Space Station Research: Observing Earth

Space Station Research: Observing Earth

Each month, we highlight a different research topic on the International Space Station. In April, our focus is how the space station provides a platform for studying the Earth.

image

You might wonder how a laboratory 250 miles above Earth could help us study and observe our home planet, but the space station actually gives us a unique view of the blue marble we call home.

The space station is part of a fleet of Earth remote-sensing platforms to develop a scientific understanding of Earth’s systems and its response to natural or human-induced changes and to improve prediction of climate, weather and natural hazards. Unlike automated remote-sensing platforms, the space station has a human crew, a low-orbit altitude and orbital parameters that provide variable views and lighting. Crew members have the ability to collect unscheduled data of an unfolding event, like severe weather, using handheld digital cameras.

image

The Cupola, seen above, is one of the many ways astronauts aboard the space station are able to observe the Earth. This panoramic control tower allows crew members to view and guide operations outside the station, like the station’s robotic arm.

image

The space station also has an inclined, sun-asynchronous orbit, which means that it travels over 90% of the inhabited surface of the Earth, and allows for the station to pass over ground locations at different times of the day and night. This perspective is different and complimentary to other orbiting satellites.

The space station is also home to a few Earth-observing instruments, including:

image

The ISS-RapidScat monitors ocean winds for climate research, weather prediction and hurricane science. This vantage point gives scientists the first near-global direct observations of how ocean winds can vary over the course of the day, while adding extra eyes in the tropics and mid-latitudes to track the formation and movement of tropical cyclones.

Space Station Research: Observing Earth

CATS (Cloud-Aerosol Transport System) is a laser instrument that measures clouds and airborne particles such as pollution, mineral dust and smoke. Improving cloud data allows scientists to create more accurate climate models, which in turn, will improve air quality forecasts and health risk alerts.

Space Station Research: Observing Earth

In late 2016, we will launch Stratospheric Aerosol and Gas Experiment III (SAGE III). This experiment will measure ozone and other gases in the atmosphere to help scientists assess how the ozone layer is recovering.

image

Want to observe the Earth from a similar vantage point? You can thanks to our High Definition Earth-Viewing System (HDEV). This experiment is mounted on the exterior of the space station and includes several commercial HD video cameras aimed at the Earth.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

9 years ago

How to Do Business with NASA

It’s Small Business Week! To celebrate, we’re breaking down the process and explaining how YOUR small business can work with us. Here are 10 steps:

image

Prior to working with us, identify which of your products or services best fit within our industry. It’s also important to know the Federal Supply Class or Service Codes (FSC/SVC) for your products or services. Prepare a capability brief in both printed and electronic versions with an emphasis on Government work.

image

In order to register your business with us, there are three systems you’ll need to use. The Data Universal Numbering System (DUNS), the System for Award Management (SAM) and the NASA Vendor Data Base (NVDB). After you’ve survived all those acronyms, your business is registered!

image

Here at NASA we have centers around the country that each procure different types of business. Where does your product or service fit in? The best thing to do is visit THIS site and find out more about each center. You can also take a look at our Acquisition Forecast to find out about expected contract opportunities.

image

You can find current procurement opportunities in your product or service area by checking the Federal Business Opportunities website. This site also helps you identify our requirements and even send you e-mail notifications of released requirements.

image

Contracting procedures can be tedious, it’s always a good idea to familiarize yourself with the Federal Acquisition Regulations (FAR), as well as our supplement to those regulations. Which can be found HERE.

image

Did you know that many of our purchases are orders on the Federal Supply Schedule contracts? They are, which means you can contact the U.S. General Services Administration (GSA) for information on how to obtain a contract.

image

There are some very beneficial resources available to you throughout this process. You can request training and counseling on marketing, financial and contracting issues at minimal or no cost from Procurement Technical Assistance Centers (PTACs).

You also have the option to consult with the SBA’s Procurement Center Representatives (PCRs) and the SBA Business Development Centers. The SBA provides each of our centers with a liaison.

There is also an option to get free and confidential mentoring by former CEOs through SCORE.

image

Direct contracting is not the only route for small businesses. Consider subcontracting opportunities, and get information through the SBA’s SUB-Net or Subcontracting Opportunities Directory. Solicitations or notices are posted by prime contractors. Our list of prime vendors is located on our Marshall Space Flight Center’s website.

image

Explore other small business programs, such as our Mentor-Protégé Program, the Small Business Innovation Research Program and the Historically Black Colleges and Universities and Minority-Serving Institutions Program. Information on these and other programs is available on our Office of Small Business Programs website.

image

After you have identified your customers, researched their requirements and familiarized yourself with our procurement regulations and strategies, it’s time to market your product or service. Present your capabilities directly to the NASA Centers that buy your products or services. Realize that, as with yours, their time is valuable. If the match is a good one, you can provide them with a cost-effective, quality solution to their requirements. Good luck!

Here are a Few Small Businesses We’re Already Working With…

image

Dynetics Technical Services, Inc., of Huntsville, AL works with us on enterprise information technology services so that we have the right tools to reach for new heights. This company was also named Agency Small Business Prime Contractor of the Year.

image

Arcata Associates, Inc., of Las Vegas, NV manages operations and maintenance for our Dryden Aeronautical Test Range in Edwards, CA. Their work ensures that we can continue our critical work in aviation research and development. This company was even named Agency Small Business Subcontractor of the Year.

Want to learn more about our Office of Small Business Programs? Visit their site HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

We Just Took a Major Step Forward in our Moon Landing Program

As part of the Commercial Lunar Payload Services (CLPS) initiative, we’ve selected the first American companies that will deliver our science and technology payloads to the Moon.

image

Seen above from left to right are lander prototypes from:

Astrobotic of Pittsburgh, Pennsylvania

Intuitive Machines of Houston, Texas

Orbit Beyond of Edison, New Jersey

image

Astrobotic of Pittsburgh has proposed to fly as many as 14 payloads to a large crater on the near side of the Moon.

image

Intuitive Machines of Houston has proposed to fly as many as five payloads to a scientifically intriguing dark spot on the Moon.

image

Orbit Beyond of Edison, New Jersey, has proposed to fly as many as four payloads to a lava plain in one of the Moon’s craters.

Each company is charged with demonstrating technology that will shape the development of future landers and other exploration systems needed for humans to return to the Moon’s surface under the new Artemis program. Artemis is the program that will send the first woman and the next man to the Moon by 2024 and develop a sustainable human presence on the Moon by 2028. The program takes its name from the twin sister of Apollo and goddess of the Moon in Greek mythology.

image

Together we are going to the Moon—to stay.

Watch the CLPS announcement on our YouTube channel to learn about how each company will prepare us for human missions to the Moon: https://www.youtube.com/watch?v=qODDdqK9rL4

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
5 years ago
It's Almost Launch Day! On Monday, June 24, The Launch Window Opens For The Department Of Defense's Space

It's almost launch day! On Monday, June 24, the launch window opens for the Department of Defense's Space Test Program-2 launch aboard a SpaceX Falcon Heavy. Among the two dozen satellites on board are four NASA payloads whose data will help us improve satellite design and performance.

Our experts will be live talking about the launch and NASA's missions starting this weekend.

🛰 Tune in on Sunday, June 23, at 12 p.m. EDT (9 a.m. PDT) for a live show diving into the technology behind our projects.

🚀 Watch coverage of the launch starting at 11 p.m. EDT (8 p.m. PDT) on Monday, June 24

Join us at nasa.gov/live, and get updates on the launch at blogs.nasa.gov/spacex.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Back-to-Back Friday Spacewalks

On Friday, Jan. 6 and Friday, Jan. 13, astronauts on the International Space Station will step outside to perform spacewalks. 

image

What’s a spacewalk? It’s any time an astronaut gets out of a vehicle or spacecraft while in space. It can also be called an EVA (extravehicular activity).

Astronauts go on spacewalks for many reasons. These activities allow crew members to work outside their spacecraft (in this case the space station).

image

So what specific tasks will astronauts perform in these two upcoming spacewalks? Let’s take a look…

Both spacewalks are being performed to upgrade the orbital outpost’s power system. 

image

The crew members will install adapter plates and hook up electrical connections for six new lithium-ion batteries that were delivered to the station in December.

image

NASA astronauts Shane Kimbrough and Peggy Whitson will perform the first spacewalk on Jan. 6. The work will continue Jan. 13 during the second spacewalk, which will be conducted by Kimbrough and ESA astronaut Thomas Pesquet.

image

Prior to each spacewalk, the new batteries will be robotically extracted from a pallet to replace 12 older nickel-hydrogen batteries through a series of robotic operations.  

Watch LIVE Spacewalk Coverage

Friday, Jan. 6 Coverage begins at 5:30 a.m. EST, with astronauts venturing outside at 7 a.m. Watch HERE

Friday, Jan. 13 Coverage begins at 5:30 a.m. EST, with astronauts venturing outside at 7 a.m. Watch HERE

Watch for more...

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

A Hitchhiker’s Ride to Space

This month, we are set to launch the latest weather satellite from the National Oceanic and Atmospheric Administration (NOAA). The Joint Polar Satellite System-1, or JPSS-1, satellite will provide essential data for timely and accurate weather forecasts and for tracking environmental events such as forest fires and droughts.

image

Image Credit: Ball Aerospace

JPSS-1 is the primary satellite launching, but four tiny satellites will also be hitchhiking a ride into Earth orbit. These shoebox-sized satellites (part of our CubeSat Launch Initiative) were developed in partnership with university students and used for education, research and development. Here are 4 reasons why MiRaTA, one of the hitchhikers, is particularly interesting…

image

Miniaturized Weather Satellite Technology

The Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat is set to orbit the Earth to prove that a small satellite can advance the technology necessary to reduce the cost and size of future weather satellites. At less than 10 pounds, these nanosatellites are faster and more cost-effective to build and launch since they have been constructed by Principal Investigator Kerri Cahoy’s students at MIT Lincoln Laboratory (with lots of help). There’s even a chance it could be put into operation with forecasters.

image

The Antenna? It’s a Measuring Tape

That long skinny piece coming out of the bottom right side under MiRaTA’s solar panel? That’s a measuring tape. It’s doubling as a communications antenna. MiRaTA will measure temperature, water vapor and cloud ice in Earth’s atmosphere. These measurements are used to track major storms, including hurricanes, as well as everyday weather. If this test flight is successful, the new, smaller technology will likely be incorporated into future weather satellites – part of our national infrastructure.

image

Tiny Package Packing a Punch MiRaTA will also test a new technique using radio signals received from GPS satellites in a higher orbit. They will be used to measure the temperature of the same volume of atmosphere that the radiometer is viewing. The GPS satellite measurement can then be used for calibrating the radiometer. “In physics class, you learn that a pencil submerged in water looks like it’s broken in half because light bends differently in the water than in the air,” Principal Investigator Kerri Cahoy said. “Radio waves are like light in that they refract when they go through changing densities of air, and we can use the magnitude of the refraction to calculate the temperature of the surrounding atmosphere with near-perfect accuracy and use this to calibrate a radiometer.” 

image

What’s Next?

In the best-case scenario, three weeks after launch MiRaTA will be fully operational, and within three months the team will have obtained enough data to study if this technology concept is working. The big goal for the mission—declaring the technology demonstration a success—would be confirmed a bit farther down the road, at least half a year away, following the data analysis. If MiRaTA’s technology validation is successful, Cahoy said she envisions an eventual constellation of these CubeSats orbiting the entire Earth, taking snapshots of the atmosphere and weather every 15 minutes—frequent enough to track storms, from blizzards to hurricanes, in real time.

Learn more about MiRaTA

Watch the launch!

image

The mission is scheduled to launch this month (no sooner than Nov. 14), with JPSS-1 atop a United Launch Alliance (ULA) Delta II rocket lifting off from Space Launch Complex 2 at Vandenberg Air Force Base in California. You’ll be able to watch on NASA TV or at nasa.gov/live.

image

Watch the launch live HERE on Nov. 14, liftoff is scheduled for Tuesday, 4:47 a.m.! 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Throwback Thursday: Apollo 11 Moon Landing Questions Answered

image

The Apollo 11 Moon landing was a feat for the ages. With the help of the NASA History Office, we’ve identified some of the most frequently asked questions surrounding the first time humans walked on the surface of another world. Click here to check out our post from last week. 

Is it true that the Apollo guidance computer had less computing power than a smartphone?

image

Believe it or not, yes! The Apollo guidance computer not only had less computing power than a smartphone, it had less computing power than the calculator you use in your algebra class. The computer, designed by MIT, had a fixed memory of 36 kilobytes and an erasable memory of 2 kilobytes. That’s fairly advanced for the time! 

Why did Buzz Aldrin take a picture of his bootprint?

image

A substantial portion of the Apollo 11 crew’s checklist was taking photographs. Taking closeup shots of the "very fine” moon dust was a critical component of mission objectives and helped scientists better understand the surface makeup of the Moon. 

image

Armstrong and Aldrin wore lunar overboots over their main spacesuit boots to protect them from ultraviolet radiation and hazardous rocks. To make room for the nearly 50 pounds (22 kilograms) of lunar samples, the crew left all their pairs of boots on the Moon. But don’t worry; they wouldn’t get charged an overweight baggage fee anyway. 

image

What were the first words spoken from the surface of the Moon?

image

That’s somewhat subject to interpretation. Once the Lunar Module’s surface sensor touched the surface, Buzz Aldrin called out "Contact Light” to Mission Control. After the engine shut down, he said “ACA out of detent,” simply meaning that the Eagle’s Attitude Control Assembly, or control stick, was moved from its center position. 

But the first words heard by the entire world after Apollo 11 touched down were delivered by Neil Armstrong: "Houston, Tranquility Base here. The Eagle has landed.” More than six hours later, Armstrong stepped off the Eagle’s footpad and delivered the most famous words ever spoken from the surface of another world: "That's one small step for [a] man, one giant leap for mankind."  And although we have a hard time hearing it in the recording, Armstrong clarified in a post-flight interview that he actually said, “That’s one small step for a man...”

What will the first woman and the next man to go to the Moon say when they first step on its surface?

image

We can’t say for sure what our next moonwalkers will decide to say, but perhaps the better question is: What would be your first words if you were to land on the Moon? There’s no doubt that the astronauts of the Artemis Generation will inspire a new crop of explorers the way Apollo Generation astronauts did 50 years ago.  Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

Did you recently hear that NASA changed the zodiac signs? Nope, we definitely didn’t…

Constellations and the Calendar

Did you recently hear that NASA changed the zodiac signs? Nope, we definitely didn’t…

…Here at NASA, we study astronomy, not astrology. We didn’t change any zodiac signs, we just did the math. Here are the details:

First Things First: Astrology is not Astronomy…

Astronomy is the scientific study of everything in outer space. Astronomers and other scientists know that stars many light-years away have no effect on the ordinary activities of humans on Earth.

Astrology, meanwhile, is something else. It’s the belief that the positions of stars and planets can influence human events. It’s not considered a science.

image

Some curious symbols ring the outside of the Star Finder. These symbols stand for some of the constellations in the zodiac. What is the zodiac and what is special about these constellations?

image

Imagine a straight line drawn from Earth though the sun and out into space way beyond our solar system where the stars are. Then, picture Earth following its orbit around the sun. This imaginary line would rotate, pointing to different stars throughout one complete trip around the sun – or, one year. All the stars that lie close to the imaginary flat disk swept out by this imaginary line are said to be in the zodiac.

image

The constellations in the zodiac are simply the constellations that this imaginary straight line points to in its year-long journey.

What are Constellations?

A constellation is group of stars like a dot-to-dot puzzle. If you join the dots—stars, that is—and use lots of imagination, the picture would look like an object, animal, or person. For example, Orion is a group of stars that the Greeks thought looked like a giant hunter with a sword attached to his belt. Other than making a pattern in Earth’s sky, these stars may not be related at all.

image

Even the closest star is almost unimaginably far away. Because they are so far away, the shapes and positions of the constellations in Earth’s sky change very, very slowly. During one human lifetime, they change hardly at all.

A Long History of Looking to the Stars

The Babylonians lived over 3,000 years ago. They divided the zodiac into 12 equal parts – like cutting a pizza into 12 equal slices. They picked 12 constellations in the zodiac, one for each of the 12 “slices.” So, as Earth orbits the sun, the sun would appear to pass through each of the 12 parts of the zodiac. Since the Babylonians already had a 12-month calendar (based on the phases of the moon), each month got a slice of the zodiac all to itself.

image

But even according to the Babylonians’ own ancient stories, there were 13 constellations in the zodiac. So they picked one, Ophiuchus, to leave out. Even then, some of the chosen 12 didn’t fit neatly into their assigned slice of the pie and crossed over into the next one.

image

When the Babylonians first invented the 12 signs of zodiac, a birthday between about July 23 and August 22 meant being born under the constellation Leo. Now, 3,000 years later, the sky has shifted because Earth’s axis (North Pole) doesn’t point in quite the same direction.

image

The constellations are different sizes and shapes, so the sun spends different lengths of time lined up with each one. The line from Earth through the sun points to Virgo for 45 days, but it points to Scorpius for only 7 days.  To make a tidy match with their 12-month calendar, the Babylonians ignored the fact that the sun actually moves through 13 constellations, not 12. Then they assigned each of those 12 constellations equal amounts of time.

So, we didn’t change any zodiac signs…we just did the math.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

8 years ago

Space Station Science: Biological Research

image

Each month, we highlight a different research topic on the International Space Station. In August, our focus is biological research. Learning how spaceflight affects living organisms will help us understand potential health risks related to humans on long duration missions, including our journey to Mars.

image

Cells, microbes, animals and plants are affected by microgravity, and studying the processes involved in adaptation to spaceflight increases our fundamental understanding of biological processes on Earth. Results on Earth from biological research in space include the development of new medications, improved agriculture, advancements in tissue engineering and regeneration, and more. 

Take a look at a few of the biological research experiments performed on space station:

Biomolecule Sequencer

image

Living organisms contain DNA, and sequencing DNA is a powerful way to understand how they respond to changing environments. The Biomolecule Sequencer experiment hopes to demonstrate (for the first time) that DNA sequencing is feasible in an orbiting spacecraft. Why? A space-based DNA sequencer could identify microbes, diagnose diseases and understand crew member health, and potentially help detect DNA- based life elsewhere in the solar system.

Ant-stronauts

image

Yes, ant-stronauts…as in ants in space. These types of studies provide insights into how ants answer collective search problems. Watching how the colony adapts as a unit in the quest for resources in extreme environments, like space, provides data that can be used to build algorithms with varied applications. Understanding how ants search in different conditions could have applications for robotics.

TAGES

image

The TAGES experiment (Transgenic Arabidopsis Gene Expression System) looks to see how microgravity impacts the growth of plant roots. Fluorescent markers placed on the plant’s genes allow scientists to study root development of Arabidopsis (a cress plant) grown on the space station. Evidence shows that directional light in microgravity skews root growth to the right, rather than straight down from the light source. Root growth patters on station mimic that of plants grown at at 45% degree angle on Earth. Space flight appears to slow the rate of the plant’s early growth as well.

Heart Cells

image

Spaceflight can cause a suite of negative health effects, which become more problematic as crew members stay in orbit for long periods of time. Effects of Microgravity on Stem Cell-Derived Cardiomycytes (Heart Cells) studies the human heart, specifically how heart muscle tissue contracts, grows and changes in microgravity. Understanding how heart muscle cells change in space improves efforts for studying disease, screening drugs and conducting cell replacement therapy for future space missions.

Medaka Fish

image

Chew on these results…Jaw bones of Japanese Medaka fish in microgravity show decreased mineral density and increased volume of osteoclasts, cells that break down bone tissue. Results from this study improve our understanding of the mechanisms behind bone density and organ tissue changes in space.

These experiments, and many others, emphasize the importance of biological research on the space station. Understanding the potential health effects for crew members in microgravity will help us develop preventatives and countermeasures.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago
During A Recent Close Flyby Of The Gas Giant Jupiter, Our Juno Spacecraft Captured This Stunning Series

During a recent close flyby of the gas giant Jupiter, our Juno spacecraft captured this stunning series of images showing swirling cloud patterns on the planet’s south pole. At first glance, the series might appear to be the same image repeated. But closer inspection reveals slight changes, which are most easily noticed by comparing the far-left image with the far-right image.

Directly, the images show Jupiter. But, through slight variations in the images, they indirectly capture the motion of the Juno spacecraft itself, once again swinging around a giant planet hundreds of millions of miles from Earth.

Juno captured this color-enhanced time-lapse sequence of images on Feb. 7 between 10:21 a.m. and 11:01 a.m. EST. At the time, the spacecraft was between 85,292 to 124,856 miles (137,264 to 200,937 kilometers) from the tops of the clouds of the planet with the images centered on latitudes from 84.1 to 75.5 degrees south.

Credit: NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

A Tour of our Moon

Want to go to the Moon? 

Let our Lunar Reconnaissance Orbiter take you there!

image

Our lunar orbiter, also known as LRO, has been collecting data on lunar topography, temperature, resources, solar radiation, and geology since it launched nine years ago. Our latest collection of this data is now in 4K resolution. This updated "Tour of the Moon" takes you on a virtual tour of our nearest neighbor in space, with new science updates from the vastly expanded data trove.

Orientale Basin

image

First stop, Orientale Basin located on the rim of the western nearside. It's about the size of Texas and is the best-preserved impact structure on the Moon. Topography data from LRO combined with gravity measurements from our twin GRAIL spacecraft reveal the structure below the surface and help us understand the geologic consequences of large impacts.

South-Pole and Shackleton Crater

image

Unlike Earth, the Moon's axis is barely tilted relative to the Sun. This means that there are craters at the poles where the sunlight never reaches, called permanently shadowed regions. As a result, the Moon's South Pole has some of the coldest measured places in the solar system. How cold? -410 degrees F.

Because these craters are so cold and dark, water that happens to find its way into them never has the opportunity to evaporate. Several of the instruments on LRO have found evidence of water ice, which you can see in the highlighted spots in this visualization.

South-Pole Aitken Basin

image

South Pole-Aitken Basin is the Moon's largest, deepest and oldest observed impact structure. Its diameter is about 2,200 km or 1,367 miles across and takes up 1/4 of the Moon! If there was a flat, straight road and you were driving 60 mph, it would take you about 22 hours to drive across. And the basin is so deep that nearly two Mount Everests stacked on each other would fit from the bottom of the basin to the rim. South-Pole Aitken Basin is a top choice for a landing site on the far side of the Moon.

Tycho Crater

image

Now let's go to the near side. Tycho Crater is 100 million years young. Yes, that's young in geologic time. The central peak of the impact crater likely formed from material that rebounded back up after being compressed in the impact, almost like a spring. Check out that boulder on top. It looks small in this image, but it could fill a baseball stadium.

Aristarchus Plateau

image

Also prominent on the nearside is the Aristarchus Plateau. It features a crater so bright that you could see it with your naked eye from Earth! The Aristarchus Plateau is particularly interesting to our scientists because it reveals much of the Moon's volcanic history. The region is covered in rocks from volcanic eruptions and the large river-like structure is actually a channel made from a long-ago lava flow.

Apollo 17 Landing Site

A Tour Of Our Moon

As much as we study the Moon looking for sites to visit, we also look back at places we've already been. This is because the new data that LRO is gathering helps us reinterpret the geology of familiar places, giving scientists a better understanding of the sequence of events in early lunar history.

Here, we descend to the Apollo 17 landing site in the Taurus-Littrow valley, which is deeper than the Grand Canyon. The LRO camera is even able to capture a view of the bottom half of the Apollo 17 Lunar Lander, which still sits on the surface, as well as the rover vehicle. These images help preserve our accomplishment of human exploration on the Moon's surface.

North Pole

image

Finally, we reach the North Pole. Like the South Pole, there are areas that are in permanent shadow and others that bask in nearly perpetual light. LRO scientists have taken detailed brightness and terrain measurements of the North Pole in order to model these areas of sunlight and shadow through time.  Sunlit peaks and crater rims here may be ideal locations for generating solar power for future expeditions to the Moon.

LRO was designed as a one-year mission. Now in its ninth year, the spacecraft and the data emphasize the power of long-term data collection. Thanks to its many orbits around the Moon, we have been able to expand on lunar science from the Apollo missions while paving the way for future lunar exploration. And as the mission continues to gather data, it will provide us with many more opportunities to take a tour of our Moon. 

And HERE's the full “Tour of the Moon” video:

We hope you enjoyed the tour. If you'd like to explore the moon further, please visit moon.nasa.gov and moontrek.jpl.nasa.gov.

Make sure to follow @NASAMoon on Twitter for the latest lunar updates and photos.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • briefly-noted
    briefly-noted reblogged this · 1 month ago
  • hjlphotos
    hjlphotos liked this · 2 months ago
  • zerosz
    zerosz liked this · 6 years ago
  • thenewrepublicfederation
    thenewrepublicfederation reblogged this · 7 years ago
  • poroussoul
    poroussoul liked this · 7 years ago
  • acceptableinthe1980s
    acceptableinthe1980s reblogged this · 7 years ago
  • rainy-morning-wood
    rainy-morning-wood liked this · 7 years ago
  • artcat036
    artcat036 liked this · 7 years ago
  • fredrick-smith
    fredrick-smith liked this · 7 years ago
  • stilesisbiles
    stilesisbiles liked this · 7 years ago
  • faevorite
    faevorite liked this · 7 years ago
  • timallenphoto
    timallenphoto liked this · 8 years ago
  • elibassen-blog
    elibassen-blog liked this · 8 years ago
  • footstepsinthesky
    footstepsinthesky liked this · 8 years ago
  • viralmusicworld-blog
    viralmusicworld-blog liked this · 8 years ago
  • tiranosauriosrex
    tiranosauriosrex liked this · 8 years ago
  • diabzie
    diabzie reblogged this · 8 years ago
  • diabzie
    diabzie liked this · 8 years ago
  • artaliciab
    artaliciab liked this · 8 years ago
  • tsuki-nh
    tsuki-nh liked this · 8 years ago
  • pieffe76
    pieffe76 liked this · 8 years ago
  • gigiopix
    gigiopix reblogged this · 8 years ago
  • gigiopix
    gigiopix liked this · 8 years ago
  • jasondmckinney-blog
    jasondmckinney-blog reblogged this · 8 years ago
  • konst65
    konst65 liked this · 9 years ago
  • rjbailey
    rjbailey reblogged this · 9 years ago
  • rjbailey
    rjbailey liked this · 9 years ago
  • thryne
    thryne liked this · 9 years ago
  • oretoanyo-blog
    oretoanyo-blog reblogged this · 9 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags