After five years traveling through space to its destination, our Juno spacecraft will arrive in orbit around Jupiter today, July 4, 2016. This video shows a peek of what the spacecraft saw as it closed in on its destination before instruments were turned off. Watch our noon EDT Pre-Orbit Insertion Briefing on NASA Television for more: https://www.nasa.gov/nasatv or http://youtube.com/nasajpl/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We know storms from the sun can naturally change the space environment around Earth, which can have an impact on satellites and power grids.
Scientists now know that Cold War era nuclear tests in the 1950s caused similar effects.
Particles around Earth are organized into layers known as radiation belts. These 1950s tests created a temporary extra layer of radiation closer to Earth.
The effects of this could be seen all around the world. Aurora appeared at the equator instead of the poles, utility grids in Hawaii were strained, and in some cases, satellites above test sites were affected.
Some types of communications signals can also affect Earth’s radiation belts.
Very low-frequency waves, or VLFs, are used for radio communications. They are often used to communicate with submarines, because these waves can penetrate deep into the ocean.
The waves can also travel far into the space environment around Earth. When these waves are in space, they affect how high-energy particles move, creating a barrier against natural radiation.
The outer edge of this radio-wave barrier corresponds almost exactly the inner edge of Earth’s natural radiation belts – meaning it could be human activity that at least partly shapes this natural radiation around Earth.
For more NASA sun and space research, visit www.nasa.gov/sunearth and follow us on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
There was a time when even NASA didn’t know if humans could eat in the microgravity environment of space. Thankfully for the future of long-term crewed missions, John Glenn proved that it was indeed possible when he ate applesauce from an aluminum tube while orbiting the Earth in 1962.
Since then, the research conducted at our Space Food Systems Laboratory at Johnson Space Center has resulted in improved taste, variety and packaging of foods intended for space travel. Current-day astronauts are now given a standard menu of over 200 approved food and drink items months before launch, allowing them to plan their daily meals far in advance.
So, with such a variety of foods to choose from, what does the typical astronaut eat in a day? Here is an example from the International Space Station standard menu:
Sounds tasty, right?
However, these are only suggestions for astronauts, so they still have some choice over what they ultimately eat. Many astronauts, including Tim Kopra, combine different ingredients for meals.
Others plan to eat special foods for the holidays. Astronauts Scott Kelly and Kjell Lindgren did just that on Thanksgiving last year when they ate smoked turkey, candied yams, corn and potatoes au gratin.
Another key factor that influences what astronauts eat is the availability of fresh fruits and vegetables, which are delivered via resupply spacecrafts. When these foods arrive to the space station, they must be eaten quickly before they spoil. Astronaut Tim Peake doesn’t seem to mind.
Nutrition is important to help counteract some of the effects spaceflight have on the body, such as bone and muscle loss, cardiovascular degradation, impairment of immune function, neurovestibular changes and vision changes.
“Nutrition is vital to the mission,” Scott M. Smith, Ph.D., manager for NASA’s Nutritional Biochemistry Lab said. “Without proper nutrition for the astronauts, the mission will fail. It’s that simple.”
We work hard to help astronauts feel less homesick by providing them with food that not only reminds them of life back on Earth, but is also nutritious and healthy.
Here are some unusual space food inventions that are no longer in use:
Gelatin-coated sandwich and cookie cubes
Compressed bacon squares
Freeze dried ice cream
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
It’s Back to the Future Day, the date in the second film that Marty and Doc traveled to in the future. When they arrived in 2015, it looked much different than today’s reality. Although we may not have self-drying jackets or flying cars, we do have some amazing spacecraft and technologies that were not around back when the film was made.
For example, in 1985 we did not have the capability to capture an image like this of our Earth. This full-Earth view captured Monday (10/19/15) by our camera on the Deep Space Climate Observatory, or DSCOVER, was not previously possible. The DSCOVR mission captures a daily sequence of images that show the Earth as it rotates, revealing the whole globe over the course of a day. These images will allow scientists to study daily variations over the entire globe in such features as vegetation, ozone, aerosols and cloud height and reflectivity.
So, we might not be cruising down the street on hover boards, but the movies didn’t get it all wrong in terms of how advanced we’d be in 2015.
When you were a kid, what technologies did you dream we’d have in the future that we may or may not have today? Here’s what two astronauts said:
1. “There will be an orbiting laboratory where astronauts from around the world will live and work together.”
When Back to the Future II was set, the International Space Station didn’t exist yet. The first piece of the space station was launched in 1998, and the first crew arrived in 2000. Since November 2000, the station has been continuously occupied by humans.
2. "We will find planets orbiting in the habitable zone of a star, and possibly suited for life."
The first exoplanet, or planet orbiting around a star, was found in 1995. Since then, we’ve discovered around a dozen habitable zone planets in the Earth-size range. While we aren’t able to zoom in to these planets that are light-years away, we’re still closer to finding another Earth-like planet in 2015 than we were in 1985.
3. “Mars will become more populated.”
No, not by humans...yet. But, since the release of Back to the Future II, Mars has become a bit more populated with rovers and orbiters. These scientific spacecraft have played an important role in learning about the Red Planet. We currently have six missions at Mars. With the most recent news of liquid water on the surface of Mars, we can look forward to future missions returning even more data and images. The historical log of all Mars missions, both domestic and international can be found HERE.
4. “We will launch a telescope into orbit that’s capable of looking at locations more than 13.4 billion light years from Earth.”
When Back to the Future II was released, our Hubble Space Telescope had not yet launched into orbit -- something that wouldn’t happen until April 1990. Since then, Hubble has made more than 1.2 million observations, and has traveled more than 3 billion miles along a circular low Earth orbit. For updates on Hubble’s findings, check HERE.
For more information about the technology that we’re developing at NASA, visit: http://www.nasa.gov/topics/technology
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Location: In the constellation Ursa Major
Type: Flocculent spiral galaxy
Discovered by: William Herschel
NGC 2841 is a beautiful example of a flocculent spiral galaxy – a type with discontinuous, featherlike, and patchy arms. A bright cusp of starlight distinguishes the galaxy's center from the dust lanes that outline the group of almost white middle-aged stars. The far younger blue stars trace the spiral arms.
Find out more information about NGC 2841 here.
Right now, the Hubble Space Telescope is exploring #GalaxiesGalore! Find more galaxy content and spectacular new images by following along on Hubble’s Twitter, Facebook, and Instagram.
Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration; Acknowledgment: M. Crockett and S. Kaviraj (Oxford University, UK), R. O'Connell (University of Virginia), B. Whitmore (STScI), and the WFC3 Scientific Oversight Committee
What's next for NASA? In 2019, we’re once again preparing for human missions to the Moon. We're keeping the promise by developing new systems and spacecraft, making innovations in flight and technology, living and doing science on the International Space Station, and delivering images and discoveries from our home planet, our solar system and beyond.
Check out What’s Next for NASA: https://www.nasa.gov/next
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Do you ever feel despair at work just because of your colour? Are you constantly under pressure to prove your worth? And do you feel like a brand endorsement of the organisation you work for when they say "first African American space station crew member"? I understand it could also be a matter of pride for you. Why should origins be used as a leverage for the image of the company? In fact, why should it matter at all? I apologise if these questions are inappropriate. I'm not yet an adult.
Since I have no problems with who I am, I never feel despaired. If other people have a problem, then that’s their problem. I will never take on anyone else’s problem. I do the same work as my colleagues, and I don’t accept less.
An eclipse occurs when the Moon temporarily blocks the light from the Sun. Within the narrow, 60- to 70-mile-wide band stretching from Oregon to South Carolina called the path of totality, the Moon completely blocked out the Sun’s face; elsewhere in North America, the Moon covered only a part of the star, leaving a crescent-shaped Sun visible in the sky.
During this exciting event, we were collecting your images and reactions online.
This composite image, made from 4 frames, shows the International Space Station, with a crew of six onboard, as it transits the Sun at roughly five miles per second during a partial solar eclipse from, Northern Cascades National Park in Washington. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli.
Credit: NASA/Bill Ingalls
The Bailey's Beads effect is seen as the moon makes its final move over the sun during the total solar eclipse on Monday, August 21, 2017 above Madras, Oregon.
Credit: NASA/Aubrey Gemignani
This image from one of our Twitter followers shows the eclipse through tree leaves as crescent shaped shadows from Seattle, WA.
Credit: Logan Johnson
“The eclipse in the palm of my hand”. The eclipse is seen here through an indirect method, known as a pinhole projector, by one of our followers on social media from Arlington, TX.
Credit: Mark Schnyder
Through the lens on a pair of solar filter glasses, a social media follower captures the partial eclipse from Norridgewock, ME.
Credit: Mikayla Chase
While most of us watched the eclipse from Earth, six humans had the opportunity to view the event from 250 miles above on the International Space Station. European Space Agency (ESA) astronaut Paolo Nespoli captured this image of the Moon’s shadow crossing America.
Credit: Paolo Nespoli
This composite image shows the progression of a partial solar eclipse over Ross Lake, in Northern Cascades National Park, Washington. The beautiful series of the partially eclipsed sun shows the full spectrum of the event.
Credit: NASA/Bill Ingalls
In this video captured at 1,500 frames per second with a high-speed camera, the International Space Station, with a crew of six onboard, is seen in silhouette as it transits the sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming.
Credit: NASA/Joel Kowsky
To see more images from our NASA photographers, visit: https://www.flickr.com/photos/nasahqphoto/albums/72157685363271303
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today, the National Science Foundation (NSF) announced the detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO), a pair of ground-based observatories. But...what are gravitational waves? Let us explain:
Gravitational waves are disturbances in space-time, the very fabric of the universe, that travel at the speed of light. The waves are emitted by any mass that is changing speed or direction. The simplest example is a binary system, where a pair of stars or compact objects (like black holes) orbit their common center of mass.
We can think of gravitational effects as curvatures in space-time. Earth’s gravity is constant and produces a static curve in space-time. A gravitational wave is a curvature that moves through space-time much like a water wave moves across the surface of a lake. It is generated only when masses are speeding up, slowing down or changing direction.
Did you know Earth also gives off gravitational waves? Earth orbits the sun, which means its direction is always changing, so it does generate gravitational waves, although extremely weak and faint.
What do we learn from these waves?
Observing gravitational waves would be a huge step forward in our understanding of the evolution of the universe, and how large-scale structures, like galaxies and galaxy clusters, are formed.
Gravitational waves can travel across the universe without being impeded by intervening dust and gas. These waves could also provide information about massive objects, such as black holes, that do not themselves emit light and would be undetectable with traditional telescopes.
Just as we need both ground-based and space-based optical telescopes, we need both kinds of gravitational wave observatories to study different wavelengths. Each type complements the other.
Ground-based: For optical telescopes, Earth’s atmosphere prevents some wavelengths from reaching the ground and distorts the light that does.
Space-based: Telescopes in space have a clear, steady view. That said, telescopes on the ground can be much larger than anything ever launched into space, so they can capture more light from faint objects.
How does this relate to Einstein’s theory of relativity?
The direct detection of gravitational waves is the last major prediction of Einstein’s theory to be proven. Direct detection of these waves will allow scientists to test specific predictions of the theory under conditions that have not been observed to date, such as in very strong gravitational fields.
In everyday language, “theory” means something different than it does to scientists. For scientists, the word refers to a system of ideas that explains observations and experimental results through independent general principles. Isaac Newton's theory of gravity has limitations we can measure by, say, long-term observations of the motion of the planet Mercury. Einstein's relativity theory explains these and other measurements. We recognize that Newton's theory is incomplete when we make sufficiently sensitive measurements. This is likely also true for relativity, and gravitational waves may help us understand where it becomes incomplete.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Luke Delaney, born in Miami and a graduate of the University of North Florida, was a test pilot for the Marine Corps before applying to become a NASA astronaut. He loves nature and spending time outdoors with his family. https://go.nasa.gov/3uNL8xn
Make sure to follow us on Tumblr for your regular dose of space!
It’s time to get space-crafty! (Get it?) We’re getting ready to launch Landsat 9 into space this fall, and we want to know, how does Landsat inspire you?
For nearly 50 years, Landsat satellites have been collecting important data and taking beautiful images of Earth, as a partnership between NASA and the U.S. Geological Survey. Scientists and policy makers alike use this data to understand climate change, deforestation, the growth of cities, and so much more.
In celebration of the Landsat 9 launch in September, we are calling all crafters to create space-crafts inspired by your favorite Landsat image! From watercolor paintings to needlework to frosted cakes, let your creativity flow and show us how you see Landsat images.
For a little inspiration, here are some #LandsatCraft examples from some of the people who work with Landsat:
“Looking through the Visible Earth Landsat gallery for inspiration, I saw the Landsat Image Mosaic of Antarctica (LIMA) and knew immediately what I had to do -- recreate it in a mosaic of my own. LIMA is a composite of more than 1,000 cloud-free Landsat 7 images of Antarctica, and when it was released in 2007 it was our first high resolution, true-color look at the icy continent.” – Kate Ramsayer, NASA Landsat Communications Coordinator
“I love embroidering satellite imagery and NASA data. For Landsat, I wanted something with lots of straight lines -- much easier to stitch! -- and crop fields like these fit the bill. It’s amazing how clearly we can see the influence of human activities in satellite imagery like this. It’s a constant reminder of the effect we have on our home planet.” – Katy Mersmann, Earth Science Social Media Lead
“We didn’t have the discipline or the organizational skills to do any of the really, really fancy images, like Lena Delta, so we chose Garden City, Kansas in 1972. We added a model of Landsat 1, too.” – Ryan Fitzgibbons, Earth Science Producer, and Charles Fitzgibbons, Age 8
"I was inspired by this Landsat image which demonstrates how we can use satellite imagery to remotely monitor cover crop performance, a sustainable farming practice that promotes soil health. Since I began working with NASA Harvest, NASA's Food Security and Agriculture Program, I've come to understand the critical importance of conservation agriculture and resilient farmlands in support of a food secure future for all, especially in the face of a changing climate." – Mary Mitkish, NASA Harvest Communications Lead
“I chose particular ingredients that represent the Landsat qualities that we celebrate:
The base spirit is gin because Landsat data is clean and precise. Vermouth represents our foreign collaborators. Using both lemon and lime juices signifies the diverse uses of the data. The ginger is for the land we study. The apple, well, because it’s American. The club soda makes it a long drink, for the long data record.” – Matthew Radcliff, NASA Landsat Producer
“Last year for the 50th Earth Day, I created this poster, inspired by our views of river deltas -- many captured by Landsat satellites -- which are particularly beautiful and evocative of water coursing through our land like a circulation system of nature. In 2000, Landsat 7 took one of my favorite images of the Lena Delta, which is the basis for this art.” – Jenny Mottar, Art Director for NASA Science
Are you feeling inspired to create yet? We’re so excited to see your #LandsatCraft projects! Follow NASA Earth on Twitter, Facebook, and Instagram to see if your art is shared!
Make sure to follow us on Tumblr for your regular dose of space!
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts