No, that’s not the latest superhero spinoff movie - it’s an instrument launching soon from Antarctica! It’ll float on a giant balloon above 99.5% of the Earth’s atmosphere, measuring tiny particles called cosmic rays.
Right now, we have a team of several scientists and technicians from Washington University in St. Louis and NASA at McMurdo Station in Antarctica preparing for the launch of the Super Trans-Iron Galactic Element Recorder, which is called SuperTIGER for short. This is the second flight of this instrument, which last launched in Antarctica in 2012 and circled the continent for a record-breaking 55 days.
SuperTIGER measures cosmic rays, which are itty-bitty pieces of atoms that are zinging through space at super-fast speeds up to nearly the speed of light. In particular, it studies galactic cosmic rays, which means they come from somewhere in our Milky Way galaxy, outside of our solar system.
Most cosmic rays are just an individual proton, the basic positively-charged building block of matter. But a rarer type of cosmic ray is a whole nucleus (or core) of an atom - a bundle of positively-charged protons and non-charged neutrons - that allows us to identify what element the cosmic ray is. Those rare cosmic-ray nuclei (that’s the plural of nucleus) can help us understand what happened many trillions of miles away to create this particle and send it speeding our way.
The cosmic rays we’re most interested in measuring with SuperTIGER are from elements heavier than iron, like copper and silver. These particles are created in some of the most dynamic and exciting events in the universe - such as exploding and colliding stars.
In fact, we’re especially interested in the cosmic rays created in the collision of two neutron stars, just like the event earlier this year that we saw through both light and gravitational waves. Adding the information from cosmic rays opens another window on these events, helping us understand more about how the material in the galaxy is created.
While cosmic rays strike our planet harmlessly every day, most of them are blocked by the Earth’s atmosphere and magnetic field. That means that scientists have to get far above Earth - on a balloon or spacecraft - to measure an accurate sample of galactic cosmic rays. By flying on a balloon bigger than a football field, SuperTIGER can get to the edge of space to take these measurements.
It’ll float for weeks at over 120,000 feet, which is nearly four times higher than you might fly in a commercial airplane. At the end of the flight, the instrument will return safely to the ice on a huge parachute. The team can recover the payload from its landing site, bring it back to the United States, repair or make changes to it, if needed, and fly it again another year!
There are also cosmic ray instruments on our International Space Station, such as ISS-CREAM and CALET, which each started their development on a series of balloons launched from Antarctica. The SuperTIGER team hopes to eventually take measurements from space, too.
McMurdo Station is a hotspot for all sorts of science while it’s summer in the Southern Hemisphere (which is winter here in the United States), including scientific ballooning. The circular wind patterns around the pole usually keep the balloon from going out over the ocean, making it easier to land and recover the instrument later. And the 24-hour daylight in the Antarctic summer keeps the balloon at a nearly constant height to get very long flights - it would go up and down if it had to experience the temperature changes of day and night. All of that sunlight shining on the instrument's array of solar cells also gives a continuous source of electricity to power everything.
Antarctica is an especially good place to fly a cosmic ray instrument like SuperTIGER. The Earth’s magnetic field blocks fewer cosmic rays at the poles, meaning that we can measure more particles as SuperTIGER circles around the South Pole than we would at NASA scientific ballooning sites closer to the Earth’s equator.
The SuperTIGER team is hard at work preparing for launch right now - and their launch window opens soon! Follow @NASABlueshift for updates and opportunities to interact with our scientists on the ice.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The holiday season is here! You might think that your celebrations are WAY different than what is done on the International Space Station, but you might be surprised…Here are a few ways your holidays might be similar to the crew on the space station:
1. You’re Instagramming All Your Decorations
Yep! Just like on Earth, the space station crew has the capability to use social media while on orbit. If you don’t follow them, you should check it out and get an out of this world perspective of what life is like on the International Space Station. (Expedition 34 crew members assemble in the Unity node of the space station for a brief celebration of the Christmas holiday on Dec. 24, 2012.)
2. You Have to Make Sure to Call Your Relatives
You don’t want to forget to wish Aunt Sue “Happy Holidays”, she might not send you a gift next year! The crew on the space station have the ability to talk to their loved ones every day. (Cosmonaut Mikhail Tyurin, and astronauts Michael E. Lopez-Alegria and Sunita L. Williams conduct a teleconference on Dec. 25, 2006.)
3. The Family Photos Never Seem to End
The crew on the station might not be related by blood, or even country of birth, but they share living space, meals and time together just like a family on Earth. And when it comes to the holidays, you bet they’ll be snapping pictures to capture the moments. (The six Expedition 30 crew members assemble in the U.S. Lab aboard the space station for a brief celebration of the Christmas holiday on Dec. 25, 2011.)
4. Meal Prep is a Task Shared by All
When you’re making food for multiple people, everyone needs to pitch in and help…the crew on the space station included! (Astronauts Michael Fincke, Sandra Magnus and cosmonaut Yury Lonchakov, pose for a photo as they prepare to share a Christmas meal on the space station on Dec. 25, 2008.)
5. Eating Cookies is a Must
What would the holidays be like without eating cookies? They even have the chance to eat them in space…pretty cool! (Astronauts Michael Fincke and Sandra Magnus hold Christmas cookies while posing for a photo near the galley on the space station on Dec. 25, 2008.)
For more pictures from the holidays on the International Space Station, check out our Flickr album: HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
NASA is hard at work to land the first woman and the next man on the Moon, and we want to know: what would you pack for a trip to the Moon?
We will be soon conducting our last in a series of Green Run tests for the core stage of our Space Launch System (SLS) — the most powerful rocket ever built.
The series of tests is designed to gradually bring the rocket stage and all its systems to life for the first time — ensuring that it’s ready for missions to the Moon through the Artemis program.
To mark this critical time in the history of American spaceflight, we’ve been asking people like you — what would you take with you on a trip to the Moon? Social media users have been regaling us with their images, videos, and illustrations with the hashtag #NASAMoonKit!
Looking for a little inspiration? We asked some of our astronauts and NASA leaders the same question:
NASA astronaut Chris Cassidy recently took this photo from the International Space Station and posted it to his Twitter account with this caption:
“If I was on the next mission to the Moon, I would have to bring this tiny spaceman with me! He’s flown with me on all of my missions and was in my uniform pocket for all the SEAL missions I have been a part of. Kind of like a good luck charm.”
European Space Agency astronaut Tim Peake asked his two sons what they would take with them to the Moon. This is what they decided on!
Based on previous missions to space, NASA astronaut Scott Tingle would put a can of LiOH, or Lithium Hydroxide, into his #NASAMoonKit.
A LiOH can pulls carbon dioxide out of the air — very important when you're in a closed environment for a long time! Apollo 13 enthusiasts will remember that the astronauts had to turn off their environmental system to preserve power. To keep the air safe, they used LiOH cans from another part of the vehicle, but the cans were round and the fitting was square. Today we have interoperability standards for space systems, so no more square pegs in round holes!
NASA astronaut Drew Morgan received some feedback from his youngest daughter when she was in kindergarten about she would put into her #NASAMoonKit.
Although Kathy Lueders is not an astronaut, she is the head of human spaceflight at NASA! Her #NASAMoonKit includes activities to keep her entertained as well as her favorite pillow.
NASA astronaut Kenneth Bowersox knows from his past space shuttle experience what the “perfect space food” is — peanut butter. He would also put a hooded sweatshirt in his #NASAMoonKit, for those long, cold nights on the way to the Moon.
NASA astronaut Michael Collins has actually made a real-life #NASAMoonKit — when he flew to the Moon on the Apollo 11 mission! But for this time around, he tweeted that would like to bring coffee like he did the first time — but add on a good book.
There are four social media platforms that you can use to submit your work:
Instagram: Use the Instagram app to upload your photo or video, and in the description include #NASAMoonKit
Twitter: Share your image on Twitter and include #NASAMoonKit in the tweet
Facebook: Share your image on Facebook and include #NASAMoonKit in the post
Tumblr: Share your image in Tumblr and include #NASAMoonKit in the tags
If your #NASAMoonKit catches our eye, we may share your post on our NASA social media accounts or share it on the Green Run broadcast!
Click here for #NASAMoonKit Terms and Conditions.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Not since 1977 has a full moon dawned in the skies on Christmas. But this year, a bright full moon will be an added gift for the holidays.
This full moon, the last of the year, is called the Full Cold Moon because it occurs during the beginning of winter.
Make sure you get outside to check out this rare event because it won’t happen again until 2034!
Here are a few fun facts about the event and our moon:
The moon’s peak this year will occur at 6:11 a.m. EST
As you gaze up at the Christmas moon, take note that we have a spacecraft currently orbiting Earth’s moon. Our Lunar Reconnaissance Orbiter (LRO) mission has been investigating the lunar surface since 2009
More than 100 spacecraft have been launched to explore the moon
Our moon is the only celestial body beyond Earth that has been visited by human beings..so far!
Twelve human beings have walked on the surface of the moon
The moon makes a complete orbit around Earth in 27 Earth days and rotates or spins at the same rate. This causes the moon to keep the same side, or face, towards Earth during the course of its orbit
The moon is the brightest and largest feature in the night sky. Venus is second
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
In just four days this summer, miles of snow melted from Lowell Glacier in Canada. Mauri Pelto, a glaciologist at Nichols College, called the area of water-saturated snow a “snow swamp.”
These false-color images show the rapid snow melt in Kluane National Park in the Yukon Territory. The first image was taken on July 22, 2018, by the European Space Agency’s Sentinel-2; the next image was acquired on July 26, 2018, by the Landsat 8 satellite.
Ice is shown as light blue, while meltwater is dark blue. On July 26, the slush covered more than 25 square miles (40 square km).
During those four days, daily temperatures 40 miles (60 km) northeast of the glacier reached 84 degrees Fahrenheit (29 degrees Celsius) — much higher than normal for the region in July.
Read more: https://go.nasa.gov/2Q9JSeO
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What made you want to become a pilot for NASA? What’s your favorite part of this job?
Take a good look: this is the black hole at the center of our galaxy.
In the inset image, gas in the glowing orange ring surrounds the black hole's event horizon, a boundary from which nothing can escape. The ring is created by light bending in the intense gravity around Sagittarius A*, which has a mass some four million times greater than our Sun. This groundbreaking image of Sagittarius A* was taken by the Event Horizon Telescope team with data from telescopes around the world. After the EHT's iconic image of M87*, released in 2019, this is only the second time a supermassive black hole has been directly observed with its shadow.
The wider look at the space around Sagittarius A* includes data contributed by several NASA missions. The orange specks and purple tendrils were captured in infrared light by the Hubble Space Telescope, and the blue clouds represent data from our orbiting Chandra X-ray Observatory.
Fall in to the whole story: https://www.nasa.gov/mission_pages/chandra/images/sagittarius-a-nasa-telescopes-support-event-horizon-telescope-in-studying-milky-ways.html
Make sure to follow us on Tumblr for your regular dose of space!
CREDIT: X-ray: NASA/CXC/SAO; IR: NASA/HST/STScI. Inset: Radio (EHT Collaboration)
The Sun started September 2017 with flair, emitting 31 sizable solar flares and releasing several powerful coronal mass ejections, or CMEs, between Sept. 6-10.
Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth’s atmosphere to physically affect humans on the ground, however — when intense enough — they can disturb the atmosphere in the layer where GPS and communications signals travel.
CMEs are massive clouds of solar material and magnetic fields that erupt from the Sun at incredible speeds. Depending on the direction they’re traveling in, CMEs can spark powerful geomagnetic storms in Earth’s magnetic field.
As always, we and our partners had many missions observing the Sun from both Earth and space, enabling scientists to study these events from multiple perspectives. With this integrated picture of solar activity, scientists can better track the evolution of solar eruptions and work toward improving our understanding of space weather.
The National Oceanic and Atmospheric Administration (NOAA)’s Geostationary Operational Environmental Satellite-16, or GOES-16, watches the Sun’s upper atmosphere — called the corona — at six different wavelengths, allowing it to observe a wide range of solar phenomena. GOES-16 caught this footage of an X9.3 flare on Sept. 6, 2017.
This was the most intense flare recorded during the current 11-year solar cycle. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, and so on. GOES also detected solar energetic particles associated with this activity.
Our Solar Dynamics Observatory captured these images of X2.2 and X9.3 flares on Sept. 6, 2017, in a wavelength of extreme ultraviolet light that shows solar material heated to over one million degrees Fahrenheit.
JAXA/NASA’s Hinode caught this video of an X8.2 flare on Sept. 10, 2017, the second largest flare of this solar cycle, with its X-ray Telescope. The instrument captures X-ray images of the corona to help scientists link changes in the Sun’s magnetic field to explosive solar events like this flare.
Key instruments aboard our Solar and Terrestrial Relations Observatory, or STEREO, include a pair of coronagraphs — instruments that use a metal disk called an occulting disk to study the corona. The occulting disk blocks the Sun’s bright light, making it possible to discern the detailed features of the Sun’s outer atmosphere and track coronal mass ejections as they erupt from the Sun.
On Sept. 9, 2017, STEREO watched a CME erupt from the Sun. The next day, STEREO observed an even bigger CME. The Sept. 10 CME traveled away from the Sun at calculated speeds as high as 7 million mph, and was one of the fastest CMEs ever recorded. The CME was not Earth-directed: It side-swiped Earth’s magnetic field, and therefore did not cause significant geomagnetic activity. Mercury is in view as the bright white dot moving leftwards in the frame.
Like STEREO, ESA/NASA’s Solar and Heliospheric Observatory, or SOHO, uses a coronagraph to track solar storms. SOHO also observed the CMEs that occurred during Sept. 9-10, 2017; multiple views provide more information for space weather models. As the CME expands beyond SOHO’s field of view, a flurry of what looks like snow floods the frame. These are high-energy particles flung out ahead of the CME at near-light speeds that struck SOHO’s imager.
Our Interface Region Imaging Spectrometer, or IRIS, captured this video on Sept. 10, 2017, showing jets of solar material swimming down toward the Sun’s surface. These structures are sometimes observed in the corona during solar flares, and this particular set was associated with the X8.2 flare of the same day.
Our Solar Radiation and Climate Experiment, or SORCE, collected the above data on total solar irradiance, the total amount of the Sun’s radiant energy, throughout Sept. 2017. While the Sun produced high levels of extreme ultraviolet light, SORCE actually detected a dip in total irradiance during the month’s intense solar activity.
A possible explanation for this observation is that over the active regions — where solar flares originate — the darkening effect of sunspots is greater than the brightening effect of the flare’s extreme ultraviolet emissions. As a result, the total solar irradiance suddenly dropped during the flare events.
Scientists gather long-term solar irradiance data in order to understand not only our dynamic star, but also its relationship to Earth’s environment and climate. We are ready to launch the Total Spectral solar Irradiance Sensor-1, or TSIS-1, this December to continue making total solar irradiance measurements.
The intense solar activity also sparked global aurora on Mars more than 25 times brighter than any previously seen by NASA’s Mars Atmosphere and Volatile Evolution, or MAVEN, mission. MAVEN studies the Martian atmosphere’s interaction with the solar wind, the constant flow of charged particles from the Sun. These images from MAVEN’s Imaging Ultraviolet Spectrograph show the appearance of bright aurora on Mars during the September solar storm. The purple-white colors show the intensity of ultraviolet light on Mars’ night side before (left) and during (right) the event.
For all the latest on solar and space weather research, follow us on Twitter @NASASun or Facebook.
GOES images are courtesy of NOAA. Hinode images are courtesy of JAXA and NASA. SOHO images are courtesy of ESA and NASA.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We’re taking time to highlight our progress and accomplishments over the past 8 years. Join our historical journey!
President Barack Obama visited our Kennedy Space Center in Florida to deliver remarks on the bold new course the administration is charting for America’s space program. During a speech at the center, President Obama said, “I believe we can send humans to orbit Mars and return them safely to Earth. And a landing on Mars will follow. And I expect to be around to see it.” R
Our Commercial Crew and Cargo Program is investing financial and technical resources to stimulate efforts within the private sector to develop safe, reliable and cost-effective space transportation systems. This program has allowed us to continue to reach low-Earth orbit, even after the retirement of the Space Shuttle Program. In the coming years, we will once again launch U.S. astronauts from American soil to the International Space Station through this commercial partnership.
Our Vehicle Assembly Building (VAB) at Kennedy Space Center served through the Apollo and Space Shuttle Programs, and is now undergoing renovations to accommodate future launch vehicles…like our Space Launch System (SLS) rocket that will carry astronauts to deep space destinations, like Mars. Already, shuttle-era work platforms have been removed from the VAB to make way for our advanced heavy-lift launch vehicle, SLS.
For the first time since our Apollo-era rockets and space shuttles lifted off on missions from Launch Complex 39 at our Kennedy Space Center in Florida, one of the launch pads is undergoing extensive upgrades to support our 21st century space launch complex. At launch pad B, workers are making upgrades to support our Space Launch System (SLS) rocket and a variety of other commercial launch vehicles. .
Our commercial partnerships with companies like SpaceX and Orbital ATK are allowing us to find new ways to resupply the International Space Station. Orbital ATK’s Cygnus cargo spacecraft is shown being captured using the Station’s Canadarm2 robotic arm. Packed with more than 5,100 pounds of cargo and research equipment, the vehicle made Orbital ATK's fifth commercial resupply flight to the station in October 2016.
After a seven-year journey, our New Horizons spacecraft arrived at dwarf planet Pluto. It captured this high-resolution enhanced color view of the planet on July 14, 2015. The image combines blue, red and infrared images taken by the craft’s imaging camera. Pluto’s surface sports a remarkable range of subtle colors, enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many land forms have their own distinct colors, which tell a complex geological and climatological story.
Juno’s 2011 launch brought it into orbit around Jupiter. This composite image depicts Jupiter’s cloud formations as seen through the eyes of Juno’s Microwave Radiometer (MWR) instrument as compared to the top layer, a Cassini Imaging Science Subsystem image of the planet. The MWR can see several hundred miles (kilometers) into Jupiter’s atmosphere with its largest antenna. The belts and bands visible on the surface are also visible in modified form in each layer below.
As we strived to make deep-space missions a reality, on Dec. 5, 2014, a Delta IV Heavy rocket lifted off from Cape Canaveral carrying our Orion spacecraft on an unpiloted flight test to Earth orbit. During the two-orbit, four-and-a-half hour mission, engineers evaluated the systems critical to crew safety, the launch abort system, the heat shield and the parachute system.
Meet the Space Launch System, our latest rocket system and see how it stacks up (no pun intended) to earlier generations of launch vehicles. While we engaged commercial partners to help us reach low-Earth orbit, we also were able to focus on deep-space exploration. This resulted in the creation of SLS, the world’s most powerful rocket and the one that will carry humans to deep-space destinations, like Mars.
Our latest generation of small satellite technology represents a new way of advancing scientific research and reducing costs. These small sats are part of a technology demonstration that were deployed from the International Space Station in December 2016.
In 2013, we created a standalone technology development organization at NASA. Why? This new organization was an outgrowth of President Obama’s recognition of the critical role that space technology and innovation will play in enabling both future space missions and bettering life on Earth. The President’s most recent budget request included $4 million per year for our Centennial Challenges prizes. This program seeks innovations from diverse and non-traditional sources and competitors are not supported by government funding. Awards are only made to successful teams when the challenges are met. Throughout this administration (2009 – 2016), more than $6.5 million has been awarded to winners.
Did you know that many technologies originally designed for space exploration are now being used by the general public? Yes, there’s space in your life! We have a long history of transferring technology to the private sector, things we like to call NASA Spinoffs. From enriched baby formula, to digital camera sensors…you may be surprised where this technology came from.
In 2014, the Obama Administration announced that the United States would support the extension of the International Space Station to at least 2024. This gave the station a decade to continue its already fruitful microgravity research mission. This offered scientists and engineers the time they need to ensure the future of exploration, scientific discoveries and economic development.
Former NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko spent a year in space to help us understand the impacts of long-duration spaceflight on the human body. The studies performed throughout their stay will yield beneficial knowledge on the medical, psychological and biomedical challenges faced by astronauts that will one day travel to Mars. Scott Kelly was a particularly interesting candidate for the job, as he has a twin brother. While Scott spent a year on the International Space Station, his brother Mark spent the year on Earth. Comparing test results from both subjects will provide an even deeper understanding of the human body and how it reacts to the space environment.
From one MILLION miles away, our EPIC camera on the Deep Space Climate Observatory (DSCOVR) satellite returned its first view of the entire sunlit side of Earth in 2015. Because of this spacecraft, you can now see a daily series of images of our home planet! These images are available 12 to 36 hours after they are acquired.
The James Webb Space Telescope represents a giant leap forward in our quest to understand the universe and our origins. The successor to the Hubble Space Telescope, JWST is designed to examine every phase of cosmic history: from the first luminous glows after the Big Bang to the formation of galaxies, stars, and planets to the evolution of our own solar system. More:
Our commitment to advancing aeronautics has led to developments in today’s aviation that have made air travel safer than ever. In fact, every U.S. aircraft flying today and every U.S. air traffic control tower uses NASA-developed technology in some way. Streamlined aircraft bodies, quieter jet engines, techniques for preventing icing, drag-reducing winglets, lightweight composite structures, software tools to improve the flow of tens of thousands of aircraft through the sky, and so much more are an everyday part of flying thanks to our research that traces its origins back to the earliest days of aviation. Our green aviation technologies are dramatically reducing the environmental impact of aviation and improving its efficiency while maintaining safety in more crowded skies, and paving the way for revolutionary aircraft shapes and propulsion.
History is about to repeat itself as the Quiet Supersonic Technology, or QueSST, concept begins its design phase to become one of the newest generation of X-planes. Over the past seven decades, our nation’s best minds in aviation designed, built and flew a series of experimental airplanes to test the latest fanciful and practical ideas related to flight. Known as X-planes, we are again are preparing to put in the sky an array of new experimental aircraft, each intended to carry on the legacy of demonstrating advanced technologies that will push back the frontiers of aviation.
Blazing the trail for safely integrating drones into the national airspace, we have been testing and researching uncrewed aircraft. The most recent “out of sight” tests are helping us solve the challenge of drones flying beyond the visual line of sight of their human operators without endangering other aircraft.
Our Solar Dynamics Observatory, which launched in 2010, observes the sun in unparalleled detail and is yet another mission designed to understand the space in which we live. In this image, the sun, our system’s only star seems to be sending us a message. A pair of giant filaments on the face of the sun form what appears to be an enormous arrow pointing to the right. If straightened out, each filament would be about as long as the sun’s diameter—1 million miles long. Such filaments are cooler clouds of solar material suspended above the sun's surface by powerful magnetic forces. Filaments can float for days without much change, though they can also erupt, releasing solar material in a shower that either rains back down or escapes out into space, becoming a moving cloud known as a coronal mass ejection, or CME.
There are selfies and there are selfies—from a world more than 33 million miles away. When the Curiosity Rover launched on Nov. 6, 2011, to begin a 10-month journey to the Red Planet, who knew it would be so photogenic. Not only has Curiosity sent back beauty shots of itself, its imagery has increased our knowledge of Mars manyfold. But it’s not just a camera; onboard are an array of scientific instruments designed to analyze the Red Planet’s soil, rocks and chemical composition.
On Dec. 14, 2015, we announced that astronaut applications were open on USAJOBS. The window for applications closed on Feb. 18 with a record turnout! We received more than 18,300 applications from excited individuals from around the country, all hoping to join the 2017 astronaut class. This surpassed the more than 6,100 received in 2012, and the previous record of 8,000 applicants in 1978.
Asteroids are a part of our solar system and in our quest to learn more about their origins, we sent the OSIRIS-Rex, the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, to rendezvous with comet Bennu and return a sample of the comet to scientists here on Earth. Along the way, the mission will be multitasking during its two-year outbound cruise to search for elusive “Trojan” asteroids. Trojans are asteroids that are constant companions to planets in our solar system as they orbit the sun, remaining near a stable point 60 degrees in front of or behind the planet.
In December 1995, the first exoplanet (a planet outside our solar system) was found. Since then, our Kepler mission has surveyed the Milky Way to verify 2,000+ exoplanets. On July 23, 2015, the Kepler mission confirmed the discovery of the first Earth-sized planet in the habitable zone. Not only that, but the planet orbits a sun very much like our own.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This month, in honor of Valentine's Day, we'll focus on celestial star pairs and constellation couples.
Let's look at some celestial pairs!
The constellations Perseus and Andromeda are easy to see high overhead this month.
According to lore, the warrior Perseus spotted a beautiful woman--Andromeda--chained to a seaside rock. After battling a sea serpent, he rescued her.
As a reward, her parents Cepheus and Cassiopeia allowed Perseus to marry Andromeda.
The great hunter Orion fell in love with seven sisters, the Pleiades, and pursued them for a long time. Eventually Zeus turned both Orion and the Pleiades into stars.
Orion is easy to find. Draw an imaginary line through his belt stars to the Pleiades, and watch him chase them across the sky forever.
A pair of star clusters is visible on February nights. The Perseus Double Cluster is high in the sky near Andromeda's parents Cepheus and Cassiopeia.
Through binoculars you can see dozens of stars in each cluster. Actually, there are more than 300 blue-white supergiant stars in each of the clusters.
There are some colorful star pairs, some visible just by looking up and some requiring a telescope. Gemini's twins, the brothers Pollux and Castor, are easy to see without aid.
Orion's westernmost, or right, knee, Rigel, has a faint companion. The companion, Rigel B, is 500 times fainter than the super-giant Rigel and is visible only with a telescope.
Orion's westernmost belt star, Mintaka, has a pretty companion. You'll need a telescope.
Finally, the moon pairs up with the Pleiades on the 22nd and with Pollux and Castor on the 26th.
Watch the full What’s Up for February Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Today is the day that our commercial partner, Orbital ATK, has set for the launch of its fourth contracted mission to the International Space Station. The Cygnus spacecraft will carry more than 7,000 pounds of science and research, crew supplies and vehicle hardware to the orbital laboratory.
This mission is the first Cygnus mission to utilize NASA’s Kennedy Space Center and launch from the Cape Canaveral Air Force base in Cape Canaveral, Florida.
The cargo will be launched inside the Orbital ATK Cygnus spacecraft using a United Launch Alliance Atlas V rocket.
But how does it get there? Is there someone on the ground controlling and directing it to the space station? Surprisingly, no. After launch, the Cygnus spacecraft is automated until it gets near the station. At that point, the robotic controllers use the CanadArm2 to reach out and grapple it (grab), and then berth (connect) it to the station.
In order to keep the thousands of pounds of supplies, science and hardware from moving during launch and in flight, the cargo is packed in bags and strapped to the walls.
The new experiments arriving to the space station will challenge and inspire future scientists and explorers. A few of the highlights are:
The Packed Bed Reactor Experiment (PBRE) - This experiment (image below) will study the behavior of gases and liquids when they flow simultaneously through a column filled with fixed porous media. The findings from this will be of interest in many chemical and biological processing systems as well as many geophysical applications.
BASS-M (Burning and Suppression of Solids – Milliken) - This experiment (image below) will evaluate flame retardant and/or resistant textiles as a mode of personal protection from fire-related hazards. Studying this in microgravity will aid in better designs for future textiles and benefit those who wear flame retardant and/or resistant protective apparel such as military personnel and civilian workers in the electrical and energy industries.
Space Automated Bioproduct Lab (SABL) - This equipment is a single locker-sized facility (image below) that will enable a wide variety of fundamental, applied and commercial life sciences research. It will also benefit K-16 education-based investigations aboard the space station. Research will be supported on microorganisms (bacteria, yeast, algae, fungi, viruses, etc.), animal cells and tissues and small plant and animal organisms.
Nodes Satellites – These satellites (image below) will be deployed from the space station to demonstrate new network capabilities critical to the operation of swarms of spacecraft. They will show the ability of multi-spacecraft swarms to receive and distribute ground commands, exchange information periodically and more.
Holiday Surprises - With the upcoming holidays the crew’s family has the opportunity to send Christmas gifts to their family members on the International Space Station.
The spacecraft will spend more than a month attached to the space station before it’s detached for re-entry into Earth’s atmosphere in January 2016, disposing of about 3,000 pounds of trash. It will disintegrate while entering the atmosphere.
Launch coverage begins at 4:30 p.m. EST on Thursday, Dec. 3 on NASA Television. Cygnus is set to lift off on the Atlas V at 5:55 p.m., the beginning of a 30-minute launch window, from Space Launch Complex 41.
In addition to launch coverage, a post-launch briefing will be held approximately two hours after launch. All briefings will air live on NASA TV.
UPDATE: Due to poor weather conditions, today’s launch has been scrubbed and moved to tomorrow at 5:33 p.m. EST. The forecast for tomorrow calls for a 30% chance of acceptable conditions at launch time. Continuous countdown coverage will be available on NASA Television starting at 4:30 p.m.
UPDATE 2: The uncrewed Cygnus cargo ship launched at 4:44 p.m. EST on Sunday, Dec. 6 on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida to begin its three-day journey to the orbiting laboratory.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts