Recent news articles have reported that “newly declassified” audiotapes reveal that Apollo 10 astronauts heard “outer-spacey” music as the spacecraft flew around the far side of the moon in 1969.
While listed as ‘confidential’ in 1969 at the height of the Space Race, Apollo 10 mission transcripts and audio have been publicly available since 1973. Since the Internet did not exist in the Apollo era, we have only recently provided digital files for some of those earlier missions. The Apollo 10 audio clips were uploaded in 2012, but the mission’s audio recordings have been available at the National Archives since the early 1970s.
As for the likely source of the sounds, Apollo 10 Lunar Module Pilot Gene Cernan told us on Monday, ‘I don’t remember that incident exciting me enough to take it seriously. It was probably just radio interference. Had we thought it was something other than that we would have briefed everyone after the flight. We never gave it another thought.’
If you’d like to listen to the audio file, it is available HERE (starting at 2:50).
The full transcript is available HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
@flood123789: What does it feel like to drink a lot of water in zero gravity
Our Space Launch System rocket is on the move this summer — literally. With the help of big and small businesses in all 50 states, various pieces of hardware are making their way to Louisiana for manufacturing, to Alabama for testing, and to Florida for final assembly. All of that work brings us closer to the launch of Artemis 1, SLS and Orion’s first mission to the Moon.
The SLS rocket will feature the largest core stage we have ever built before. It’s so large, in fact, that we had to modify and refurbish our barge Pegasus to accommodate the massive load. Pegasus was originally designed to transport the giant external tanks of the space shuttles on the 900-mile journey from our rocket factory, Michoud Assembly Facility, in New Orleans to Kennedy Space Center in Florida. Now, our barge ferries test articles from Michoud along the river to Huntsville, Alabama, for testing at Marshall Space Flight Center. Just a week ago, the last of four structural test articles — the liquid oxygen tank — was loaded onto Pegasus to be delivered at Marshall for testing. Once testing is completed and the flight hardware is cleared for launch, Pegasus will again go to work — this time transporting the flight hardware along the Gulf Coast from New Orleans to Cape Canaveral.
The massive, five-segment solid rocket boosters each weigh 1.6 million pounds. That’s the size of four blue whales! The only way to move the components for the powerful boosters on SLS from Promontory, Utah, to the Booster Fabrication Facility and Vehicle Assembly Building at Kennedy is by railway. That’s why you’ll find railway tracks leading from these assembly buildings and facilities to and from the launch pad, too. Altogether, we have about 38-mile industrial short track on Kennedy alone. Using a small fleet of specialized cars and hoppers and existing railways across the US, we can move the large, bulky equipment from the Southwest to Florida’s Space Coast. With all the motor segments complete in January, the last booster motor segment (pictured above) was moved to storage in Utah. Soon, trains will deliver all 10 segments to Kennedy to be stacked with the booster forward and aft skirts and prepared for flight.
A regular passenger airplane doesn’t have the capacity to carry the specialized hardware for SLS and our Orion spacecraft. Equipped with a unique hinged nose that can open more than 200 degrees, our Super Guppy airplane is specially designed to carry the hulking hardware, like the Orion stage adapter, to the Cape. That hinged nose means cargo is actually loaded from the front, not the back, of the airplane. The Orion stage adapter, delivered to Kennedy in 2018, joins to the rocket’s interim cryogenic propulsion stage, which will give our spacecraft the push it needs to go to the Moon on Artemis 1. It fit perfectly inside the Guppy’s cargo compartment, which is 25 feet tall and 25 feet wide and 111 feet long.
In the end, all roads lead to Kennedy, and the star of the transportation show is really the “crawler.” Rolling along at a delicate 1 MPH when it’s loaded with the mobile launcher, our two crawler-transporters are vital in bringing the fully assembled rocket to the launchpad for each Artemis mission. Each the size of a baseball field and powered by locomotive and large power generator engines, one crawler-transporter is able to carry 18 million pounds on the nine-mile journey to the launchpad. As of June 27, 2019, the mobile launcher atop crawler-transporter 2 made a successful final test roll to the launchpad, clearing the transporter and mobile launcher ready to carry SLS and Orion to the launchpad for Artemis 1.
It takes a lot of team work to launch Artemis 1. We are partnering with Boeing, Northrop Grumman and Aerojet Rocketdyne to produce the complex structures of the rocket. Every one of our centers and more than 1,200 companies across the United States support the development of the rocket that will launch Artemis 1 to the Moon and, ultimately, to Mars. From supplying key tools to accelerate the development of the core stage to aiding the transportation of the rocket closer to the launchpad, companies like Futuramic in Michigan and Major Tool & Machine in Indiana, are playing a vital role in returning American astronauts to the Moon. This time, to stay. To stay up to date with the latest SLS progress, click here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Today marks astronaut Scott Kelly’s 300th day in space! He, along with Russian cosmonaut Mikhail Kornienko, are testing the limits of human research during their one-year mission onboard the International Space Station.
While most expeditions to the space station last four to six months, their time on orbit has been doubled. By increasing the length of their time in space, researchers hope to better understand how the human body reacts and adapts to long-duration spaceflight.
1. You might get bored and play ping pong with yourself…and a water droplet.
2. There’s a chance that you’ll get a Tweet from someone famous…like the President!
3. There may come a time where you’ll have to fix something outside the station during a spacewalk.
4. You might develop a ‘green thumb’ and grow plants in space.
5. And, there’s no doubt you get to see the Earth from a totally new perspective.
To learn more about the one-year mission, visit: https://www.nasa.gov/1ym
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Does an ecplispe cause any unusual effects on the Earth?
Yes, and this is one of the things we’re hoping to study more with this eclipse! If you are in totality, you’ll notice a significant temperature drop. We are also expecting to see changes in the Earth’s atmosphere and ionosphere. You can help us document these changes using the GLOBE Observer app https://www.globe.gov/globe-data/data-entry/globe-observer ! There are lots of great citizen science going on during this eclipse, and we’d love to have everyone here helping out! https://eclipse2017.nasa.gov/citizen-explorers
Dwarf planet Ceres has more than 130 bright areas, and most of them are associated with impact craters. Now, Ceres has revealed some of its well-kept secrets in two new studies in the journal Nature, thanks to data from our Dawn spacecraft.
Two studies have been looking into the mystery behind these bright areas. One study identifies this bright material as a kind of salt, while the other study suggests the detection of ammonia-rich clays.
Study authors write that the bright material is consistent with a type of magnesium sulfate called hexahydrite. A different type of magnesium sulfate is familiar on Earth as Epsom salt.
Researchers, using images from Dawn’s framing camera, suggest that these salt-rich areas were left behind when water-ice sublimated in the past. Impacts from asteroids would have unearthed the mixture of ice and salt.
An image of Occator Crater (below) shows the brightest material on Ceres. Occator itself is 60 miles in diameter, and its central pit, covered by this bright material, measures about 6 miles wide. With its sharp rim and walls, it appears to be among the youngest features on the dwarf planet.
In the second nature study, members of the Dawn science team examined the composition of Ceres and found evidence for ammonia-rich clays. Why is this important?
Well, ammonia ice by itself would evaporate on Ceres today, because it is too warm. However, ammonia molecules could be stable if present in combination with other minerals. This raises the possibility that Ceres did not originate in the main asteroid belt between Mars and Jupiter, where it currently resides. But instead, might have formed in the outer solar system! Another idea is that Ceres formed close to its present position, incorporating materials that drifted in from the outer solar system, near the orbit of Neptune, where nitrogen ices are thermally stable.
As of this week, our Dawn spacecraft has reached its final orbital altitude at Ceres (about 240 miles from the surface). In mid-December, it will begin taking observations from this orbit, so be sure to check back for details!
ake sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Welcome to our 6th annual annual Black Hole Friday! Check out these black hole deals from the past year as you prepare to head out for a shopping spree or hunker down at home to avoid the crowds.
First things first, black holes have one basic rule: They are so incredibly dense that to escape their surface you’d have to travel faster than light. But light speed is the cosmic speed limit . . . so nothing can escape a black hole’s surface!
Some black holes form when a very large star dies in a supernova explosion and collapses into a superdense object. This is even more jam-packed than the crowds at your local mall — imagine an object 10 times more massive than the Sun squeezed into a sphere with the diameter of New York City!
Some of these collapsing stars also signal their destruction with a huge burst of gamma rays. Our Fermi Gamma-ray Space Telescope and Neil Gehrels Swift Observatory continuously seek out the signals of these gamma ray bursts — black hole birth announcements that come to us from across the universe.
There are loads of stellar mass black holes, which are just a few 10s of times the Sun’s mass, in our home galaxy alone — maybe even hundreds of millions of them! Our Neutron Star Interior Composition Explorer, or NICER for short, experiment on the International Space Station has been studying some of those relatively nearby black holes.
Near one black hole called GRS 1915+105, NICER found disk winds — fast streams of gas created by heat or pressure. Scientists are still figuring out some puzzles about these types of wind. Where do they come from, for example? And do they change the way material falls into the black hole? Every new example of these disk winds helps astronomers get closer to answering those questions.
But stellar mass black holes aren’t the only ones out there. At the center of nearly every large galaxy lies a supermassive black hole — one with the mass of millions or billions of Suns smooshed into a region no bigger than our solar system.
There’s still some debate about how these monsters form, but astronomers agree that they certainly can collide and combine when their host galaxies collide and combine. Those black holes will have a lot of gas and dust around them. As that material is pulled into the black hole it will heat up due to friction and other forces, causing it to emit light. A group of scientists wondered what light it would produce and created this mesmerizing visualization showing that most of the light produced around these two black holes is UV or X-ray light. We can’t see those wavelengths with our own eyes, but many telescopes can. Models like this could help scientists know what to look for to spot a merger.
It also turns out that these supermassive black holes are the source of some of the brightest objects in the gamma ray sky! In a type of galaxy called active galactic nuclei (also called “AGN” for short) the central black hole is surrounded by a disk of gas and dust that’s constantly falling into the black hole.
But not only that, some of those AGN have jets of energetic particles that are shooting out from near the black hole at nearly the speed of light! Scientists are studying these jets to try to understand how black holes — which pull everything in with their huge amounts of gravity — provide the energy needed to propel the particles in these jets. If that jet is pointed directly at us, it can appear super-bright in gamma rays and we call it a blazar. These blazars make up more than half of the sources our Fermi space telescope sees.
Sometimes scientists get a two-for-one kind of deal when they’re looking for black holes. Our colleagues at the IceCube Neutrino Observatory actually caught a particle from a blazar 4 billion light-years away. IceCube lies a mile under the ice in Antarctica and uses the ice itself to detect neutrinos, tiny speedy particles that weigh almost nothing and rarely interact with anything. When IceCube caught a super-high-energy neutrino and traced its origin to a specific area of the sky, they turned to the astronomical community to pinpoint the source.
Our Fermi spacecraft scans the entire sky about every three hours and for months it had observed a blazar producing more gamma rays than usual. Flaring is a common characteristic in blazars, so this didn’t attract special attention. But when the alert from IceCube came through, scientists realized the neutrino and the gamma rays came from the same patch of sky! This method of using two or more kinds of signals to learn about one event or object is called multimessenger astronomy, and it’s helping us learn a lot about the universe.
Get more fun facts and information about black holes HERE and follow us on social media today for other cool facts and findings about black holes!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We just finished the second hottest year on Earth since global temperature estimates first became feasible in 1880. Although 2016 still holds the record for the warmest year, 2017 came in a close second, with average temperatures 1.6 degrees Fahrenheit higher than the mean.
2017’s temperature record is especially noteworthy, because we didn’t have an El Niño this year. Often, the two go hand-in-hand.
El Niño is a climate phenomenon that causes warming of the tropical Pacific Ocean waters, which affect wind and weather patterns around the world, usually resulting in warmer temperatures globally. 2017 was the warmest year on record without an El Niño.
We collect the temperature data from 6,300 weather stations and ship- and buoy-based observations around the world, and then analyze it on a monthly and yearly basis. Researchers at the National Oceanic and Atmospheric Administration (NOAA) do a similar analysis; we’ve been working together on temperature analyses for more than 30 years. Their analysis of this year’s temperature data tracks closely with ours.
The 2017 temperature record is an average from around the globe, so different places on Earth experienced different amounts of warming. NOAA found that the United States, for instance, had its third hottest year on record, and many places still experienced cold winter weather.
Other parts of the world experienced abnormally high temperatures throughout the year. Earth’s Arctic regions are warming at roughly twice the rate of the rest of the planet, which brings consequences like melting polar ice and rising sea levels.
Increasing global temperatures are the result of human activity, specifically the release of greenhouse gases like carbon dioxide and methane. The gases trap heat inside the atmosphere, raising temperatures around the globe.
We combine data from our fleet of spacecraft with measurements taken on the ground and in the air to continue to understand how our climate is changing. We share this important data with partners and institutions across the U.S. and around the world to prepare and protect our home planet.
Earth’s long-term warming trend can be seen in this visualization of NASA’s global temperature record, which shows how the planet’s temperatures are changing over time, compared to a baseline average from 1951 to 1980.
Learn more about the 2017 Global Temperature Report HERE.
Discover the ways that we are constantly monitoring our home planet HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
hi! i hope you're doing well. i wanted to ask, how do you land a job at nasa?
thanks!
On this day in 1972, two NASA astronauts landed on the Moon. Now, 45 years later, we have been instructed to return to the lunar surface.
Today at the White House, President Trump signed the Space Policy Directive 1, a change in national space policy that provides for a U.S.-led program with private sector partners for a human return to the Moon, followed by missions to Mars and beyond.
Among other dignitaries on hand for the signing, were NASA astronauts Sen. Harrison “Jack” Schmitt, Buzz Aldrin, Peggy Whitson and Christina Koch.
Schmitt landed on the moon 45 years to the minute that the policy directive was signed as part of our Apollo 17 mission, and is the most recent living person to have set foot on our lunar neighbor.
Above, at the signing ceremony instructing us to send humans back to the lunar surface, Schmitt shows First Daughter Ivanka Trump the Moon sample he collected in 1972.
The effort signed today will more effectively organize government, private industry and international efforts toward returning humans on the Moon, and will lay the foundation that will eventually enable human exploration of Mars.
To learn more, visit: https://www.nasa.gov/press-release/new-space-policy-directive-calls-for-human-expansion-across-solar-system
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts