This month, we are set to launch the latest weather satellite from the National Oceanic and Atmospheric Administration (NOAA). The Joint Polar Satellite System-1, or JPSS-1, satellite will provide essential data for timely and accurate weather forecasts and for tracking environmental events such as forest fires and droughts.
Image Credit: Ball Aerospace
JPSS-1 is the primary satellite launching, but four tiny satellites will also be hitchhiking a ride into Earth orbit. These shoebox-sized satellites (part of our CubeSat Launch Initiative) were developed in partnership with university students and used for education, research and development. Here are 4 reasons why MiRaTA, one of the hitchhikers, is particularly interesting…
Miniaturized Weather Satellite Technology
The Microwave Radiometer Technology Acceleration (MiRaTA) CubeSat is set to orbit the Earth to prove that a small satellite can advance the technology necessary to reduce the cost and size of future weather satellites. At less than 10 pounds, these nanosatellites are faster and more cost-effective to build and launch since they have been constructed by Principal Investigator Kerri Cahoy’s students at MIT Lincoln Laboratory (with lots of help). There’s even a chance it could be put into operation with forecasters.
The Antenna? It’s a Measuring Tape
That long skinny piece coming out of the bottom right side under MiRaTA’s solar panel? That’s a measuring tape. It’s doubling as a communications antenna. MiRaTA will measure temperature, water vapor and cloud ice in Earth’s atmosphere. These measurements are used to track major storms, including hurricanes, as well as everyday weather. If this test flight is successful, the new, smaller technology will likely be incorporated into future weather satellites – part of our national infrastructure.
Tiny Package Packing a Punch MiRaTA will also test a new technique using radio signals received from GPS satellites in a higher orbit. They will be used to measure the temperature of the same volume of atmosphere that the radiometer is viewing. The GPS satellite measurement can then be used for calibrating the radiometer. “In physics class, you learn that a pencil submerged in water looks like it’s broken in half because light bends differently in the water than in the air,” Principal Investigator Kerri Cahoy said. “Radio waves are like light in that they refract when they go through changing densities of air, and we can use the magnitude of the refraction to calculate the temperature of the surrounding atmosphere with near-perfect accuracy and use this to calibrate a radiometer.”
What’s Next?
In the best-case scenario, three weeks after launch MiRaTA will be fully operational, and within three months the team will have obtained enough data to study if this technology concept is working. The big goal for the mission—declaring the technology demonstration a success—would be confirmed a bit farther down the road, at least half a year away, following the data analysis. If MiRaTA’s technology validation is successful, Cahoy said she envisions an eventual constellation of these CubeSats orbiting the entire Earth, taking snapshots of the atmosphere and weather every 15 minutes—frequent enough to track storms, from blizzards to hurricanes, in real time.
Learn more about MiRaTA
The mission is scheduled to launch this month (no sooner than Nov. 14), with JPSS-1 atop a United Launch Alliance (ULA) Delta II rocket lifting off from Space Launch Complex 2 at Vandenberg Air Force Base in California. You’ll be able to watch on NASA TV or at nasa.gov/live.
Watch the launch live HERE on Nov. 14, liftoff is scheduled for Tuesday, 4:47 a.m.!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This winter, our scientists and engineers traveled to the world's northernmost civilian town to launch rockets equipped with cutting-edge scientific instruments.
This is the beginning of a 14-month-long campaign to study a particular region of Earth's magnetic field — which means launching near the poles. What's it like to launch a science rocket in these extreme conditions?
Our planet is protected by a natural magnetic field that deflects most of the particles that flow out from the Sun — the solar wind — away from our atmosphere. But near the north and south poles, two oddities in Earth's magnetic field funnel these solar particles directly into our atmosphere. These regions are the polar cusps, and it turns out they're the ideal spot for studying how our atmosphere interacts with space.
The scientists of the Grand Challenge Initiative — Cusp are using sounding rockets to do their research. Sounding rockets are suborbital rockets that launch to a few hundred miles in altitude, spending a few minutes in space before falling back to Earth. That means sounding rockets can carry sensitive instruments above our atmosphere to study the Sun, other stars and even distant galaxies.
They also fly directly through some of the most interesting regions of Earth's atmosphere, and that's what scientists are taking advantage of for their Grand Challenge experiments.
One of the ideal rocket ranges for cusp science is in Ny-Ålesund, Svalbard, off the coast of Norway and within the Arctic circle. Because of its far northward position, each morning Svalbard passes directly under Earth's magnetic cusp.
But launching in this extreme, remote environment puts another set of challenges on the mission teams. These launches need to happen during the winter, when Svalbard experiences 24/7 darkness because of Earth's axial tilt. The launch teams can go months without seeing the Sun.
Like for all rocket launches, the science teams have to wait for the right weather conditions to launch. Because they're studying upper atmospheric processes, some of these teams also have to wait for other science conditions, like active auroras. Auroras are created when charged particles collide with Earth’s atmosphere — often triggered by solar storms or changes in the solar wind — and they're related to many of the upper-atmospheric processes that scientists want to study near the magnetic cusp.
But even before launch, the extreme conditions make launching rockets a tricky business — it's so cold that the rockets must be encased in styrofoam before launch to protect them from the low temperatures and potential precipitation.
When all is finally ready, an alarm sounds throughout the town of Ny-Ålesund to alert residents to the impending launch. And then it's up, up and away! This photo shows the launch of the twin VISIONS-2 sounding rockets on Dec. 7, 2018 from Ny-Ålesund.
These rockets are designed to break up during flight — so after launch comes clean-up. The launch teams track where debris lands so that they can retrieve the pieces later.
The next launch of the Grand Challenge Initiative is AZURE, launching from Andøya Space Center in Norway in March 2019.
For even more about what it's like to launch science rockets in extreme conditions, check out one scientist's notes from the field: https://go.nasa.gov/2QzyjR4
For updates on the Grand Challenge Initiative and other sounding rocket flights, visit nasa.gov/soundingrockets or follow along with NASA Wallops and NASA heliophysics on Twitter and Facebook.
@NASA_Wallops | NASA’s Wallops Flight Facility | @NASASun | NASA Sun Science
On Nov. 16, 2022, the Artemis I mission officially began with the launch of the Orion spacecraft atop the Space Launch System rocket. The rocket and spacecraft lifted off from historic Launch Complex 39B at NASA’s Kennedy Space Center in Florida.
Now, the Orion spacecraft is about halfway through its journey around the Moon. Although the spacecraft is uncrewed, the Artemis I mission prepares us for future missions with astronauts, starting with Artemis II.
Stay up-to-date with the mission with the latest full-resolution images, mission updates, on-demand and live video.
Find full-resolution images from the Orion spacecraft as they are released here.
Launch imagery can be found here. When Orion splashes down in the Pacific Ocean on Dec. 11, the images will be available here, as well!
This playlist contains informational videos, as well as upcoming and past live events, about Artemis I.
You can watch a livestream of the Artemis I mission here. (Just a note: the livestream may cut off during moments when the Orion team needs higher bandwidth for activities.)
Keep yourself updated on the upcoming broadcasts of Artemis milestones with the NASA TV schedule.
Our Artemis I Tracker uses live telemetry data streamed directly from Mission Control Center in Houston to show Orion position, attitude, solar array positions, and thruster firings throughout the mission.
“Eyes on the Solar System” shows Orion's position along the Artemis I trajectory and in relation to other NASA spacecraft and objects in the solar system.
“DSN Now” shows which antenna on Earth’s Deep Space Network is communicating with Orion.
Read up on where Orion is and what’s next in the Artemis I mission with the Mission Blog.
Thank you so much for following with us on this historic mission. Go Artemis!
Make sure to follow us on Tumblr for your regular dose of space!
A new NASA study provides space-based evidence that Earth’s tropical regions were the cause of the largest annual increases in atmospheric carbon dioxide concentration seen in at least 2,000 years.
What was the cause of this?
Scientists suspect that the 2015-2016 El Niño – one of the largest on record – was responsible. El Niño is a cyclical warming pattern of ocean circulation in the Pacific Ocean that affects weather all over the world. Before OCO-2, we didn’t have enough data to understand exactly how El Nino played a part.
Analyzing the first 28 months of data from our Orbiting Carbon Observatory (OCO-2) satellite, researchers conclude that impacts of El Niño-related heat and drought occurring in the tropical regions of South America, Africa and Indonesia were responsible for the record spike in global carbon dioxide.
These three tropical regions released 2.5 gigatons more carbon into the atmosphere than they did in 2011. This extra carbon dioxide explains the difference in atmospheric carbon dioxide growth rates between 2011 and the peak years of 2015-16.
In 2015 and 2016, OCO-2 recorded atmospheric carbon dioxide increases that were 50% larger than the average increase seen in recent years preceding these observations.
In eastern and southern tropical South America, including the Amazon rainforest, severe drought spurred by El Niño made 2015 the driest year in the past 30 years. Temperatures were also higher than normal. These drier and hotter conditions stressed vegetation and reduced photosynthesis, meaning trees and plants absorbed less carbon from the atmosphere. The effect was to increase the net amount of carbon released into the atmosphere.
In contrast, rainfall in tropical Africa was at normal levels, but ecosystems endured hotter-than-normal temperatures. Dead trees and plants decomposed more, resulting in more carbon being released into the atmosphere.
Meanwhile, tropical Asia had the second-driest year in the past 30 years. Its increased carbon release, primarily from Indonesia, was mainly due to increased peat and forest fires - also measured by satellites.
We knew El Niños were one factor in these variations, but until now we didn’t understand, at the scale of these regions, what the most important processes were. OCO-2’s geographic coverage and data density are allowing us to study each region separately.
Why does the amount of carbon dioxide in our atmosphere matter?
The concentration of carbon dioxide in Earth’s atmosphere is constantly changing. It changes from season to season as plants grow and die, with higher concentrations in the winter and lower amounts in the summer. Annually averaged atmospheric carbon dioxide concentrations have generally increased year over year since the 1800s – the start of the widespread Industrial Revolution. Before then, Earth’s atmosphere naturally contained about 595 gigatons of carbon in the form of carbon dioxide. Currently, that number is 850 gigatons.
Carbon dioxide is a greenhouse gas, which means that it can trap heat. Since greenhouse gas is the principal human-produced driver of climate change, better understanding how it moves through the Earth system at regional scales and how it changes over time are important aspects to monitor.
Get more information about these data HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
2nd Hottest
2019 was the second-hottest year since modern record keeping began. NASA and the National Oceanic and Atmospheric Administration work together to track temperatures around the world and study how they change from year to year. For decades, the overall global temperature has been increasing.
Over the long term, world temperatures are warming, but each individual year is affected by things like El Niño ocean patterns and specific weather events.
The global temperature is an average, so not every place on Earth had its second-warmest year. For instance, the continental U.S. had a cold October, but Alaska set records for high temperatures. The U.S. was still warmer than average over the year.
Globally, Earth’s temperature in 2019 was more than 2°F warmer than the late 19th Century.
140 years
Since 1880, we can put together a consistent record of temperatures around the planet and see that it was much colder in the late-19th century. Before 1880, uncertainties in tracking global temperatures are larger. Temperatures have increased even faster since the 1970s, the result of increasing greenhouse gases in the atmosphere.
10 years
The last decade was the hottest decade on record.
20,000 Individual Observations
Scientists from NASA use data from more than 20,000 weather stations and Antarctic research stations, together with ship- and buoy-based observations of sea surface temperatures to track global temperatures.
90%
As Earth warms, polar ice is melting at an accelerated rate. The Arctic is warming even faster than the rest of the planet. This northern summer, 90% of the surface of the Greenland Ice Sheet melted.
8 inches
Melting ice raises sea levels around the world. While ice melts into the ocean, heat also causes the water to expand. Since 1880, sea levels globally have risen approximately 8 inches, although regional rates of sea level rise can be even higher.
100+ fires
As temperatures increase, fire seasons burn hotter and longer. During June and July 2019, more than 100 long-lived and intense wildfires burned north of the Arctic circle. This year also saw intense, record-setting fires in Australia.
46% increase in CO2 levels
This decades-long warming trend is the result of increasing greenhouse gases in the atmosphere, released by human activities.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
It’s been a long, technical journey for the seven teams competing this week in Level 2 of our Sample Return Robot Challenge. Over the past five years, more than 50 teams have attempted the $1.5 million competition, which is looking to develop autonomous capabilities in robotics. Basically, we want robots that can think and act on their own, so they can travel to far off places – like Mars – and we can rely on them to work on their own when a time delay or unknown conditions could be factors.
This challenge has two levels, both requiring robots to navigate without human control and Earth-based tools (like GPS or magnetic compassing). The robot has to find samples, pick them up and deliver them to home base. Each of the final seven teams succeeded at Level 1, where they had to find one sample, during previous competition years. Now, they have a shot at the much more difficult Level 2, where they have a two-hour window to locate up to 10 samples of varying point values, but they don’t know where to look or what exactly they’re looking for.
Get to know the final seven, and be sure to cheer them on as we live-stream the competition all day Sept. 4 and 5.
West Virginia University Mountaineers Hailing from: Morgantown, West Virginia # of Team Members: 12
Behind the Name: In West Virginia, we call ourselves mountaineers. We like to explore unknown places and be inspired by nature.
Motivation: To challenge ourselves. Through this venture, we are also hoping to create research and career opportunities for everyone on the team.
Strategy: Keeping things simple. Through participating in SRR challenge during the last three years, we have gone a long way in streamlining our system.
Obstacles: One of the biggest challenges was finding and nurturing the talent of individual team members and coordinating the team in making real progress on time.
Prize Plans: We donated 50 percent of our 2015 Level 2 prize money to create an undergraduate “Robotics Achievement Fellowship” at WVU. The rest of the funding was allocated to support team member professional development, such as traveling to conferences. A similar model will be used if we win in 2016.
Extra Credit: We did an Easter egg hunt with our robot, Cataglyphis (named after a desert ant with extraordinary navigation capabilities), last year.
Survey Hailing from: Los Angeles, California # of Team Members: Jascha Little
Behind the Name: It's short, simple, and what the robot spends a lot of its time doing.
Team History: We work together, and we all thought the challenge sounded like an excellent way to solve the problem of what to do with all our free time.
Motivation: We are all engineers and software developers that already work on robotics projects. Reading too much sci-fi when we were kids probably got us to this point.
Strategy: We are trying to solve the search-and-return problem primarily with computer vision. This is mostly to reduce cost. Our budget can't handle high quality IMUs or LIDAR.
Prize Plans: Probably build more robots.
Extra Credit: Favorite pop culture robot is Bender (Futurama). Alcoholic robots are the best.
Alabama Astrobotics (The University of Alabama) Hailing from: Tuscaloosa, Alabama # of Team Members: 33
Behind the Name: “Alabama Astrobotics” was chosen to reflect our school affiliation and our mission to design robotics for various space applications.
Team History: Alabama Astrobotics has been involved with other NASA robotics competitions in the past. So, the team is accustomed to the competition environment.
Motivation: We are pleased to have advanced to Level 2 in our first year in the competition (the first team to do so), but we are also not satisfied with just advancing. Our goal is to try to solve Level 2.
Strategy: Our strategy is similar to that used in Level 1. Our Level 1 approach was chosen so that it would translate to Level 2 as well, thus requiring fewer customizations from Level 1 to Level 2.
Obstacles: As a university team, the biggest challenge was not having all our team members available to work on the robot during the time since Level 1 completed in June. Most of my team members have either graduated or have summer internships, which took them away from campus after Level 1. Thus, we didn’t have the manpower to address the additional Level 2 technical challenges.
Prize Plans: Any prize money would be donated to the University of Alabama College of Engineering.
Extra Credit: Alabama Astrobotics also competes in the annual NASA Robotic Mining Competition held at the Kennedy Space Center each May. We have been fortunate enough to win that competition three times in its seven year history, and we are the only team to win it more than once.
MAXed-Out Hailing From: Santa Clara, California # of Team Members: 4
Behind the Name: Several reasons: Team leader is Greg Maxwell, and his school nick name was Max. Our robot’s name is Max, which is one of the most common name for a dog, and it is a retriever. Our efforts on this has been too the max…. i.e. MAXed-Out. Our technology requirements have been pushed to their limits - Maxed-Out.
Team History: Greg Maxwell started a Meet-up “Silicon-Valley Robot Operating System” SV-ROS that was to help teach hobbyists how to use ROS on their robots. We needed a project to help implement and make real what we were teaching. This is the third contest we have participated in.
Motivation: There is still such a long way to go to make robots practical. Every little bit we can contribute makes them a little bit better and smarter. Strategy: Level 1 was a test, as a minimum viable product to prove the tech worked. For Level 2, we had to test and add obstacle avoidance to be able to cover the larger area with trees and slopes, plus add internal guidance to allow for Max to be out of the home base camera tracking system.
Obstacles: Lack of a cost effective robot platform that met all the requirements; we had to build our own. Also time and money. The two months (between Level 1 and 2) went really fast, and we had to abandon lots of cool ideas and focus on the basics.
Prize Plans: Not sure, but pay off the credit cards comes to mind. We might open-source the platform since it works pretty well. Or we will see if it works as expected. We may also take a break / vacation away from robots for a while.
Extra Credit: My nephew, Max Hieges, did our logo, based on the 1960-era Rat Fink sticker.
Mind & Iron Hailing From: Seattle, Washington # of Team Members: 5
Behind the Name: It was the original title for Isaac Asimov’s “I Robot,” and we thought it was a good combination of what a robot actually is – mechanical and brains.
Team History: Three of us were WPI undergrads and met at school; two of us did our master’s degrees at the University of Washington, where we met another member, and then another of us brought on a family member.
Motivation: We saw that there was an opportunity to compete in a challenge that seemed like there was a reasonable solution that we could tackle with a limited budget. We saw three years of competition and thought that we had some better ideas and a pretty good shot at it. Strategy: The samples and the terrain are much more complex in Level 2, and we have to be more careful about our navigation. We are using the same tools, just expanding their capability and scope.
Obstacles: The team being spread over three different time zones has been the biggest challenge. We are all doing this in our free time after work. The internet has been really handy to get things done.
Prize Plans: Probably invest in more robot stuff! And look for other cool projects we can work on, whether it’s another NASA challenge or other projects.
Extra Credit: We are hoping to collaborate with NASA on the professional side with surgical robots to exoskeletons. Challenge-related, our robot is mostly made of plywood – it is a composite fiber material that works well for fast development using cheap materials.
Sirius Hailing From: South Hadley, Massachusetts # of Team Members: 4
Team History: We are a family. Our kids are both robot builders who work for Boston Dynamics, and they have a lot of robot expertise. Both of our kids are robotics engineers, and my wife is intrinsically brilliant, so the combination of that makes for a good team.
Motivation: Because it’s a really hard challenge. It’s one thing to drive a robot with a remote control; it’s another to do the whole thing autonomously. If you make a single change in a robot, it could throw everything off. You have to think through every step for the robot. On a basic level, to learn more about robotics and to win the prize. Strategy: Very similar to Level 1. We approached Level 1 knowing Level 2 was there, so our strategy was no different.
Obstacles: It is very difficult to do object recognition under unpredictable conditions – sun, clouds, weather, sample location. The biggest challenge was trying to recognize known and unknown objects under such a wide variety of environmental possibilities. And the terrain is very different – you don’t know what you’re going to find out there.
Prize Plans: We haven’t really thought about it, but we will give some away, and we’ll invest the rest in our robotics company.
Extra Credit: The first robot we had was called Robo-Dad. Dan was training to be an astronaut in the 1990s, so we built a toy remote-controlled truck that Dan - in Texas - could control via the internet in the house. Robo-Dad had a camera that Dan could see the house with. It had two-way communication; it was a little before it’s time – the internet was very slow.
Team AL Hailing From: Ontario, Canada # of Team Members: 1
Team History: I was looking for competitions that were open, and my dad had followed the Centennial Challenges for a while, so he alerted me to this one. I was already doing rover projects, and it was appropriate and awesome and interesting. I felt like I could do it as a team of one.
Motivation: Difficult challenges. I’m definitely inspired seeing really cool robots that other people are building. New emerging tech really motives me to create new things.
Strategy: I showed up with another robot to Level 2. I built three, but ran with only two. It did make it more complicated, but the strategy was to send them to different areas and have them be able to communicate with each other. Everything physically was the same from Level 1. The idea is that they would all go out with different missions and I would maximize field coverage.
Obstacles: Time. More time would always be nice. Being able to make something like this happen under a timeline is really difficult. I feel like I accomplished a lot for a year. Also, manpower – being a team of 1, I have to do all of the paperwork and other related stuff, but also carry the hardware and do the programming. You have to multitask a lot.
Prize Plans: I’d like to start a robotics company, and be able to expand some of the things I’ve been working on associated with technology and maker education.
Extra Credit: My story is not linear. A lot of people are surprised to hear that my background is in molecular biology and research. I once lived in a tent in Madagascar for a few months to do a biodiversity study, and I have multiple publications from that side of my life. I am in a whole different place now.
The competition is one of many run by our Centennial Challenges program, which looks to the public – citizen inventors, academics, makers, artists, YOU – to help us advance technology and bring a different perspective to obstacles that gets us outside of our traditional solving community. See what else we’re working on here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What is a typical day in the international space station like?? I cant help but express my admiration for you.
Today in the NASA Village… That’s my Ride: Robots and Rovers.
Future cars could very likely resemble the rovers currently in NASA’s parking lot. The newest rovers have gotten rid of the more traditional ideas and come up with some pretty amazing machinery. Amy Fritz is a mechanical engineer that works with these rovers. When I asked Amy how she found herself in such a cool job she said, “My parents were very big influences on my career choices. I can remember when I was a little girl and my dad and I would build Legos together, or we would take the remote apart to see how it worked. That really inspired me to want to pursue a career in engineering. I then later developed an affinity for cars so, of course, the only rational thing to do was to go after a degree in mechanical engineering.”
The wheels of this rover move independent of each other, regardless of which direction the vehicle points. To parallel park one would just pull up to the spot and turn the wheels to scoot in. I am not sure how much parallel parking is required on other planets, but it could help us move very close to an object for observation out the “front” of the vehicle, while moving laterally.
The bubble in the front of the glass is actually a magnifying glass so astronauts can better see the minerals on other planets without having to leave the rover!
These rovers also allow one to change drivers, without anyone having to change seats!
Here is a video of the Modular Robotic Vehicle (MRV) in action.
Rovers have been used on the surface of the moon in the past. Check out the Apollo 16 rover as astronauts John Young and Charlie Duke take a spin.
The rovers can also be hybrids of rovers and humanoid robots. For instance, the robot could serve as a scout, providing advanced maps and soil samples, and beginning work on the infrastructure that astronauts would need. The crew that follows would then be much more prepared for the exploration ahead. Amy describes her working life as very…interesting. “One minute you’re working on a design, sitting at your desk and the next minute you’re being called into the high bay to replace a suspension arm on one of the rovers.”
The first Robonaut began in 1997. The goal was to build a humanoid robot that could assist us with tasks where it might be useful to have another pair of hands. This type of robot could also perform jobs that where it was too dangerous to risk human life or even too time-consuming and mundane.
Robonaut was revealed in 2010 as the most advanced humanoid robot of its time. It made its way to the International Space Station on-board the space shuttle Discovery. It was the first humanoid-robot in space and it rode on the final shuttle mission. This technology is still developing today.
Meet the future of Robonaut on station:
This technology could someday service communications, weather and reconnaissance satellites, which have direct benefits on Earth. The next step for robotic capabilities is to explore near-Earth objects, including asteroids and comets, and eventually Mars. Something Amy mentioned that I found interesting was her greatest hurdle was asking for help. “I know that might sound silly, but I’m used to always being independent and trying to figure things out for myself.“ This is one of the things I have discovered about myself too. The kind of drive that Amy has is special, that desire to figure things out for yourself. But, remember, having the humility to ask questions and ask for help can lead you even further!
Next time on the NASA Village… The Lady in Charge.
Do you want more stories? Find our NASA Villagers here!
As the sun rises, our Global Hawk is prepped for flight at Armstrong Flight Research Center on Edwards Air Force Base in California. Pre-dawn flights of our Global Hawk help beat hot summer days in Southern California. Electronic components, which are cooled by fuel onboard, only function within temperature limitations, so testing usually ceases by midday, as fuel and onboard computers become too hot to operate. The Global Hawk unmanned aircraft is used for high-altitude, long-duration Earth science missions. The ability of the Global Hawk to autonomously fly long distances, remain aloft for extended periods of time and carry large payloads brings a new capability to the science community for measuring, monitoring and observing remote locations of Earth not feasible or practical with piloted aircraft, most other robotic or remotely operated aircraft, or space satellites.
For more information, visit HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We often imagine galaxies as having massive spiral arms or thick disks of dust, but not all galaxies are oriented face-on as viewed from Earth. From our viewpoint, our Spitzer Space Telescope can detect this galaxy's infrared light but can only view the entire galaxy on its side where we can't see its spiral features. We know it has a diameter of roughly 60,000 light-years — a little more than half the diameter of our own Milky Way galaxy.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We've created a virtual Mars photo booth, 3D rover experience and more for you to put your own creative touch on wishing Perseverance well for her launch to the Red Planet! Check it out, HERE.
Don’t forget to mark the July 30 launch date on your calendars!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts