Ad Astra, John Glenn (1921-2016)

Ad Astra, John Glenn (1921-2016)

An astronaut. 

A pilot. 

A husband. 

A father. 

A United States Senator.

An American hero. 

An original.

image

John Glenn (1921-2016) was all those things and more. When he rocketed into space on Feb. 20, 1962, to become the first American to orbit Earth, the flight set the nation on course to meet ever-more ambitious goals.

The life and career of Senator Glenn eclipses those of many. In spite of his accomplishments, he was a humble and gracious man (and 4-term U.S. senator).

During Glenn’s first flight, a scheduled 30-minute test to determine whether Glenn could fly the capsule manually became a matter of life and death when the automatic system malfunctioned after the first orbit.

image

"I went to manual control and continued in that mode during the second and third orbits, and during re-entry," Glenn recalled later.  "The malfunction just forced me to prove very rapidly what had been planned over a longer period of time." Another problem seemed even more serious -- telemetry indicated the spacecraft's heat shield was loose. It seemed possible that Glenn and the spacecraft would be incinerated on re-entry.  Glenn left the retrorocket pack in place to steady the heat shield during re-entry. "It made for a very spectacular re-entry from where I was sitting," he said. Big chunks of the burning material came flying by the window.

image

He wasn't sure whether the flaming debris was the rocket pack or the heat shield breaking up. "Fortunately," he told an interviewer," it was the rocket pack -- or I wouldn't be answering these questions."

image

In the words of President Obama, who awarded him the Presidential Medal of Freedom in 2012: “When John Glenn blasted off from Cape Canaveral atop an Atlas rocket in 1962, he lifted the hopes of a nation. And when his Friendship 7 spacecraft splashed down a few hours later, the first American to orbit the Earth reminded us that with courage and a spirit of discovery there's no limit to the heights we can reach together. With John's passing, our nation has lost an icon and Michelle and I have lost a friend. John spent his life breaking barriers, from defending our freedom as a decorated Marine Corps fighter pilot in World War II and Korea, to setting a transcontinental speed record ... The last of America's first astronauts has left us, but propelled by their example we know that our future here on Earth compels us to keep reaching for the heavens.  On behalf of a grateful nation, Godspeed, John Glenn.”

image

Glenn left the Astronaut Corps in 1964 and resigned from the Marine Corps in 1965. And, after some time in private industry ran for and was elected ti the U.S. Senate in 1974, carrying all 88 counties of Ohio. He was re-elected in 1980 with the largest margin in Ohio history. Ohio returned him to the Senate for a third term in 1986. In 1992 he was elected again, becoming the first popularly elected senator from his state to win four consecutive terms. During his last term he was the ranking member of both the Governmental Affairs Committee and the Subcommittee on Air/Land Forces in the Senate Armed Services Committee. He also served on the Select Committee on Intelligence and the Special Committee on Aging. He was considered one of the Senate's leading experts on technical and scientific matters, and won wide respect for his work to prevent the spread of weapons of mass destruction.

image

In 1998, Glenn flew on the STS-95 Discovery shuttle flight, a 9-day mission during which the crew supported a variety of research payloads including deployment of the Spartan solar-observing spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, and Glenn's investigations on space flight and the aging process.

NASA Administrator Charlie Bolden remembers, “Senator Glenn's legacy is one of risk and accomplishment, of history created and duty to country carried out under great pressure with the whole world watching.”

Today, we honor him for all that he stood for and continues to stand for -- grace under pressure, humility, ability, strength. 

Godspeed, John Glenn.

More Posts from Nasa and Others

4 years ago

What Would These Astronauts Put in Their #NASAMoonKit?

image

NASA is hard at work to land the first woman and the next man on the Moon, and we want to know: what would you pack for a trip to the Moon?   

We will be soon conducting our last in a series of Green Run tests for the core stage of our Space Launch System (SLS) — the most powerful rocket ever built.

The series of tests is designed to gradually bring the rocket stage and all its systems to life for the first time — ensuring that it’s ready for missions to the Moon through the Artemis program.  

To mark this critical time in the history of American spaceflight, we’ve been asking people like you — what would you take with you on a trip to the Moon? Social media users have been regaling us with their images, videos, and illustrations with the hashtag #NASAMoonKit!

Looking for a little inspiration? We asked some of our astronauts and NASA leaders the same question:

1. NASA Astronaut Chris Cassidy

image

NASA astronaut Chris Cassidy recently took this photo from the International Space Station and posted it to his Twitter account with this caption:

“If I was on the next mission to the Moon, I would have to bring this tiny spaceman with me! He’s flown with me on all of my missions and was in my uniform pocket for all the SEAL missions I have been a part of. Kind of like a good luck charm.”

2. European Space Agency Astronaut Tim Peake

image

European Space Agency astronaut Tim Peake asked his two sons what they would take with them to the Moon. This is what they decided on!

3. NASA Astronaut Scott Tingle

Based on previous missions to space, NASA astronaut Scott Tingle would put a can of LiOH, or Lithium Hydroxide, into his #NASAMoonKit. 

A LiOH can pulls carbon dioxide out of the air — very important when you're in a closed environment for a long time! Apollo 13 enthusiasts will remember that the astronauts had to turn off their environmental system to preserve power. To keep the air safe, they used LiOH cans from another part of the vehicle, but the cans were round and the fitting was square. Today we have interoperability standards for space systems, so no more square pegs in round holes!

4. NASA Astronaut Drew Morgan

image

NASA astronaut Drew Morgan received some feedback from his youngest daughter when she was in kindergarten about she would put into her #NASAMoonKit.

5. Head of Human Spaceflight Kathy Lueders

image

Although Kathy Lueders is not an astronaut, she is the head of human spaceflight at NASA! Her #NASAMoonKit includes activities to keep her entertained as well as her favorite pillow.

6. NASA Astronaut Kenneth Bowersox

What Would These Astronauts Put In Their #NASAMoonKit?

NASA astronaut Kenneth Bowersox knows from his past space shuttle experience what the “perfect space food” is — peanut butter. He would also put a hooded sweatshirt in his #NASAMoonKit, for those long, cold nights on the way to the Moon.

7. NASA Astronaut Michael Collins

image

NASA astronaut Michael Collins has actually made a real-life #NASAMoonKit — when he flew to the Moon on the Apollo 11 mission! But for this time around, he tweeted that would like to bring coffee like he did the first time — but add on a good book.  

How to Show Us What’s In Your #NASAMoonKit:

There are four social media platforms that you can use to submit your work:

Instagram: Use the Instagram app to upload your photo or video, and in the description include #NASAMoonKit  

Twitter: Share your image on Twitter and include #NASAMoonKit in the tweet  

Facebook: Share your image on Facebook and include #NASAMoonKit in the post  

Tumblr: Share your image in Tumblr and include #NASAMoonKit in the tags

If your #NASAMoonKit catches our eye, we may share your post on our NASA social media accounts or share it on the Green Run broadcast!

Click here for #NASAMoonKit Terms and Conditions.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago
"A Classic That I Never Get Tired Of: The Orange Solar Panel In Front Of The Blue–white Background

"A classic that I never get tired of: the orange solar panel in front of the blue–white background and the curvature of Earth" wrote astronaut Thomas Pesquet (@thom_astro) of the European Space Agency from aboard the International Space Station. 

The space station serves as the world's leading laboratory for conducting cutting-edge microgravity research, and is the primary platform for technology development and testing in space to enable human and robotic exploration of destinations beyond low-Earth orbit, including Mars. 

Credit: NASA/ESA


Tags
4 years ago

25 Years in Space for ESA & NASA’s Sun-Watching SOHO

A quarter-century ago, the Solar and Heliospheric Observatory (SOHO) launched to space. Its 25 years of data have changed the way we think about the Sun — illuminating everything from the Sun’s inner workings to the constant changes in its outermost atmosphere.

image

SOHO — a joint mission of the European Space Agency and NASA — carries 12 instruments to study different aspects of the Sun. One of the gamechangers was SOHO’s coronagraph, a type of instrument that uses a solid disk to block out the bright face of the Sun and reveal the relatively faint outer atmosphere, the corona. With SOHO’s coronagraph, scientists could image giant eruptions of solar material and magnetic fields, called coronal mass ejections, or CMEs. SOHO’s images revealed shape and structure of CMEs in breathtaking detail.

image

These solar storms can impact robotic spacecraft in their path, or — when intense and aimed at Earth — threaten astronauts on spacewalks and even disrupt power grids on the ground. SOHO is particularly useful in viewing Earth-bound storms, called halo CMEs — so called because when a CME barrels toward us on Earth, it appears circular, surrounding the Sun, much like watching a balloon inflate by looking down on it.

image

Before SOHO, the scientific community debated whether or not it was even possible to witness a CME coming straight toward us. Today, SOHO images are the backbone of space weather prediction models, regularly used in forecasting the impacts of space weather events traveling toward Earth.

Beyond the day-to-day monitoring of space weather, SOHO has been able to provide insight about our dynamic Sun on longer timescales as well. With 25 years under its belt, SOHO has observed a full magnetic cycle — when the Sun’s magnetic poles switch places and then flip back again, a process that takes about 22 years in total. This trove of data has led to revolutions in solar science: from revelations about the behavior of the solar core to new insight into space weather events that explode from the Sun and travel throughout the solar system.

Data from SOHO, sonified by the Stanford Experimental Physics Lab, captures the Sun’s natural vibrations and provides scientists with a concrete representation of its dynamic movements.

The legacy of SOHO’s instruments — such as the extreme ultraviolet imager, the first of its kind to fly in orbit — also paved the way for the next generation of NASA solar satellites, like the Solar Dynamics Observatory and STEREO. Even with these newer instruments now in orbit, SOHO’s data remains an invaluable part of solar science, producing nearly 200 scientific papers every year.

image

Relatively early in its mission, SOHO had a brush with catastrophe. During a routine calibration procedure in June 1998, the operations team lost contact with the spacecraft. With the help of a radio telescope in Arecibo, the team eventually located SOHO and brought it back online by November of that year. But luck only held out so long: Complications from the near loss emerged just weeks later, when all three gyroscopes — which help the spacecraft point in the right direction — failed. The spacecraft was no longer stabilized. Undaunted, the team’s software engineers developed a new program that would stabilize the spacecraft without the gyroscopes. SOHO resumed normal operations in February 1999, becoming the first spacecraft of its kind to function without gyroscopes.

image

SOHO’s coronagraph have also helped the Sun-studying mission become the greatest comet finder of all time. The mission’s data has revealed more than 4,000 comets to date, many of which were found by citizen scientists. SOHO’s online data during the early days of the mission made it possible for anyone to carefully scrutinize a image and potentially spot a comet heading toward the Sun. Amateur astronomers from across the globe joined the hunt and began sending their findings to the SOHO team. To ease the burden on their inboxes, the team created the SOHO Sungrazer Project, where citizen scientists could share their findings.

image

Keep up with the latest SOHO findings at nasa.gov/soho, and follow along with @NASASun on Twitter and facebook.com/NASASunScience.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

What is an upcoming project/mission you're most excited for?

It is likely that I’ll be assigned a mission to the International Space Station (ISS) within the next few years.  We’ve had a continuous presence on the Space Station for 17 years now, along with our international partners (Russian Space Agency, European Space Agency, Japanese Space Agency, and Canadian Space Agency).  Missions on the ISS typically last 6 months.  I’m incredibly excited to contribute to the impressive array of scientific experiments that we are conducting every day on ISS (I am a scientist after all!), and very much look forward to the potential of going for a spacewalk and gaining that perspective of gazing down on the fragile blue ball that is our home from above.  Beyond that, being part of test missions on the Orion spacecraft (currently under construction at NASA!) would be an extraordinary opportunity.  The current NASA plan is to send astronauts in Orion in a mission that will go 40,000 miles beyond the Moon in the early 2020s, reaching a distance further than that ever travelled by humans.  I’d certainly be game for that! 


Tags
9 years ago

We’re With You When You Fly

image

Did you know that "We’re With You When You Fly”? Thanks to our advancements in aeronautics, today’s aviation industry is better equipped than ever to safely and efficiently transport millions of passengers and billions of dollars worth of freight to their destinations. In fact, every U.S. Aircraft flying today and every U.S. air traffic control tower uses NASA-developed technology in some way. Here are some of our objectives in aeronautics:

Making Flight Greener

image

From reducing fuel emissions to making more efficient flight routes, we’re working to make flight greener. We are dedicated to improving the design of airplanes so they are more Earth friendly by using less fuel, generating less pollution and reducing noise levels far below where they are today.

Getting you safely home faster

image

We work with the Federal Aviation Administration to provide air traffic controllers with new tools for safely managing the expected growth in air traffic across the nation. For example, testing continues on a tool that controllers and pilots can use to find a more efficient way around bad weather, saving thousands of pounds of fuel and an average of 27 minutes flying time per tested flight. These and other NASA-developed tools help get you home faster and support a safe, efficient airspace.

Seeing Aviation’s Future

image

Here at NASA, we’re committed to transforming aviation through cutting edge research and development. From potential airplanes that could be the first to fly on Mars, to testing a concept of a battery-powered plane, we’re always thinking of what the future of aviation will look like.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 months ago
Long shadows highlight Buzz Aldrin’s bootprint in the fine, gray lunar soil on the surface of the Moon. The bootprint looks somewhat rectangular, but is rounded at the toe and heel, with several parallel tread lines. Even in this small portion of the Moon’s surface, we can see that it’s pitted. This photo was taken during Neil Armstrong and Buzz Aldrin’s historic moonwalk on July 20, 1969. Credit: NASA

One Giant Leap for Mankind

Millions of people around the globe will come together for the Paris 2024 Olympic Games later this month to witness a grand event—the culmination of years of training and preparation.

Fifty-five years ago this July, the world was watching as a different history-changing event was unfolding: the Apollo 11 mission was landing humans on the surface of another world for the first time. An estimated 650 million people watched on TV as Neil Armstrong reached the bottom of the ladder of the lunar module on July 20, 1969, and spoke the words, “That’s one small step for [a] man, one giant leap for mankind.”

While the quest to land astronauts on the Moon was born from the space race with the Soviet Union during the Cold War, this moment was an achievement for the whole of humanity. To mark the world-embracing nature of the Moon landing, several tokens of world peace were left on the Moon during the astronauts’ moonwalk.

View of the commemorative plaque attached to the leg of the Apollo 11 Lunar Module (LM), Eagle under the LM’s ladder, engraved with the following words: “Here men from the planet Earth first set foot upon the Moon July 1969 A.D. We came in peace for all of mankind.” It bears the signatures of the Apollo 11 astronauts Neil A. Armstrong, commander; Michael Collins, Command Module pilot; and Edwin E. Aldrin, Jr., LM pilot along with the signature of the U.S. President Richard M. Nixon. Credit: NASA

“We came in peace for all mankind”

These words, as well as drawings of Earth’s western and eastern hemispheres, are etched on a metal plaque affixed to a leg of the Apollo 11 lunar lander. Because the base of the lander remained on the Moon after the astronauts returned, it is still there today as a permanent memorial of the historic landing.

Close-up of the small silicon disc left on the surface of the Moon by the Apollo 11 astronauts. Messages in several languages are imprinted into the disc. Around its outer edge are the words “From Planet Earth” and “July 1969.” Credit: NASA

Microscopic messages from kings, queens, and presidents

Another artifact left on the Moon by the Apollo 11 astronauts is a small silicon disc etched with goodwill messages from leaders of 74 countries around the world. Each message was reduced to be smaller than the head of a pin and micro-etched on a disc roughly 1.5 inches (3.8 cm) in diameter. Thailand’s message, translated into English, reads: "The Thai people rejoice in and support this historic achievement of Earth men, as a step towards Universal peace."

Curious to read what else was inscribed on the disk? Read the messages.

An olive branch made of gold that was left on the Moon by the Apollo 11 astronauts as a symbol of peace. Credit: NASA

An ancient symbol

The olive branch, a symbol of peace and conciliation in ancient Greek mythology, also found its way to the Moon in July 1969. This small olive branch made of gold was left on the lunar surface during Neil Armstrong and Buzz Aldrin’s 2.5-hour moonwalk. The olive branch also featured on the Apollo 11 mission patches sewed on the crew’s spacesuits. Designed in part by command module pilot Michael Collins, the insignia shows a bald eagle landing on the Moon holding an olive branch in its talons.

In the blackness of space, the Earth is ¾ illuminated in this photo taken on July 17, 1969. Africa and the Arabian Peninsula are visible in this spectacular photo taken by the Apollo 11 astronauts on their trans-lunar coast toward the Moon. Credit: NASA

We go together

As NASA’s Artemis program prepares to again land astronauts on the Moon, including the first woman and the first person of color, this time we’re collaborating with commercial and international partners. Together we will make new scientific discoveries, establish the first long-term presence on the Moon, and inspire a new generation of explorers.

Is aerospace history your cup of tea? Be sure to check out more from NASA’s past at www.nasa.gov/history.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
9 years ago

Solar System: 10 Things to Know This Week

Real-life space travel across the solar system’s vast expanse is not for the impatient – it can take many years to reach a destination. The positive side is that our hardy robots are well engineered to take the abuse that the harsh space environment dishes out. This means they can return good science over the course of many years, sometimes for decades.

This week, we take a look at a few of our longest-lived planetary missions. All of them have been returning deep space dispatches to Earth for more than five years. Combined, their flight time adds up to more than a century and a half. The legacy of their exploration is likely to endure even longer.

1. Lunar Reconnaissance Orbiter (LRO) - Launched June 18, 2009

Solar System: 10 Things To Know This Week

LRO captures crystal-clear views of the lunar landscape on almost a daily basis – and has been doing it for years. Thanks to LRO, we’ve nearly mapped the entire surface now at very high resolution. Learn more about LRO HERE.

2. Dawn – Launched Sept. 27, 2007

Solar System: 10 Things To Know This Week

The Dawn mission has been exploring the dwarf planet Ceres for just over a year now — but the Dawn spacecraft’s journey began long before that. After a trek from Earth to the asteroid belt, it made a stop at the giant asteroid Vesta before moving on to Ceres.

3. New Horizons – Launched Jan. 19, 2006

Solar System: 10 Things To Know This Week

With its ongoing discoveries based on the July 2015 Pluto flyby, the New Horizons mission is in the news all the time. It’s easy to forget the mission is not new — the spacecraft has been traversing the dark of space for more than a decade. New Horizons is now more than 3 billion miles (5 billion km) from Earth as it delves deeper into the outer solar system.

4. Mars Reconnaissance Orbiter (MRO) – Launched Aug. 12, 2005

Solar System: 10 Things To Know This Week

MRO recently marked a decade of returning spectacular images from Mars, in many more colors than just red. Peruse 10 years of MRO discoveries at Mars HERE.

5. Cassini – Launched Oct. 15, 1997

Solar System: 10 Things To Know This Week

As it circles through the Saturn system, the Cassini spacecraft is currently about 975 million miles (1.57 billion km) from Earth, but its total odometer reads much more than that. This long, spectacular mission is slated to end next year. In the meantime, it’s about to enter the “Grande Finale” stage.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Largest Batch of Earth-size, Habitable Zone Planets

Our Spitzer Space Telescope has revealed the first known system of seven Earth-size planets around a single star. Three of these planets are firmly located in an area called the habitable zone, where liquid water is most likely to exist on a rocky planet.

image

This exoplanet system is called TRAPPIST-1, named for The Transiting Planets and Planetesimals Small Telescope (TRAPPIST) in Chile. In May 2016, researchers using TRAPPIST announced they had discovered three planets in the system.

image

Assisted by several ground-based telescopes, Spitzer confirmed the existence of two of these planets and discovered five additional ones, increasing the number of known planets in the system to seven.

image

This is the FIRST time three terrestrial planets have been found in the habitable zone of a star, and this is the FIRST time we have been able to measure both the masses and the radius for habitable zone Earth-sized planets.

All of these seven planets could have liquid water, key to life as we know it, under the right atmospheric conditions, but the chances are highest with the three in the habitable zone.

image

At about 40 light-years (235 trillion miles) from Earth, the system of planets is relatively close to us, in the constellation Aquarius. Because they are located outside of our solar system, these planets are scientifically known as exoplanets. To clarify, exoplanets are planets outside our solar system that orbit a sun-like star.

image

In this animation, you can see the planets orbiting the star, with the green area representing the famous habitable zone, defined as the range of distance to the star for which an Earth-like planet is the most likely to harbor abundant liquid water on its surface. Planets e, f and g fall in the habitable zone of the star.

Using Spitzer data, the team precisely measured the sizes of the seven planets and developed first estimates of the masses of six of them. The mass of the seventh and farthest exoplanet has not yet been estimated.

image

For comparison…if our sun was the size of a basketball, the TRAPPIST-1 star would be the size of a golf ball.

Based on their densities, all of the TRAPPIST-1 planets are likely to be rocky. Further observations will not only help determine whether they are rich in water, but also possibly reveal whether any could have liquid water on their surfaces.

The sun at the center of this system is classified as an ultra-cool dwarf and is so cool that liquid water could survive on planets orbiting very close to it, closer than is possible on planets in our solar system. All seven of the TRAPPIST-1 planetary orbits are closer to their host star than Mercury is to our sun.

image

 The planets also are very close to each other. How close? Well, if a person was standing on one of the planet’s surface, they could gaze up and potentially see geological features or clouds of neighboring worlds, which would sometimes appear larger than the moon in Earth’s sky.

image

The planets may also be tidally-locked to their star, which means the same side of the planet is always facing the star, therefore each side is either perpetual day or night. This could mean they have weather patterns totally unlike those on Earth, such as strong wind blowing from the day side to the night side, and extreme temperature changes.

image

Because most TRAPPIST-1 planets are likely to be rocky, and they are very close to one another, scientists view the Galilean moons of Jupiter – lo, Europa, Callisto, Ganymede – as good comparisons in our solar system. All of these moons are also tidally locked to Jupiter. The TRAPPIST-1 star is only slightly wider than Jupiter, yet much warmer. 

How Did the Spitzer Space Telescope Detect this System?

Spitzer, an infrared telescope that trails Earth as it orbits the sun, was well-suited for studying TRAPPIST-1 because the star glows brightest in infrared light, whose wavelengths are longer than the eye can see. Spitzer is uniquely positioned in its orbit to observe enough crossing (aka transits) of the planets in front of the host star to reveal the complex architecture of the system. 

image

Every time a planet passes by, or transits, a star, it blocks out some light. Spitzer measured the dips in light and based on how big the dip, you can determine the size of the planet. The timing of the transits tells you how long it takes for the planet to orbit the star.

image

The TRAPPIST-1 system provides one of the best opportunities in the next decade to study the atmospheres around Earth-size planets. Spitzer, Hubble and Kepler will help astronomers plan for follow-up studies using our upcoming James Webb Space Telescope, launching in 2018. With much greater sensitivity, Webb will be able to detect the chemical fingerprints of water, methane, oxygen, ozone and other components of a planet’s atmosphere.

At 40 light-years away, humans won’t be visiting this system in person anytime soon...that said...this poster can help us imagine what it would be like: 

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago

You Are Made of Stardust

Though the billions of people on Earth may come from different areas, we share a common heritage: we are all made of stardust! From the carbon in our DNA to the calcium in our bones, nearly all of the elements in our bodies were forged in the fiery hearts and death throes of stars.

You Are Made Of Stardust

The building blocks for humans, and even our planet, wouldn’t exist if it weren’t for stars. If we could rewind the universe back almost to the very beginning, we would just see a sea of hydrogen, helium, and a tiny bit of lithium.

The first generation of stars formed from this material. There’s so much heat and pressure in a star’s core that they can fuse atoms together, forming new elements. Our DNA is made up of carbon, hydrogen, oxygen, nitrogen, and phosphorus. All those elements (except hydrogen, which has existed since shortly after the big bang) are made by stars and released into the cosmos when the stars die.

You Are Made Of Stardust

Each star comes with a limited fuel supply. When a medium-mass star runs out of fuel, it will swell up and shrug off its outer layers. Only a small, hot core called a white dwarf is left behind. The star’s cast-off debris includes elements like carbon and nitrogen. It expands out into the cosmos, possibly destined to be recycled into later generations of stars and planets. New life may be born from the ashes of stars.

You Are Made Of Stardust

Massive stars are doomed to a more violent fate. For most of their lives, stars are balanced between the outward pressure created by nuclear fusion and the inward pull of gravity. When a massive star runs out of fuel and its nuclear processes die down, it completely throws the star out of balance. The result? An explosion!

Supernova explosions create such intense conditions that even more elements can form. The oxygen we breathe and essential minerals like magnesium and potassium are flung into space by these supernovas.

You Are Made Of Stardust

Supernovas can also occur another way in binary, or double-star, systems. When a white dwarf steals material from its companion, it can throw everything off balance too and lead to another kind of cataclysmic supernova. Our Nancy Grace Roman Space Telescope will study these stellar explosions to figure out what’s speeding up the universe’s expansion. 

This kind of explosion creates calcium – the mineral we need most in our bodies – and trace minerals that we only need a little of, like zinc and manganese. It also produces iron, which is found in our blood and also makes up the bulk of our planet’s mass!

You Are Made Of Stardust

A supernova will either leave behind a black hole or a neutron star – the superdense core of an exploded star. When two neutron stars collide, it showers the cosmos in elements like silver, gold, iodine, uranium, and plutonium.

You Are Made Of Stardust

Some elements only come from stars indirectly. Cosmic rays are nuclei (the central parts of atoms) that have been boosted to high speed by the most energetic events in the universe. When they collide with atoms, the impact can break them apart, forming simpler elements. That’s how we get boron and beryllium – from breaking star-made atoms into smaller ones.

Half a dozen other elements are created by radioactive decay. Some elements are radioactive, which means their nuclei are unstable. They naturally break down to form simpler elements by emitting radiation and particles. That’s how we get elements like radium. The rest are made by humans in labs by slamming atoms of lighter elements together at super high speeds to form heavier ones. We can fuse together elements made by stars to create exotic, short-lived elements like seaborgium and einsteinium.

You Are Made Of Stardust

From some of the most cataclysmic events in the cosmos comes all of the beauty we see here on Earth. Life, and even our planet, wouldn’t have formed without them! But we still have lots of questions about these stellar factories. 

In 2006, our Stardust spacecraft returned to Earth containing tiny particles of interstellar dust that originated in distant stars, light-years away – the first star dust to ever be collected from space and returned for study. You can help us identify and study the composition of these tiny, elusive particles through our Stardust@Home Citizen Science project.

Our upcoming Roman Space Telescope will help us learn more about how elements were created and distributed throughout galaxies, all while exploring many other cosmic questions. Learn more about the exciting science this mission will investigate on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
5 years ago

What are you most excited for in 2020?


Tags
Loading...
End of content
No more pages to load
  • vsevilla
    vsevilla liked this · 2 years ago
  • strugglingqueer
    strugglingqueer liked this · 2 years ago
  • itsjustalittlevampire
    itsjustalittlevampire liked this · 2 years ago
  • worldinmywindow2
    worldinmywindow2 liked this · 5 years ago
  • peplov
    peplov liked this · 6 years ago
  • elizabethhobson
    elizabethhobson liked this · 6 years ago
  • lindafriedman
    lindafriedman liked this · 6 years ago
  • ermakovaflorentina
    ermakovaflorentina liked this · 6 years ago
  • mimovieluvr0216
    mimovieluvr0216 liked this · 6 years ago
  • sail-to-live
    sail-to-live reblogged this · 6 years ago
  • sail-to-live
    sail-to-live liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags