicated, but the strategy was to send them to different areas and have them be able to communicate with each other. Everything physically was the same from Level 1.  The idea is that they would all go out with different missions and I would maximize field coverage.

Obstacles: Time. More time would always be nice. Being able to make something like this happen under a timeline is really difficult. I feel like I accomplished a lot for a year. Also, manpower – being a team of 1, I have to do all of the paperwork and other related stuff, but also carry the hardware and do the programming. You have to multitask a lot.

Prize Plans: I’d like to start a robotics company, and be able to expand some of the things I’ve been working on associated with technology and maker education.

Extra Credit: My story is not linear. A lot of people are surprised to hear that my background is in molecular biology and  research. I once lived in a tent in Madagascar for a few months to do a biodiversity study, and I have multiple publications from that side of my life. I am in a whole different place now.

The competition is one of many run by our Centennial Challenges program, which looks to the public – citizen inventors, academics, makers, artists, YOU – to help us advance technology and bring a different perspective to obstacles that gets us outside of our traditional solving community. See what else we’re working on here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
Loading...
End of content
No more pages to load
  • lopicupartbe
    lopicupartbe liked this · 1 year ago
  • whichofmy100fandoms
    whichofmy100fandoms liked this · 3 years ago
  • chekovscaramelcurls
    chekovscaramelcurls liked this · 4 years ago
  • buddyam
    buddyam liked this · 4 years ago
  • therandomsystem
    therandomsystem liked this · 5 years ago
  • walviss
    walviss liked this · 5 years ago
  • xghostorion
    xghostorion liked this · 5 years ago
  • bean-of-cheese
    bean-of-cheese liked this · 5 years ago
  • reeveswrites
    reeveswrites liked this · 5 years ago
  • yyilphryy
    yyilphryy liked this · 5 years ago
  • yellowology
    yellowology liked this · 5 years ago
  • angelpringle
    angelpringle liked this · 5 years ago
  • twilightriverowl
    twilightriverowl liked this · 5 years ago
  • mille-worm
    mille-worm liked this · 5 years ago
  • pixelduust
    pixelduust liked this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags