Testing is underway at NASA’s Marshall Space Flight Center in Huntsville, Alabama, on the agency’s new Space Launch System, the world’s most powerful rocket. SLS and NASA’s Orion spacecraft will enable deep-space missions, beginning a new era of exploration beyond Earth’s orbit.
Engineers at Marshall have stacked four qualification articles of the upper part of SLS into a 65-foot-tall test stand using more than 3,000 bolts to hold the hardware together. Tests are currently underway to ensure the rocket hardware can withstand the pressures of launch and flight.
The integrated tests consists of:
1. Launch Vehicle Adapter
2. Frangible Joint Assembly
3. Interim Cryogenic Propulsion Stage
4. Orion Stage Adapter
Engineers are using 28 load pistons to push, pull and twist the rocket hardware, subjecting it to loads up to 40 percent greater than that expected during flight. More than 100 miles of cables are transmitting measurements across 1,900 data channels.
The Launch Vehicle Stage Adapter, LVSA, connects the SLS core stage and the Interim Cryogenic Propulsion Stage, ICPS. The LVSA test hardware is 26.5 feet tall, with a bottom diameter of 27.5 feet and a top diameter of 16.8 feet. The frangible joint, located between the LVSA and ICPS, is used to separate the two pieces of hardware during flight, allowing the ICPS to provide the thrust to send Orion onto its mission.
The ICPS is a liquid oxygen/liquid hydrogen-based system that will give Orion the big, in-space push needed to fly beyond the moon before it returns to Earth on the first flight of SLS in 2018. For this test series, the fuel tanks are filled with nonflammable liquid nitrogen and pressurized with gaseous nitrogen to simulate flight conditions. The nitrogen is chilled to the same temperature as the oxygen and hydrogen under launch conditions.
The Orion Stage Adapter connects the Orion spacecraft to the ICPS. It is 4.8 feet tall, with a 16.8-foot bottom diameter and 18-foot top diameter.
The first integrated flight for SLS and Orion will allow NASA to use the lunar vicinity as a proving ground to test systems farther from Earth, and demonstrate Orion can get to a stable orbit in the area of space near the moon in order to support sending humans to deep space, including the Journey to Mars.
For more information about the powerful SLS rocket, check out: http://nasa.gov/SLS.
While the first exoplanets—planets beyond our solar system—were discovered using ground-based telescopes, the view was blurry at best. Clouds, moisture, and jittering air molecules all got in the way, limiting what we could learn about these distant worlds.
A superhero team of space telescopes has been working tirelessly to discover exoplanets and unveil their secrets. Now, a new superhero has joined the team—the James Webb Space Telescope. What will it find? Credit: NASA/JPL-Caltech
To capture finer details—detecting atmospheres on small, rocky planets like Earth, for instance, to seek potential signs of habitability—astronomers knew they needed what we might call “superhero” space telescopes, each with its own special power to explore our universe. Over the past few decades, a team of now-legendary space telescopes answered the call: Hubble, Chandra, Spitzer, Kepler, and TESS.
Much like scientists, space telescopes don't work alone. Hubble observes in visible light—with some special features (superpowers?)—Chandra has X-ray vision, and TESS discovers planets by looking for tiny dips in the brightness of stars.
Kepler and Spitzer are now retired, but we're still making discoveries in the space telescopes' data. Legends! All were used to tell us more about exoplanets. Spitzer saw beyond visible light into the infrared and was able to make exoplanet weather maps! Kepler discovered more than 3,000 exoplanets.
Three space telescopes studied one fascinating planet and told us different things. Hubble found that the atmosphere of HD 189733 b is a deep blue. Spitzer estimated its temperature at 1,700 degrees Fahrenheit (935 degrees Celsius). Chandra, measuring the planet’s transit using X-rays from its star, showed that the gas giant’s atmosphere is distended by evaporation.
Adding the James Webb Space Telescope to the superhero team will make our science stronger. Its infrared views in increased ranges will make the previously unseen visible.
Soon, Webb will usher in a new era in understanding exoplanets. What will Webb discover when it studies HD 189733 b? We can’t wait to find out! Super, indeed.
Make sure to follow us on Tumblr for your regular dose of space!
Guess what!? Our Kepler mission has verified 1,284 new planets, which is the single largest finding of planets to date. This gives us hope that somewhere out there, around a star much like ours, we can possibly one day discover another Earth-like planet.
But what exactly does that mean? These planets were previously seen by our spacecraft, but have now been verified. Kepler’s candidates require verification to determine if they are actual planets, and not another object, such as a small star, mimicking a planet. This announcement more than doubles the number of verified planets from Kepler.
Since the discovery of the first planets outside our solar system more than two decades ago, researchers have resorted to a laborious, one-by-one process of verifying suspected planets. These follow-up observations are often time and resource intensive. This latest announcement, however, is based on a statistical analysis method that can be applied to many planet candidates simultaneously.
They employed a technique to assign each Kepler candidate a planet-hood probability percentage – the first such automated computation on this scale, as previous statistical techniques focused only on sub-groups within the greater list of planet candidates identified by Kepler.
What that means in English: Planet candidates can be thought of like bread crumbs. If you drop a few large crumbs on the floor, you can pick them up one by one. But, if you spill a whole bag of tiny crumbs, you're going to need a broom. This statistical analysis is our broom.
The Basics: Our Kepler space telescope measures the brightness of stars. The data will look like an EKG showing the heart beat. Whenever a planet passes in front of its parent star a viewed from the spacecraft, a tiny pulse or beat is produced. From the repeated beats, we can detect and verify the existence of Earth-size planets and learn about their orbits and sizes. This planet-hunting technique is also known as the Transit Method.
The number of planets by size for all known exoplanets, planets that orbit a sun-like star, can be seen in the above graph. The blue bars represent all previously verified exoplanets by size, while the orange bars represent Kepler’s 1,284 newly validated planets announced on May 10.
While our original Kepler mission has concluded, we have more than 4 years of science collected that produced a remarkable data set that will be used by scientists for decades. The spacecraft itself has been re-purposed for a new mission, called K2 -- an extended version of the original Kepler mission to new parts of the sky and new fields of study.
The above visual shows all the missions we’re currently using, and plan to use, in order to continue searching for signs of life beyond Earth.
Following Kepler, we will be launching future missions to continue planet-hunting , such as the Transiting Exoplanet Survey Satellite (TESS), and the James Webb Space Telescope. We hope to continue searching for other worlds out there and maybe even signs of life-as-we-know-it beyond Earth.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The Orion program showed its resilience this year during an unprecedented time, racking up several success stories building and testing the spacecraft in preparation for upcoming Artemis missions to the Moon. From hot fire and structural testing, to crew and service module assembly activities, progress on Orion brought the agency closer to sending the first woman and next man to the Moon by 2024, and sustainable lunar exploration by 2028.
Ensuring crew safety, a hot fire test was conducted on the Northrop Grumman-built attitude control motor – which provides steering for Orion’s launch abort system in the event of an emergency during ascent – at the company’s facility in Elkton, Maryland. The 30-second hot fire was the third and final test to qualify the motor for human missions, beginning with Artemis II.
During a three-month testing campaign at NASA’s Plum Brook Station in Sandusky, Ohio, the Orion spacecraft was subjected to the extreme temperatures and electromagnetic environment it will experience on Artemis I – Orion’s first uncrewed test flight to the Moon atop the agency’s Space Launch System (SLS) rocket. Testing wrapped up early and the vehicle was readied for its journey back to NASA’s Kennedy Space Center aboard the agency’s one-of-a-kind Super Guppy.
Before NASA astronauts fly Orion on missions to the Moon and back, testing is necessary to verify the spacecraft’s ability to withstand the stresses of launch, climb to orbit, the harsh conditions of deep space transit, and return to Earth. Engineers from NASA and its prime contractor, Lockheed Martin, completed testing on Orion’s Structural Test Article (STA) for Artemis I. The STA is structurally identical to Orion’s main spacecraft elements: the crew module, service module and launch abort system.
The first element machined for the Artemis III Orion crew module – a cone panel with openings for windows, which will provide a spectacular view – was designed by Lockheed Martin, and manufactured by AMRO Fabricating Corp., of South El Monte, California. The completed panel made its way to NASA’s Michoud Assembly Facility near New Orleans, where engineers will weld it with other elements as part of Orion’s pressure vessel.
Orion’s European Service Module primary structure for the Artemis for the Artemis III mission arrived at the Airbus facility in Bremen, Germany, from its Thales Alenia Space manufacturing site in Turin, Italy. The service module will be equipped with components to power Orion and provide life support to astronauts – such as air, water, heat and cooling – during the mission that will land the first woman and next man on the Moon.
Three spacecraft adapter jettison fairing panels were fitted onto Orion’s service module inside the Neil Armstrong Operations and Checkout Building at Kennedy. Once secured, the panels encapsulate the service module to protect it from harsh environments such as heat, wind, and acoustics as the spacecraft is propelled out of Earth’s atmosphere atop the SLS rocket during NASA’s Artemis I mission.
What exactly happens to the human body during spaceflight? The Twins Study, a 340-day investigation conducted by NASA’s Human Research Program , sought to find answers. Scientists had an opportunity to see how conditions on the International Space Station translated to changes in gene expression by comparing identical twin astronauts: Scott Kelly who spent close to a year in space and Mark Kelly who remained on Earth.
From high above the skies, for almost a year, astronaut Scott Kelly periodically collected his own blood specimens for researchers on the ground during his One-Year Mission aboard the Space Station. These biological specimens made their way down to Earth onboard two separate SpaceX Dragon vehicles. A little bit of Scott returned to Earth each time and was studied by scientists across the United States.
Totaling 183 samples from Scott and his brother, Mark, these vials helped scientists understand the changes Scott’s body underwent while spending a prolonged stay in low Earth orbit.
Because identical twins share the same genetic makeup, they are very similar on a molecular level. Twin studies provide a way for scientists to explore how our health is impacted by the environment around us.
A significant finding is the variability in gene expression, which reflects how a body reacts to its environment and will help inform how gene expression is related to health risks associated with spaceflight. While in space, researchers observed changes in the expression of Scott’s genes, with the majority returning to normal after six months on Earth. However, a small percentage of genes related to the immune system and DNA repair did not return to baseline after his return to Earth. Further, the results identified key genes to target for use in monitoring the health of future astronauts and potentially developing personalized countermeasures.
Another key finding is that Scott’s immune system responded appropriately in space. For example, the flu vaccine administered in space worked exactly as it does on Earth. A fully functioning immune system during long-duration space missions is critical to protecting astronaut health from opportunistic microbes in the spacecraft environment.
Studying protein pathways in Scott enabled researchers to look at fluid regulation and fluid shifts within his body. Shifts in fluid may contribute to vision problems in astronauts. Scientists found a specific protein associated with fluid regulation was elevated in Scott, compared with his brother Mark on Earth.
The telomeres in Scott’s white blood cells, which are biomarkers of aging at the end of chromosomes, were unexpectedly longer in space then shorter after his return to Earth with average telomere length returning to normal six months later. In contrast, his brother’s telomeres remained stable throughout the entire period. Because telomeres are important for cellular genomic stability, additional studies on telomere dynamics are planned for future one-year missions to see whether results are repeatable for long-duration missions.
Scott Kelly participated in a series of cognitive performance evaluations (such as mental alertness, spatial orientation, and recognition of emotions) administered through a battery of tests and surveys. Researchers found that during spaceflight, Scott’s cognitive function remained normal for the first half of his stay onboard the space station compared to the second half of his spaceflight and to his brother, Mark, on the ground. However, upon landing, Scott’s speed and accuracy decreased. Re-exposure to Earth’s gravity and the dynamic experience of landing may have affected the results.
In studying various measurements on Scott, researchers found that his body mass decreased during flight, likely due to controlled nutrition and extensive exercise. While on his mission, Scott consumed about 30% less calories than researchers anticipated. An increase in his folate serum (vitamin B-9), likely due to an increase of the vitamin in his pre-packaged meals, was also noted by researchers. This is bolstered by the telomeres study, which suggests that proper nutrition and exercise help astronauts maintain health while in space.
Within five months of being aboard the space station, researchers found an increase in the thickness of Scott’s arterial wall, which may have been caused by inflammation and oxidative stress during spaceflight. Whether this change is reversible is yet to be determined. They hope these results will help them understand the stresses that the human cardiovascular system undergoes during spaceflight.
In addition, the results from the Microbiome, Epigenomics, and Integrative Omics studies suggest a human body is capable of adapting to and recovering from the spaceflight environment on a molecular level.
The data from the Twins Study Investigation will be explored for years to come as researchers report some interesting, surprising, and assuring data on how the human body is able to adapt to the extreme environment of spaceflight. This study gave us the first integrated molecular view into genetic changes, and demonstrated the plasticity and robustness of a human body!
We will use the valuable data to ensure the safety and health of the men and women who go on to missions to the Moon and on to Mars.
Learn more with this video about these fascinating discoveries!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Questions coming up from….
@teamadamsperret: Congrats on your PhD!! When people ask what you do, what's your reply?
@Anonymous: How does it feel, working in NASA?
@moonlighy: How did you find your love for this job?
@redbullanddepression: what the prettiest star in the sky in your opinion? also, you are a great role model as a queer woman who is attending university next year to major in aerospace engineering!!!
NASA’s Space Launch System (SLS) rocket is on the launch pad at NASA’s Kennedy Space Center in Florida and in final preparations for the Artemis I mission to the Moon. Now that our Moon rocket is almost ready for its debut flight, we wanted to take a look back at some of the most liked photographs of our SLS rocket coming together over the years.
We asked NASA photographers to share their favorite photos of the SLS rocket for Artemis I at different phases of testing, manufacturing, and assembly. Here are their stories behind the photos:
“On this day in March 2018, crews at NASA’s Marshall Space Flight Center in Huntsville, Alabama, transported the intertank structural test article off NASA’s Pegasus barge to the Load Test Annex test facility for qualification testing.” —Emmett Given, photographer, NASA’s Marshall Space Flight Center
“This is the liquid oxygen tank structural test article as it was moved from the Pegasus barge to the West Test Area at our Marshall Space Flight Center on July 9, 2019. The tank, which is structurally identical to its flight version, was subsequently placed in the test stand for structural testing several days later. I remember it being a blazing hot day!” —Fred Deaton, photographer, NASA’s Marshall Space Flight Center
“The large components of the SLS rocket’s core stage can make you forget that there are many hands-on tasks required to assemble a rocket, too. During the mating of the liquid hydrogen tank to the forward section of the rocket’s 212-foot-tall core stage in May 2019, technicians fastened 360 bolts to the circumference of the rocket. Images like this remind me of all the small parts that have to be installed with care, expertise, and precision to create one huge Moon rocket. Getting in close to capture the teammates that work tirelessly to make Artemis a success is one of the best parts of my job.” —Eric Bordelon, photographer, NASA’s Michoud Assembly Facility
“An incredible amount of precision goes into building a rocket, including making sure that each of our SLS rocket’s four RS-25 engines is aligned and integrated into the core stage correctly. In this image from October 2019, I attempted to illustrate the teamwork and communication happening as technicians at NASA’s Michoud Assembly Facility in New Orleans do their part to help land the first woman and the first person of color on the Moon through the Artemis missions. It’s rare to see the inside of a rocket – not as much for the NASA and Boeing engineers who manufacture and assemble a rocket stage!” —Jared Lyons, photographer, NASA’s Michoud Assembly Facility
“When the fully assembled and completed core stage left the Michoud factory in January 2020, employees took a “family photo” to mark the moment. Crews transported the flight hardware to NASA’s Pegasus barge on Jan. 8 in preparation for the core stage Green Run test series at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. When I look at this photo, I am reminded of all of the hard work and countless hours the Michoud team put forth to build this next-generation Moon rocket. I am honored to be part of this family and to photograph historic moments like this for the Artemis program.” —Steven Seipel, MAF multimedia team lead, NASA’s Michoud Assembly Facility
“This photo shows workers at Stennis prepare to lift the SLS core stage into the B-2 Test Stand for the SLS Green Run test series in the early morning hours of Jan. 22, 2020. I started shooting the lift operation around midnight. During a break in the action at about 5:30 a.m., I was driving my government vehicle to the SSC gas station to fuel up, when I saw the first light breaking in the East and knew it was going to be a nice sunrise. I turned around and hurried back to the test stand, sweating that I might run out of gas. Luckily, I didn’t run out and was lucky enough to catch a beautiful Mississippi sunrise in the background, too.” —Danny Nowlin, photographer, NASA’s Stennis Space Center
“I like the symmetry in the video as it pushes toward the launch vehicle stage adapter. Teams at NASA’s Marshall Space Flight Center in Huntsville, Alabama, loaded the cone-shaped piece of flight hardware onto our Pegasus barge in July 2020 for delivery to NASA’s Kennedy Space Center in Florida. The one-point perspective puts the launch vehicle stage adapter at the center of attention, but, if you pay attention to the edges, you can see people working. It gives a sense of scale. This was the first time I got to walk around Pegasus and meet the crew that transport the deep space rocket hardware, too.” —Sam Lott, videographer, SLS Program at Marshall Space Flight Center
“This was my first time photographing a test at our Stennis Space Center, and I wasn't sure what to expect. I have photographed big events like professional football games, but I wasn't prepared for the awesome power unleashed by the Space Launch System’s core stage and four RS-25 engines during the Green Run hot fire test. Watching the sound wave ripple across the tall grass toward us, feeling the shock wave of ignition throughout my whole body, seeing the smoke curling up into the blue sky with rainbows hanging from the plume; all of it was as unforgettable as watching a football player hoist a trophy into the air.” —Michael DeMocker, photographer, NASA’s Michoud Assembly Facility
“When our SLS Moon rocket launches the agency’s Artemis I mission to the Moon, 10 CubeSats, or small satellites, are hitching a ride inside the rocket’s Orion stage adapter (OSA). BioSentinel is one of those CubeSats. BioSentinel’s microfluidics card, designed at NASA’s Ames Research Center in California’s Silicon Valley, will be used to study the impact of interplanetary space radiation on yeast. To me, this photo is a great combination of the scientific importance of Artemis I and the human touch of more than 100 engineers and scientists who have dedicated themselves to the mission over the years.” —Dominic Hart, photographer, NASA’s Ames Research Center
“I was in the employee viewing area at Kennedy when the integrated SLS rocket and Orion spacecraft was rolled out to the launchpad for its wet dress rehearsal in March 2022. I really like this photo because the sun is shining on Artemis I like a spotlight. The giant doors of the Vehicle Assembly Building are the red curtain that opened up the stage -- and the spotlight is striking the SLS because it’s the star of the show making its way to the launchpad. I remember thinking how cool that NASA Worm logo looked as well, so I wanted to capture that. It was so big that I had to turn my camera sideways because the lens I had wasn’t big enough to capture the whole thing.” —Brandon Hancock, videographer, SLS Program at NASA’s Marshall Space Flight Center
“I made this image while SLS and Orion atop the mobile launcher were nearing the end of their four-mile trek to the pad on crawler-transporter 2 ahead of launch. Small groups of employees were filtering in and out of the parking lot by the pad gate to take in the sight of the rocket’s arrival. The “We Are Going!” banner affixed to the gate in the foreground bears the handwritten names of agency employees and contractors who have worked to get the rocket and spacecraft ready for the Artemis I flight test. As we enter the final days before launch, I am proud to have made my small contribution to documenting the historic rollout for this launch to the Moon.” —Joel Kowsky, photographer, NASA Headquarters
NASA photographers will be on the ground covering the Artemis I launch. As they do, we’ll continue to share their photos on our official NASA channels.
Make sure to follow us on Tumblr for your regular dose of space!
We’re launching Landsat 9 — the ninth in a series of satellite missions from NASA and the U.S. Geological Survey (USGS) that have been collecting images of our planet for almost 50 years. Follow along as we count down to launch!
A normal launch countdown starts at 10, but for Landsat 9, we’re jumping in with L-9!
There are 9 million images in the USGS/NASA Landsat archive! They’re all available for free, for use by scientists, data managers, and anyone else who’s interested. You can even download them!
Landsat 9 won’t be orbiting alone. Working together, Landsat 9 and Landsat 8 will completely image Earth every 8 days! This helps us track changes on the planet’s surface as they happen in near-real-time.
Landsat sees all 7 continents! From Antarctic ice to growing cities to changing forests, Landsat measures land — and coastal regions — all around the globe.
Working in space is really hard. Landsat 6 never made it to orbit, an important reminder that failures can be opportunities to learn and grow. Shortly after the unsuccessful launch, engineers got to work on Landsat 7, which is still collecting data today — 22 years later.
We have 5 decades of Landsat observations, the longest continuous record of Earth’s land surfaces in existence! While building the original Landsat in the 1970s, it would have been hard to imagine that this mission would still be providing crucial data about our planet today.
For each color band collected, Landsat 9 will see 4 times the shades of light as the previous Landsat mission! With more than 16,000 different intensities detected, Landsat 9 will be able to see crucial details on our planet’s surface.
Our eyes detect 3 colors of light: red, green, and blue — and Landsat does too! But Landsat 9 also detects wavelengths that can be combined to measure things our eyes can’t, like crop stress, coral reef health, fires, and more.
There are 2 instruments on Landsat 9! The Operational Land Imager 2 collects light, and works kind of like our eyes — or cameras — to make data-rich images. The Thermal Infrared Sensor 2 measures temperature, helping monitor plant health, fires, and more.
The Landsat program is the result of 1 amazing partnership! For more than 50 years, we’ve worked with the U.S. Geological Survey to design, build, launch, and manage Landsat satellites.
Two agencies working together makes for the longest continuous record of Earth’s surfaces. Now, let’s launch this satellite!
Make sure to follow us on Tumblr for your regular dose of space!
Our Commercial Crew Program has worked with several American aerospace industry companies to facilitate the development of U.S. human spaceflight systems since 2010. The goal is to have safe, reliable and cost-effective access to and from the International Space Station and foster commercial access to other potential low-Earth orbit destinations.
We selected Boeing and SpaceX in September 2014 to transport crew to the International Space Station from the United States. These integrated spacecraft, rockets and associated systems will carry up to four astronauts on NASA missions, maintaining a space station crew of seven to maximize time dedicated to scientific research on the orbiting laboratory
We begin a new era of human spaceflight as American astronauts will once again launch on an American spacecraft and rocket from American soil to the International Space Station.
As part of our Commercial Crew Program, NASA astronauts Robert Behnken and Douglas Hurley will fly on SpaceX’s Crew Dragon spacecraft for an extended stay at the space station for the Demo-2 mission. Launch is scheduled for 4:33 p.m. EDT on Wednesday, May 27.
Demo-2 will be SpaceX’s final test flight to validate its crew transportation system, including the Crew Dragon spacecraft, Falcon 9 rocket, launch pad and operations capabilities. While docked to the space station, the crew will run tests to ensure the Crew Dragon is capable of remaining connected to the station for up to 210 days on future missions.
Our Commercial Crew Program is working with the American aerospace industry as companies develop and operate a new generation of spacecraft and launch systems capable of carrying crews to low-Earth orbit and the International Space Station. Commercial transportation to and from the station will provide expanded utility, additional research time and broader opportunities for discovery on the orbiting laboratory.
The station is a critical testbed for us to understand and overcome the challenges of long-duration spaceflight. As commercial companies focus on providing human transportation services to and from low-Earth orbit, we are freed up to focus on building spacecraft and rockets for deep space missions.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
XO Travel Bureau: https://exoplanets.nasa.gov/galleries/exoplanet-travel-bureau/ Mars Valentine’s: http://mars.nasa.gov/free-holiday-ecard/love-valentine/ Space Place Valentine’s: http://spaceplace.nasa.gov/valentines/en/ OSIRIS-REx Valentine’s: http://www.asteroidmission.org/galleries/#collectables
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, let us break it down for you. Here are a few things to know this week:
1. Up at Jupiter, It’s Down to Business
Ever since our Juno mission entered Jupiter's orbit on July 4, engineers and scientists have been busy getting their newly arrived spacecraft ready for operations. Juno's science instruments had been turned off in the days leading up to Jupiter orbit insertion. As planned, the spacecraft powered up five instruments on July 6, and the remaining instruments should follow before the end of the month. The Juno team has also scheduled a short trajectory correction maneuver on July 13 to refine the orbit.
2. The Shadows Know
Scientists with our Dawn mission have identified permanently shadowed regions on the dwarf planet Ceres. Most of these areas likely have been cold enough to trap water ice for a billion years, suggesting that ice deposits could exist there now (as they do on the planet Mercury). Dawn is looking into it.
3. Frosts of Summer
Some dusty parts of Mars get as cold at night year-round as the planet's poles do in winter, even in regions near the equator in summer, according to new findings based on Mars Reconnaissance Orbiter observations. The culprit may be Mars' ever-present dust.
4. Can You Hear Me Now?
The OSIRIS-REx spacecraft is designed to sample an asteroid and return that sample to Earth. After launch in Sept., the mission's success will depend greatly on its communications systems with Earth to relay everything from its health and status to scientific findings from the asteroid Bennu. That's why engineers from our Deep Space Network recently spent a couple of weeks performing detailed tests of the various communications systems aboard OSIRIS-REx.
5. Cometary Close-ups
The Rosetta spacecraft has taken thousands of photographs of Comet 67/P. The European Space Agency (ESA) is now regularly releasing the highest-resolution images. The word "stunning" is used a lot when referring to pictures from space—and these ones truly are. See the latest HERE.
Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts