Every year at this time, we take a moment to reflect as the NASA Family on the very broad shoulders on which we stand: the shoulders of those women and men of NASA who gave their lives so that we could continue to reach for new heights for the benefit of all humankind.
To honor our fallen heroes and friends, NASA Administrator Charles Bolden and Deputy Administrator Dava Newman spoke at a wreath-laying ceremony at Arlington National Cemetery, at the grave sites of the fallen crew.
The crew aboard the International Space Station also payed tribute with a moment of silence.
President Barack Obama recognized the day with the release of an official statement that honors the legacy of the heroes who lost their lives helping America touch the stars.
To view the President’s full statement, visit HERE.
Visit our Day of Remembrance page to learn about the crews & missions we've lost: http://www.nasa.gov/externalflash/DOR2016/index.html
Thank you for keeping our fallen colleagues in your hearts and for honoring their legacy.
Tonight, count the stars and remember a trailblazer.
We're saddened by the passing of celebrated #HiddenFigures mathematician Katherine Johnson. She passed away at 101 years old.
An America hero, Johnson's legacy of excellence broke down racial and social barriers while helping get our space agency off the ground.
Once a "human computer", she famously calculated the flight trajectory for Alan Shepard, the first American in space.
And when we began to use electronic computers for calculations, astronaut John Glenn said that he’d trust the computers only after Johnson personally checked the math.
As a girl, Katherine Johnson counted everything. As a mathematician, her calculations proved critical to our early successes in space travel.
With slide rules and pencils, Katherine Johnson’s brilliant mind helped launch our nation into space. No longer a Hidden Figure, her bravery and commitment to excellence leaves an eternal legacy for us all.
"We will always have STEM with us. Some things will drop out of the public eye and will go away, but there will always be science, engineering and technology. And there will always, always be mathematics." - Katherine Johnson 1918 -2020
May she rest in peace, and may her powerful legacy inspire generations to come! What does Katherine Johnson’s legacy mean to you? Share in the comments.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The Sun released two significant solar flares on Sept. 6, including one that clocked in as the most powerful flare of the current solar cycle.
The solar cycle is the approximately 11-year-cycle during which the Sun’s activity waxes and wanes. The current solar cycle began in December 2008 and is now decreasing in intensity and heading toward solar minimum, expected in 2019-2020. Solar minimum is a phase when solar eruptions are increasingly rare, but history has shown that they can nonetheless be intense.
Footage of the Sept. 6 X2.2 and X9.3 solar flares captured by the Solar Dynamics Observatory in extreme ultraviolet light (131 angstrom wavelength)
Our Solar Dynamics Observatory satellite, which watches the Sun constantly, captured images of both X-class flares on Sept. 6.
Solar flares are classified according to their strength. X-class denotes the most intense flares, followed by M-class, while the smallest flares are labeled as A-class (near background levels) with two more levels in between. Similar to the Richter scale for earthquakes, each of the five levels of letters represents a 10-fold increase in energy output.
The first flare peaked at 5:10 a.m. EDT, while the second, larger flare, peaked at 8:02 a.m. EDT.
Footage of the Sept. 6 X2.2 and X9.3 solar flares captured by the Solar Dynamics Observatory in extreme ultraviolet light (171 angstrom wavelength) with Earth for scale
Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb Earth’s atmosphere in the layer where GPS and communications signals travel.
Both Sept. 6 flares erupted from an active region labeled AR 2673. This area also produced a mid-level solar flare on Sept. 4, 2017. This flare peaked at 4:33 p.m. EDT, and was about a tenth the strength of X-class flares like those measured on Sept. 6.
Footage of the Sept. 4 M5.5 solar flare captured by the Solar Dynamics Observatory in extreme ultraviolet light (131 angstrom wavelength)
This active region continues to produce significant solar flares. There were two flares on the morning of Sept. 7 as well.
For the latest updates and to see how these events may affect Earth, please visit NOAA’s Space Weather Prediction Center at http://spaceweather.gov, the U.S. government’s official source for space weather forecasts, alerts, watches and warnings.
Follow @NASASun on Twitter and NASA Sun Science on Facebook to keep up with all the latest in space weather research.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Geminid meteor shower, one of the biggest meteor showers of the year, will peak this weekend, December 13 to 14. We get a lot of questions about the Geminids—so we’ve put together some answers to the ones we’re most commonly asked. Take a look!
The Geminids are pieces of debris from an asteroid called 3200 Phaethon. Earth runs into Phaethon’s debris stream every year in mid-December, causing meteors to fly from the direction of the constellation Gemini – hence the name “Geminids.”
Image Credit: Arecibo Observatory/NASA/NSF
This year, the peak is during the overnight hours of December 13 and into the morning of December 14. Viewing should still be good on the night of December 14 into the early morning hours of the 15th. Weather permitting, the Geminids can be viewed from around midnight to 4 a.m. local time. The best time to see them is around 2 a.m. your local time on December 14, when the Geminid radiant is highest in your night sky. The higher the radiant – the celestial point in the sky from which meteors appear to originate – rises into the sky, the more meteors you are likely to see.
Image Credit & Copyright: Jeff Dai
Find the darkest place you can and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will disrupt your night vision. Lie flat on your back and look straight up, taking in as much sky as possible. You will soon start to see the Geminid meteors!
Image Credit: NASA/Bill Dunford
The Geminids are best observed in the Northern Hemisphere, but no matter where you are in the world (except Antarctica), some Geminids will be visible.
Image Credit: Jimmy Westlake
Under dark, clear skies, the Geminids can produce up to 120 meteors per hour – but this year, a bright, nearly full moon will hinder observations of the shower. Still, observers can hope to see up to 30 meteors per hour. Happy viewing!
Image Credit & Copyright: Yuri Beletsky
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On this day in 1972, two NASA astronauts landed on the Moon. Now, 45 years later, we have been instructed to return to the lunar surface.
Today at the White House, President Trump signed the Space Policy Directive 1, a change in national space policy that provides for a U.S.-led program with private sector partners for a human return to the Moon, followed by missions to Mars and beyond.
Among other dignitaries on hand for the signing, were NASA astronauts Sen. Harrison “Jack” Schmitt, Buzz Aldrin, Peggy Whitson and Christina Koch.
Schmitt landed on the moon 45 years to the minute that the policy directive was signed as part of our Apollo 17 mission, and is the most recent living person to have set foot on our lunar neighbor.
Above, at the signing ceremony instructing us to send humans back to the lunar surface, Schmitt shows First Daughter Ivanka Trump the Moon sample he collected in 1972.
The effort signed today will more effectively organize government, private industry and international efforts toward returning humans on the Moon, and will lay the foundation that will eventually enable human exploration of Mars.
To learn more, visit: https://www.nasa.gov/press-release/new-space-policy-directive-calls-for-human-expansion-across-solar-system
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Tumblr, this is Houston speaking! The flight directors Answer Time with Chloe Mehring and Diane Dailey is live. Stay tuned to learn about what happens in mission control, how to become a flight director, and what Hollywood sometimes gets wrong about the job. View ALL the answers HERE.
Make sure to follow us on Tumblr for your regular dose of space!
When we return to the Moon, much will seem unchanged since humans first arrived in 1969. The flags placed by Apollo astronauts will be untouched by any breeze. The footprints left by man’s “small step” on its surface will still be visible across the Moon’s dusty landscape.
Our next generation of lunar explorers will require pioneering innovation alongside proven communications technologies. We’re developing groundbreaking technologies to help these astronauts fulfill their missions.
In space communications networks, lasers will supplement traditional radio communications, providing an advancement these explorers require. The technology, called optical communications, has been in development by our engineers over decades.
Optical communications, in infrared, has a higher frequency than radio, allowing more data to be encoded into each transmission. Optical communications systems also have reduced size, weight and power requirements. A smaller system leaves more room for science instruments; a weight reduction can mean a less expensive launch, and reduced power allows batteries to last longer.
On the path through this “Decade of Light,” where laser joins radio to enable mission success, we must test and demonstrate a number of optical communications innovations.
The Laser Communications Relay Demonstration (LCRD) mission will send data between ground stations in Hawaii and California through a spacecraft in an orbit stationary relative to Earth’s rotation. The demo will be an important first step in developing next-generation Earth-relay satellites that can support instruments generating too much data for today’s networks to handle.
The Integrated LCRD Low-Earth Orbit User Modem and Amplifier-Terminal will provide the International Space Station with a fully operational optical communications system. It will communicate data from the space station to the ground through LCRD. The mission applies technologies from previous optical communications missions for practical use in human spaceflight.
In deep space, we’re working to prove laser technologies with our Deep Space Optical Communications mission. A laser’s wavelength is smaller than radio, leaving less margin for error in pointing back at Earth from very, very far away. Additionally, as the time it takes for data to reach Earth increases, satellites need to point ahead to make sure the beam reaches the right spot at the right time. The Deep Space Optical Communications mission will ensure that our communications engineers can meet those challenges head-on.
An integral part of our journey back to the Moon will be our Orion spacecraft. It looks remarkably similar to the Apollo capsule, yet it hosts cutting-edge technologies. NASA’s Laser Enhanced Mission Communications Navigation and Operational Services (LEMNOS) will provide Orion with data rates as much as 100 times higher than current systems.
LEMNOS’s optical terminal, the Orion EM-2 Optical Communications System, will enable live, 4K ultra-high-definition video from the Moon. By comparison, early Apollo cameras filmed only 10 frames per second in grainy black-and-white. Optical communications will provide a “giant leap” in communications technology, joining radio for NASA’s return to the Moon and the journey beyond.
NASA’s Space Communications and Navigation program office provides strategic oversight to optical communications research. At NASA’s Goddard Space Flight Center in Greenbelt, Maryland, the Exploration and Space Communications projects division is guiding a number of optical communications technologies from infancy to fruition. If you’re ever near Goddard, stop by our visitor center to check out our new optical communications exhibit. For more information, visit nasa.gov/SCaN and esc.gsfc.nasa.gov.
Exploration requires mobility. And whether you’re on Earth or as far away as the Moon or Mars, you need good tires to get your vehicle from one place to another. Our decades-long work developing tires for space exploration has led to new game-changing designs and materials. Yes, we’re reinventing the wheel—here’s why.
Early tire designs were focused on moving hardware and astronauts across the lunar surface. The last NASA vehicle to visit the Moon was the Lunar Roving Vehicle during our Apollo missions. The vehicle used four large flexible wire mesh wheels with stiff inner frames. We used these Apollo era tires as the inspiration for new designs using newer materials and technology to better function on a lunar surface.
During the mid-2000s, we worked with industry partner Goodyear to develop the Spring Tire, an airless compliant tire that consists of several hundred coiled steel wires woven into a flexible mesh, giving the tires the ability to support high loads while also conforming to the terrain. The Spring Tire has been proven to generate very good traction and durability in soft sand and on rocks.
A little over a year after the Mars Curiosity Rover landed on Mars, engineers began to notice significant wheel damage in 2013 due to the unexpectedly harsh terrain. That’s when engineers began developing new Spring Tire prototypes to determine if they would be a new and better solution for exploration rovers on Mars.
In order for Spring Tires to go the distance on Martian terrain, new materials were required. Enter nickel titanium, a shape memory alloy with amazing capabilities that allow the tire to deform down to the axle and return to its original shape.
After building the shape memory alloy tire, Glenn engineers sent it to the Jet Propulsion Laboratory’s Mars Life Test Facility. It performed impressively on the punishing track.
New, high performing tires would allow lunar and Mars rovers to explore greater regions of the surface than currently possible. They conform to the terrain and do not sink as much as rigid wheels, allowing them to carry heavier payloads for the same given mass and volume. Also, because they absorb energy from impacts at moderate to high speeds, there is potential for use on crewed exploration vehicles which are expected to move at speeds significantly higher than the current Mars rovers.
Maybe. Recently, engineers and materials scientists have been testing a spinoff tire version that would work on cars and trucks on Earth. Stay tuned as we continue to push the boundaries on traditional concepts for exploring our world and beyond.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
@barnabasthebarmy: How do you deal with being cooped up with other people for so long?
Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.
To read more entires from this series, visit our Space Blogs on Tumblr.
I can’t believe that Expedition 55 is already over. Today is Sunday, and we will depart the International Space Station (ISS) next Sunday morning (June 3).
168 days in space.
There have been many challenging moments, but even more positive highlights of our time on ISS. The new crew from the Soyuz MS-08 spacecraft (Oleg Artymyev, Drew Feustel and Ricky Arnold) joined Norishige Kanai (Nemo), Anton Shkaplerov and I last March. Since then, we have completed two spacewalks, captured and released the SpaceX Dragon-14 cargo craft, captured the Cygnus OA-9 cargo craft and completed a myriad of maintenance and science activities.
The team on the ground controlling, monitoring, supporting and planning has been amazing. It is always great to work with them, and especially during the moments where the equipment, tools, procedures or crew need help. It is incredible to see how much a good team can accomplish when methodically placing one foot in front of the other.
I have been lucky in that the first crew (Mark Vande Hei, Joe Acaba and Alexander Misurkin (Sasha)) and the second crew (Drew, Ricky and Oleg) were all amazing to work with. I do believe the planets aligned for my mission onboard ISS.
Drew and Ricky have been friends forever, and listening to them nip at each other provided a ton of great humor for the ground and for us. Their one-liners to each other reminded me of several scenes from the movie Space Cowboys.
This a great example that happened as I was writing this log entry:
Ricky: Hey Maker, is this your smoothie?
Maker: No.
Ricky: It must be Drew’s.
Drew: Hey Ricky, don’t drink my smoothie.
Ricky: What smoothie? This one has my name on it (as he writes his name on it).
Drew: Okay, Grandpa Underpants, hands off my smoothie.
Ricky: Okay, Feustelnaut – we have rules around here, so this is my smoothie now!
All: Much laughing. (To quote my kids: “LOL!”)
One the hardest things to do in space is to maintain positive control of individual items such as tools, spare parts, fasteners, etc. We try very hard not to lose things, but even with all of the attention and positive control, items can still float away and disappear.
We generally hold items in a crew transfer bag (CTB). Inside the CTB are many items for the system that it supports. When the CTB is opened, the items are free floating inside the bag and tend to escape. It is very difficult to maintain control of the items – especially if they are small, do not have Velcro, or when the daily schedule is so tight that we are rushing to stay on time. We always try to close the CTB’s and Ziploc bags after removing or replacing each item to maintain positive control, but this takes much more time to do for individual items, and if the timeline is tight, we absorb more risk by rushing.
The same applies for tools, which we usually keep in a Ziploc bag while working on individual systems and tasks. Last month, I was installing a new low temperature cooling loop pump that had failed a month or two earlier. I gathered the needed tools into my modified (with Velcro) Ziploc bag as I always do and floated over to the work area. When I got there, one of the tools that I had gathered was missing. I looked for 30 minutes, and could not find it. Lost items are very hard to find because the items that escape are usually barely moving and blend in with the environment very quickly. A lost item could be right in front of us and we would never see it.
Our crew, after learning these lessons, decided that when anyone loses something, we would tell the other crew members what we had lost with a general location. This has had a huge impact on finding items. If a different crew member can help within the first minutes of losing an item, the new crew member has an excellent chance of finding the item. We have proven this technique several times during the expedition – and Nemo was the very best at quickly finding lost items. But, in my case, we still could not find the missing tool. Our amazing ground team understood and vectored me to a replacement tool and I finished the job. I spent the next 3 weeks watching, looking and never forgetting about the lost tool. Then, one day last week, Oleg came to the lab and handed us a tool he had found in his Soyuz spacecraft, way on the aft side of the ISS. Amazing. We finally found the tool and I was happy again. This was a lucky ending. ISS has many corners, crevices and hard-to-see areas where missing items could hide and never be found.
We captured a Cygnus cargo craft last Thursday. I was very impressed with the entire team. Our specialists and training professionals in Mission Control did a great job preparing the necessary procedures and making sure we were proficient and ready to conduct operations. The robotic arm is a wonderful system that we could not operate ISS without. Being in space, however, it has some very unique handling qualities. If you think about a spring-mass-damper system just as you did during physics or control theory class, and then remove the damper, you will see a system that is very subject to slow rate oscillations.
In test pilot terms, damping ratio is very low and the latency is well over a half of a second. Also in test pilot terms – this is a pilot-induced oscillations (PIO) generator. These characteristics require crew to “fly” the robotic arm using open-loop techniques, which requires a huge amount of patience. Test pilots are sometimes not very patient, but understanding the system and practicing with the incredible simulators that our ground team built and maintain help keep our proficiency as high as possible. The capture went flawlessly, and I was very impressed with the professionalism across the board – crew, flight controllers and training professionals – what a great job!
Drew, Ricky and I got to play guitar a few times while on ISS. This was fun! Drew connected pickups to the acoustic guitars and then connected the pickups to our tablets for amplification. I’ve never heard an acoustic guitar sound like an electric guitar amped up for heavy metal before. We had a great jam on the song “Gloria”, and a couple others. Rock on!
Last night we had our last movie night. The entire crew gathered in Node 2 and watched Avengers Infinity Wars on the big screen. We enjoy each other’s company, as we did during Expedition 54, and this was a welcome break from the daily grind of trying to complete the required stowage, maintenance and science activities while preparing for departure.
Our last full weekend here on ISS. I gave myself a haircut. We usually clean our spaces each weekend to make sure we can maintain a decent level of organization, efficiency and morale. This weekend is no different, and it is time for me to vacuum out all of our filters and vents. You’d be amazed at what we find!
The top 5 things I will miss when I am no longer in space:
The incredible team that supports ISS operations from our control centers
The camaraderie onboard ISS
The breathtaking view of the Earth, Moon, Sun and Stars
Floating/flying from location to location with very little effort
Operations in the extreme environment of space
Find more ‘Captain’s Log’ entries HERE.
Follow NASA astronaut Scott Tingle on Instagram and Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Born in New York City, Chris Williams considers Potomac, Maryland, to be his hometown. A private pilot and Eagle Scout, Williams is a board-certified medical physicist and holds a doctorate in physics from MIT. https://go.nasa.gov/49YJJmf
Make sure to follow us on Tumblr for your regular dose of space!
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts