November 11 each year is a day we honor those who have served in our nation’s armed forces.
Discover how we have close ties to the military, even to this day, and see who has traded in their camouflage uniform for an astronaut flight suit.
There have been veterans working for us since the beginning, even when it was still called the National Advisory Committee for Aeronautics (NACA).
Additionally, there are several active duty military members working at NASA facilities through special government programs.
Today, there are more than 1500 veterans currently employed with us. Their experiences in the military make their expertise invaluable around the agency. We value the unique leadership style they bring to the work place. Above and below are some astronaut veterans.
A Partnership for the Space Age
Since the early days of NASA, we’ve partnered with all branches of the military. We still work closely with the military today and rely on the expertise of our service members to support our missions both while in active duty and in the civilian workforce. Here are some examples of this close partnership:
The Marines helped with recovery efforts of Astronaut Alan Shepard at the end of his sub-orbital flight on May 5, 1961...a task performed across several of our missions.
Today, the Navy helps us recover spacecraft, just like the Orion space capsule...which will one day carry astronauts into deep space and eventually on our journey to Mars.
. . .and the Air Force has traditionally and continues to help us transport sensitive and critical space hardware around the globe.
The Coast Guard has even helped us access remote locations to collect oceanographic data as part of our efforts to study and learn more about the Earth.
We’ve partnered with the Army to use their unique capabilities at the Yuma Proving Ground to test the entry, descent and landing of our spacecraft systems.
To all the Veteran’s out there, we thank you for your service to America and your continued support of America’s space program.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Craving some summer Sun? We're inviting people around the world to submit their names to be placed on a microchip that will travel to the Sun aboard Parker Solar Probe!
Launching summer 2018, Parker Solar Probe will be our first mission to "touch" a star. The spacecraft - about the size of a small car - will travel right through the Sun's atmosphere, facing brutal temperatures and radiation as it traces how energy and heat move through the solar corona and explores what accelerates the solar wind and solar energetic particles.
Send your name along for the ride at go.nasa.gov/HotTicket! Submissions will be accepted through April 27, 2018.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Congress passed the National Aeronautics and Space Act, on July 16 and President Eisenhower signed it into law on July 29, 1958. We opened for business on Oct. 1, 1958, with T. Keith Glennan as our first administrator. Our history since then tells a story of exploration, innovation and discoveries. The next 60 years, that story continues. Learn more: https://www.nasa.gov/60
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our Juno mission has been exploring Jupiter since July 2016 with a special passenger on board: JunoCam, an instrument designed to take spectacular close-up color images of the largest planet in our solar system. From the raw images, citizen scientists have processed a range of beautiful photographs that highlight Jupiter's features, even turning them into works of art. Below, 10 stunning images JunoCam has given us over the past year.
1. Jovian tempest.
This color-enhanced image of a massive, raging storm in Jupiter's northern hemisphere was captured by our Juno spacecraft during its ninth close flyby on Oct. 24, 2017. The storm is rotating counter-clockwise with a wide range of cloud altitudes, and the darker clouds are expected to be deeper in the atmosphere than the brightest clouds.
2. A southern stunner.
Jupiter's southern hemisphere shows off in beautiful detail in this image taken on Oct. 24, 2017. The color-enhanced view captures one of the white ovals in the "String of Pearls," one of eight massive rotating storms at 40 degrees south latitude on the gas giant planet.
3. Dreaming in color.
Artist Mik Petter created this unique digital piece using data from the JunoCam. The art form, known as fractals, uses mathematical formulas to create an infinite variety of form, detail, color and light. The original JunoCam image was taken on July 10, 2017.
4. Jovian moon shadow.
Jupiter's moon Amalthea casts a shadow on the gas giant planet in this image taken on Sept. 1, 2017. The elongated shape of the shadow is a result of both the location of the moon with relation to Jupiter in this image as well as the irregular shape of the moon itself.
5. 95 minutes over Jupiter.
Once every 53 days, Juno swings close to Jupiter, speeding over its clouds. In about two hours, the spacecraft travels from a perch over Jupiter's north pole through its closest approach (perijove), then passes over the south pole on its way back out. This sequence shows 11 color-enhanced images from Perijove 8 (Sept. 1, 2017) with the south pole on the left (11th image in the sequence) and the north pole on the right (first image in the sequence).
6. Soaring high.
This striking image of Jupiter was taken on Sept. 1, 2017 as Juno performed its eighth flyby. The spacecraft was 4,707 miles (7,576 kilometers) from the tops of the clouds of the planet at a latitude of about -17.4 degrees. Noteworthy: "Whale's Tail" and "Dan's Spot."
7. In true color.
This true-color image offers a natural color rendition of what the Great Red Spot and surrounding areas would look like to human eyes from Juno's position. The image was taken on July 10, 2017 as the Juno spacecraft performed its seventh close flyby of Jupiter.
8. The 'face' of Jupiter.
JunoCam images aren't just for art and science—sometimes they're created for a good chuckle. This image, processed by citizen scientist Jason Major, is titled "Jovey McJupiterface." By rotating the image 180 degrees and orienting it from south up, two white oval storms turn into eyeballs, and the "face" of Jupiter is revealed. The original image was taken by the Juno spacecraft on May 19, 2017.
9. Bands of clouds.
This enhanced-color image of Jupiter's bands of light and dark clouds was created by citizen scientists Gerald Eichstädt and Seán Doran. Three of the white oval storms known as the "String of Pearls" are visible near the top of the image. Each of the alternating light and dark atmospheric bands in this image is wider than Earth, and each rages around Jupiter at hundreds of miles (kilometers) per hour. The lighter areas are regions where gas is rising, and the darker bands are regions where gas is sinking. Juno captured the image on May 19, 2017.
10. The edge.
This enhanced-color image of a mysterious dark spot on Jupiter seems to reveal a Jovian "galaxy" of swirling storms. Juno captured this image on Feb. 2, 2017 and citizen scientist Roman Tkachenko enhanced the color to bring out the rich detail in the storm and surrounding clouds. Just south of the dark storm is a bright, oval-shaped storm with high, bright, white clouds, reminiscent of a swirling galaxy. As a final touch, he rotated the image 90 degrees, turning the picture into a work of art.
To learn more about the Juno mission at Jupiter, visit: www.nasa.gov/juno.
Follow the Juno mission on Facebook, Instagram and Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The solar system is huge, so let us break it down for you. Here are the top 10 things you should know this week:
1. Big “Wows” from Small Worlds
Our robotic explorers continue to send truly spectacular pictures and data from deep space. Our New Horizons mission to Pluto and Dawn mission to dwarf planet Ceres are revealing never-before-seen landscapes on a regular basis. If you missed it, check out the most recent images from Pluto and Ceres.
2. Deep Waters
Saturn’s moon Enceladus has intrigued many with its geysers that erupt continuously in spectacular plumes. Our Cassini spacecraft has provided scientists with data that is allowing them to determine the source of those plumes. New evidence points to a global ocean of liquid water hidden beneath the moon’s icy shell!
3. A Super Eclipse
This weekend a “supermoon” lunar eclipse will be visible in the night sky. Supermoons occur when the moon is at its closest point to the Earth in its orbit, making it appear slightly larger. This one is extra special because it will also undergo a lunar eclipse! Beginning at 9:07 p.m. EDT on Sept. 27, make sure you get outside and look up! For more information visit: What’s Up for September.
4. All Things Equal
Sept. 23 marks the autumnal equinox, which is the official beginning of the Fall season in the northern hemisphere. The word “equinox” comes from the Latin for “equal night,” meaning day and night will be of equal length on that day.
5. Explore Goddard Space Flight Center
This weekend, Goddard Space Flight Center will be offering tours, presentations and other activities for children and adults. The theme this year is “Celebrating Hubble and the Spirit of Exploration”. This event is free and open to the public, and will be held on Saturday, Sept. 26 from 11 a.m. to 5 p.m. Join in HERE.
6. Titan’s Haze
This week, our Cassini spacecraft will observe Saturn’s hazy, planet-sized moon Titan. Scientists will use these images to look for clouds across Titan’s exotic regions. Explore HERE.
7. New Horizons Team on Pluto
Ever wondered what it was like to be part of the team that explored Pluto for the first time? If you’ll be near the Smithsonian National Air and Space Museum in Washington, DC on Sept. 22 you’re invited to a free lecture and Q&A to find out! Get the details HERE.
8. Martian Weather Report
Every day, our Mars Reconnaissance Orbiter delivers a global view of the planet and its atmospheric activity. The most recent report included lots of water-ice clouds in the afternoon, with dust storms developing along the south polar region. Get the latest HERE.
9. Imagine: The View from Pluto
If you’ve ever wondered what it would look like to stand on the icy terrain of Pluto, you’re not alone. Artist Karl Kofoed created a series of digital paintings that render scenes from the dwarf planet based on data from the New Horizons July 14 Pluto flyby. View them HERE.
10. What’s the Big Idea?
We’re giving university students a chance to help us come up with solutions for our journey to Mars. This Breakthrough, Innovative, and Game-changing (BIG) Idea Challenge will look for creative solutions for generating lift using inflatable spacecraft heat shields on Mars. Enter your BIG Idea.
Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com
@saraxmix: What is it that makes you go back up there once you're home?
Mars is hard. Forty years ago this week, our Viking mission found a place in history when it became the first U.S. mission to land a spacecraft safely on the surface of Mars and return images of the surface. This is astonishing considering that many of the spacecraft destined for Mars failed before completing their missions and some failed before their observations could begin.
Here’s a few things to know about the Viking missions that ushered in a new era of Mars explorations 40 years ago:
1. Multi Mission
The Viking mission consisted of four spacecraft – two orbiters and two landers. All four made significant science discoveries.
2. Last Minute Switch
The spacecraft eventually named Viking 2 was supposed to launch first, but a battery problem prompted us to send the second spacecraft first. Batteries recharged, Viking 2 was then sent to rendezvous with the Red Planet.
3. Not Quite the First
Viking 1 was the first to send back science from the surface of Mars, but the honor of the first Mars landing goes to the Soviet Union’s Mars 3. The Soviet spacecraft landed on Mars in December 1970, but sent back only 20 seconds of video data before going silent.
4. Viking 1 Quick Stats
Viking 1 was launched Aug. 20 1975, and arrived at Mars on June 19, 1976. On July 20, 1976, the Viking 1 lander separated from the orbiter and touched down at Chryse Planitia.
5. Viking 2 Quick Stats
Viking 2 was launched Sept. 9, 1975, and entered Mars orbit Aug. 7, 1976. The Viking 2 lander touched down at Utopia Planitia on Sept. 3, 1976.
Discover the full list of 10 things to know about our solar system this week HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
An astronaut aboard the International Space Station shot this photograph of the Green River flowing through deep, red rock canyons in eastern Utah. A main tributary of the Colorado River, the Green flows 730 miles (1,175 kilometers) through Wyoming, Colorado and Utah. The portion of the Green River in this image is just north of Canyonlands National Park.
Bowknot Bend was named for the way the river loops back on itself. Located in Labyrinth Canyon about 25 miles west of Moab, Utah, this river bend runs 7.5 miles (12 kilometers) in a circular loop and ends up 1,200 feet (360 meters) from where it first started. When the two sides of the river merge someday, Bowknot Bend will break off from the main channel and form a lake.
Read more: https://go.nasa.gov/2OMANak
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
“Where else in the world would you hear a story like mine? I’m a kid from a single mom, a teenage mom from El Salvador who worked in all sorts of low-income jobs... My story is a great story about America. What are the chances that a kid like me would end up being where I am today?” - Frank Rubio
Dr. Frank Rubio is a Los Angeles-born Salvadorian-American who was selected as NASA astronaut candidate in 2017. The Florida native graduated from the U.S. Military Academy and earned a Doctorate of Medicine from the Uniformed Services University of the Health Sciences. Prior to attending medical school, he served as a UH-60 Blackhawk helicopter pilot and flew more than 1,100 hours, including more than 600 hours of combat and imminent danger time during deployments to Bosnia, Afghanistan and Iraq. Dr. Rubio is a board certified family physician and flight surgeon. At the time of his selection, he was serving in the 10th Special Forces Group (Airborne).
Frank took time from training to become a certified NASA Astronaut to answer questions about his life and career:
It was a friend in the astronaut corps that recommended I put in an application. After he recommended it, I thought it was an amazing opportunity to be a part of something bigger than myself and to allow me to continue to serve. It gave me an opportunity to explore and make a difference. And it sounded like a lot of fun! My past careers have allowed me to be comfortable with uncertainty and the unknown and to function well despite often not having all the facts.
I was on the skydive team in college.
I have one of the best jobs in the world because I get to train and work towards a mission that helps humankind. My job is unique in that you and your team are working to make a difference from a much bigger perspective. And hopefully I get to ride on a rocket and go to space!
Early in my career and throughout my career I was assigned to jobs that may not have been my first choice, but they turned out to be amazing opportunities. I was taught to have a good attitude and give it your best no matter where you are. Those opportunities ended up being some of the best and helped me get where I am today.
A lot of people don’t realize how much studying is involved. It’s comparable to the studying I did in flight school or medical school.
Pictures of my family and friends, a Bible and lots of books to read (probably on a tablet), patches from my Army units- they helped form me to be the person I am today, music, and if I could take my dog (and family), I definitely would! Also, Something for each of my kids to give to them.
The overall idea that the rocks and the different units we studied have so much to tell. You learn to appreciate how much the layout of the land and the rocks and the way they interact together can tell you about the history of that place. It’s amazing.
Everything will be fantastic from the ride up there, to floating in space, to the amazing science we get to perform, to being part of the team. I don’t think I’ll ever get tired of looking back at Earth and having the chance to get the perspective to recognize the grandeur and uniqueness of Earth.
Hello! How are you? I would want to know about them and to share humankind with them.
Thank you for your time Frank, and good luck as you continue to complete astronaut training!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
For Women’s History Month, NASA and the International Space Station celebrate the women who conduct science aboard the orbiting lab. As of March 2019, 63 women have flown in space, including cosmonauts, astronauts, payload specialists, and space station participants. The first woman in space was Russian cosmonaut Valentina Tereshkova who flew on Vostok 6 on June 16, 1963. The first American woman in space, Sally Ride, flew aboard the Space Shuttle STS-7 in June of 1983.
If conducted as planned, the upcoming March 29 spacewalk with Anne McClain and Christina Koch would be the first all-female spacewalk. Women have participated in science on the space station since 2001; here are the most recent and some highlights from their scientific work:
Christina Koch (pictured on the right) becomes the most recent woman in space, launching to the space station in mid-March to take part in some 250 research investigations and technology demonstrations. Koch served as station chief of the American Samoa Observatory and has contributed to the development of instruments used to study radiation particles for the Juno mission and the Van Allen Probe.
Flight Engineer Anne McClain collects samples for Marrow, a long-term investigation into the negative effects of microgravity on the bone marrow and blood cells it produces. The investigation may lead to development of strategies to help prevent these effects in future space explorers, as well as people on Earth who experience prolonged bed rest. McClain holds the rank of Lieutenant Colonel as an Army Aviator, with more than 2,000 flight hours in 20 different aircraft.
Serena Auñón-Chancellor conducts research operations for the AngieX Cancer Therapy inside the Microgravity Science Glovebox (MSG). This research may facilitate a cost-effective drug testing method and help develop safer and more effective vascular-targeted treatments. As a NASA Flight Surgeon, Auñón-Chancellor spent more than nine months in Russia supporting medical operations for International Space Station crew members.
Astronaut Peggy Whitson holds numerous spaceflight records, including the U.S. record for cumulative time in space – 665 days – and the longest time for a woman in space during a single mission, 289 days. She has tied the record for the most spacewalks for any U.S. astronaut and holds the record for the most spacewalk time for female space travelers. She also served as the first science officer aboard the space station and the first woman to be station commander on two different missions. During her time on Earth, she also is the only woman to serve as chief of the astronaut office. Here she works on the Genes in Space-3 experiment, which completed the first-ever sample-to-sequence process entirely aboard the International Space Station. This innovation makes it possible to identify microbes in real time without having to send samples back to Earth, a revolutionary step for microbiology and space exploration.
The Heart Cells investigation studies the human heart, specifically how heart muscle tissue contracts, grows and changes its gene expression in microgravity and how those changes vary between subjects. In this image, NASA astronaut Kate Rubins conducts experiment operations in the U.S. National Laboratory. Rubins also successfully sequenced DNA in microgravity for the first time as part of the Biomolecule Sequencer experiment.
The first Italian woman in space, European Space Agency (ESA) astronaut Samantha Cristoforetti conducts the SPHERES-Vertigo investigation in the Japanese Experiment Module (JEM). The investigation uses free-flying satellites to demonstrate and test technologies for visual inspection and navigation in a complex environment.
Cosmonaut Elena Serova, the first Russian woman to visit the space station, works with the bioscience experiment ASEPTIC in the Russian Glavboks (Glovebox). The investigation assessed the reliability and efficiency of methods and equipment for assuring aseptic or sterile conditions for biological investigations performed on the space station.
NASA astronaut Karen Nyberg sets up the Multi-Purpose Small Payload Rack (MSPR) fluorescence microscope in the space station’s Kibo laboratory. The MSPR has two workspaces and a table used for a wide variety of microgravity science investigations and educational activities.
This spacewalk by NASA astronaut Sunita Williams and Japan Aerospace Exploration Agency (JAXA) astronaut Aki Hoshide, reflected in Williams’ helmet visor, lasted six hours and 28 minutes. They completed installation of a main bus switching unit (MBSU) and installed a camera on the International Space Station’s robotic Canadarm2. Williams participated in seven spacewalks and was the second woman ever to be commander of the space station. She also is the only person ever to have run a marathon while in space. She flew in both the space shuttle and Soyuz, and her next assignment is to fly a new spacecraft: the Boeing CST-100 Starliner during its first operational mission for NASA’s Commercial Crew Program.
Working on the Capillary Flow Experiment (CFE), NASA astronaut Catherine (Cady) Coleman performs a Corner Flow 2 (ICF-2) test. CFE observes the flow of fluid in microgravity, in particular capillary or wicking behavior. As a participant in physiological and equipment studies for the Armstrong Aeromedical Laboratory, she set several endurance and tolerance records. Coleman logged more than 4,330 total hours in space aboard the Space Shuttle Columbia and the space station.
A system to purify water for use in intravenous administration of saline would make it possible to better treat ill or injured crew members on future long-duration space missions. The IVGEN investigation demonstrates hardware to provide that capability. Tracy Caldwell Dyson sets up the experiment hardware in the station’s Microgravity Science Glovebox (MSG). As noted above, she and Shannon Walker were part of the first space station crew with more than one woman.
Astronaut Shannon Walker flew on Expedition 24/25, a long-duration mission that lasted 163 days. Here she works at the Cell Biology Experiment Facility (CBEF), an incubator with an artificial gravity generator used in various life science experiments, such as cultivating cells and plants on the space station. She began working in the space station program in the area of robotics integration, worked on avionics integration and on-orbit integrated problem-solving for the space station in Russia, and served as deputy and then acting manager of the On-Orbit Engineering Office at NASA prior to selection as an astronaut candidate.
Astronaut Stephanie Wilson unpacks a Microgravity Experiment Research Locker Incubator II (MERLIN) in the Japanese Experiment Module (JEM). Part of the Cold Stowage Fleet of hardware, MERLIN provides a thermally controlled environment for scientific experiments and cold stowage for transporting samples to and from the space station. Currently serving as branch chief for crew mission support in the Astronaut Office, Wilson logged more than 42 days in space on three missions on the space shuttle, part of the Space Transportation System (STS).
• Roscosmos cosmonaut Svetlana Savitskaya, the first woman to participate in an extra-vehicular activity (EVA), or spacewalk, on July 25, 1984
• NASA astronaut Susan Helms, the first female crew member aboard the space station, a member of Expedition 2 from March to August 2001
• NASA astronaut Peggy Whitson, the first female ISS Commander, April 2008, during a six-month tour of duty on Expedition 16
• The most women in space at one time (four) happened in 2010, when space shuttle Discovery visited the space station for the STS-131 mission. Discovery’s crew of seven included NASA astronauts Dorothy Metcalf-Lindenburger and Stephanie Wilson and Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki. The space station crew of six included NASA astronaut Tracy Caldwell Dyson.
• Susan Helms shares the record for longest single spacewalk, totaling 8 hours 56 minutes with fellow NASA astronaut Jim Voss.
• Expedition 24 marked the first with two women, NASA astronauts Shannon Walker and Tracy Caldwell Dyson, assigned to a space station mission from April to September, 2010
• The 2013 astronaut class is the first with equal numbers of women and men.
• NASA astronaut Anne McClain became the first woman to live aboard the space station as part of two different crews with other women: Serena Auñón-Chancellor in December 2018 and currently in orbit with Christina Koch.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What do films and TV get wrong about your job the most?
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts