What’s Up - February 2018

What’s Up - February 2018

What’s Up For February?

image

This month, in honor of Valentine's Day, we'll focus on celestial star pairs and constellation couples.

image

Let's look at some celestial pairs!

image

The constellations Perseus and Andromeda are easy to see high overhead this month.

image

According to lore, the warrior Perseus spotted a beautiful woman--Andromeda--chained to a seaside rock. After battling a sea serpent, he rescued her. 

image

As a reward, her parents Cepheus and Cassiopeia allowed Perseus to marry Andromeda.

image

The great hunter Orion fell in love with seven sisters, the Pleiades, and pursued them for a long time. Eventually Zeus turned both Orion and the Pleiades into stars.

image

Orion is easy to find. Draw an imaginary line through his belt stars to the Pleiades, and watch him chase them across the sky forever.

image

A pair of star clusters is visible on February nights. The Perseus Double Cluster is high in the sky near Andromeda's parents Cepheus and Cassiopeia.

image

Through binoculars you can see dozens of stars in each cluster. Actually, there are more than 300 blue-white supergiant stars in each of the clusters.

What’s Up - February 2018

There are some colorful star pairs, some visible just by looking up and some requiring a telescope. Gemini's twins, the brothers Pollux and Castor, are easy to see without aid.

What’s Up - February 2018

Orion's westernmost, or right, knee, Rigel, has a faint companion. The companion, Rigel B, is 500 times fainter than the super-giant Rigel and is visible only with a telescope. 

What’s Up - February 2018

Orion's westernmost belt star, Mintaka, has a pretty companion. You'll need a telescope.

What’s Up - February 2018

Finally, the moon pairs up with the Pleiades on the 22nd and with Pollux and Castor on the 26th.

Watch the full What’s Up for February Video: 

There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

More Posts from Nasa and Others

5 years ago

Five Reasons You Wouldn’t Want to Live Near a Black Hole

Black holes are mystifying yet terrifying cosmic phenomena. Unfortunately, people have a lot of ideas about them that are more science fiction than science. Black holes are not cosmic vacuum cleaners, sucking up anything and everything nearby. But there are a few ways Hollywood has vastly underestimated how absolutely horrid black holes really are.

Black holes are superdense objects with a gravitational pull so strong that not even light can escape them. Scientists have overwhelming evidence for two types of black holes, stellar and supermassive, and see hints of an in-between size that’s more elusive. A black hole’s type depends on its mass (a stellar black hole is five to 30 times the mass of the Sun, while a supermassive black hole is 100,000 to billions of times the mass of the Sun), and can determine where we’re most likely to find them and how they formed. 

image

Let's focus on supermassive black holes for now, shall we? Supermassive black holes exist in the centers of most large galaxies. Some examples are Sagittarius A* (that’s pronounced “A-star”) at the center of our Milky Way and the black hole at the center of galaxy Messier 87, which became famous earlier this year when the Event Horizon Telescope released an image of it. As the name suggests, these black holes are — well — supermassive. Why are they so enormous? Scientists suspect it has something to do with their locations in the centers of galaxies. With so many stars and lots of gas there, they can grow large rapidly (astronomically speaking).

You may have seen a portrayal of planets around supermassive black holes in the movies. But what would the conditions on those worlds actually look like? What kinds of problems might you face?

image

1. 100% chance for cosmic winds

“Space weather” describes the changing conditions in space caused by stellar activity. Solar eruptions produce intense radiation and clouds of charged particles that sweep through our planetary system and can affect technology we rely on, damaging satellites and even causing electrical blackouts. Thankfully, Earth’s atmosphere and magnetic field protect us from most of the storms produced by the Sun.

image

Now, space weather near a black hole would be interesting if the black hole is consuming matter. It could be millions — perhaps even billions — of times stronger than the Sun’s, depending on how close the planet is. Even though black holes don’t emit light themselves, their surroundings can be very bright and hot. Accretion disks — swirling clouds of matter falling toward black holes — emit huge amounts of radiation and particles and form incredible magnetic fields. In them, you’d also have to worry about debris traveling at nearly the speed of light, slamming into your planet. It’d be hard to avoid getting hit by anything coming at you that fast!

2. Hello? Can you still hear us?

We launched the Parker Solar Probe to learn more about the Sun. If you lived on a world around a supermassive black hole, you'd probably want to study it too. But it would be a lot more challenging!

You’d have to launch satellites that could withstand the extreme space weather. And then there would be major communication issues — a time-delay in messages sent between the spacecraft and your planet.

image

On Earth we experience time gaps when talking to missions on Mars. It takes up to 22 minutes to hear back from them. Around a black hole, that effect would be much more extreme. Objects closer to the black hole would experience time differently, making things seem slower than they actually are. That means the delay in communications with a satellite launched toward a black hole would become longer and longer as it got closer and closer. By the time you hear back from your satellite, it might be gone!

3. Can someone turn off the lights?

Supermassive black holes at the centers of galaxies typically have a lot of nearby stars. In fact, if you were to live on a planet near the center of the Milky Way, there would be so many stars you could read at night without using electricity.

image

That sounds kind of cool, right? Maybe — unless your planet is actually orbiting the supermassive black hole. Being that close, the light from all those stars would be concentrated and amplified due to the extreme gravity around the black hole, making the light stronger and even causing scary beams of strong radiation. You would want to have a bucket of sunscreen ready to apply often — or simply never leave your home.

4. Did someone leave the oven on?

And not only would it be really bright, it would also be really toasty, thanks to radioactive heating! Those stars hanging around the black hole emit not just light but ghostly particles called neutrinos— speedy, tiny particles that weigh almost nothing and rarely interact with anything. While neutrinos coming from our Sun aren't enough to harm us, the volume that would be coming from the cluster of stars near a black hole would be enough to radioactively heat up whatever they slam into.

image

The planet would absorb neutrinos, which would, in turn, warm up the core of the planet eventually making it unbearably hot. It would be like living in a nuclear reactor. At least you’d be warm and could toss your winter coats?

5. You are what you eat?

If your planet got too close to a black hole, you’d likely face a gruesome fate. The forces from the black hole's gravity stretch matter, essentially turning it into a noodle. We call this spaghettification. (Beware the cosmic pasta-making machine?) Imagine yourself falling feet-first toward a black hole. Spaghettification happens because the gravity at your feet is sooooo much stronger than that at your head that you start to stretch out!

image

Maybe you wish you could simply drift around a black hole in a spacecraft and enjoy the view, or travel through one like science fiction depicts. Sadly, even if we had the means to get close to a black hole, it clearly wouldn’t be that simple or even very enjoyable.

Watch Dr. Jeremy Schnittman’s talk on the science behind the black hole from the movie Interstellar here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Five Fun Facts for the 2015 Geminid Meteor Shower

The Geminid meteor shower peaks this weekend starting on Sunday, Dec. 13. Here are a few fun facts:

Fact #1:

image

The Geminid meteor shower can be seen from both the Northern and Southern hemispheres. Because they are pieces of an asteroid, Geminid meteoroids can penetrate deeper into Earth’s atmosphere than most other meteor showers, creating beautiful long arcs viewable for 1-2 seconds.

Fact #2:

image

Geminids are pieces of debris from an object called 3200 Phaethon. It was long thought to be an asteroid, but is now classified as an extinct comet.

Phaethon’s eccentric orbit around the sun brings it well inside the orbit of Mercury every 1.4 years. Traveling this close to the sun blasts Phaethon with solar heat that may boil jets of dust into the Geminid stream. Of all the debris streams Earth passes through each year, the Geminid shower is the most massive. When we add up the amount of dust in this stream, it outweighs other streams by factors of 5 to 500.

Fact #3:

image

Because they are usually bright, many people say Geminid meteors show color. In addition to glowing white, they have been described as appearing yellow, green, or blue.

Geminid meteoroids hit earth's atmosphere traveling 78,000 mph or 35 km/s. That may sound fast, but it is actually somewhat slow compared to other meteor showers.

Fact #4:

image

Geminids are named because the meteors seem to radiate from the constellation of Gemini. The shower lasts a couple of weeks, with meteors typically seen Dec. 4-17, peaking near Dec 13-14.

Fact #5:

image

The Geminids started out as a relatively weak meteor shower when first discovered in the early 19th century. Over time, it has grown into the strongest annual shower, with theoretical rates above 120 meteors per hour.

Join In:

This Sunday, Dec. 13, our Marshall Space Flight Center in Huntsville, Alabama, will host a live tweet chat highlighting the 2015 Geminid meteor shower. This online, social event will occur 11 p.m. EST Dec. 13, until 3 a.m. EST on Dec. 14. To join the conversation and ask questions, use #askNASA or @NASA_Marshall.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What is your advise to people who wanna be astronaut?


Tags
8 years ago

What’s Up for September 2016

image

We won’t have a solar eclipse until Aug. 21, 2017, but observers in central Africa will see an annular eclipse, where the moon covers most but not all of the sun, on Sept. 1. Observers always need to use safe solar eclipse glasses or filters on telescopes, binoculars and cameras.

image

Also this month, there are two minor meteor showers, both with about 5 swift and bright meteors per hour at their peak, which will be near dawn. The first is the Aurigid shower on Sept. 1. The new moon on the first means the sky will be nice and dark for the Aurigids. 

image

The second shower is the Epsilon Perseids on Sept. 9. The first quarter moon sets on the 9th at midnight, just in time for the best viewing of the Perseids.

image

There are many nice pair-ups between the moon and planets this month. You can see the moon between Venus and Jupiter on Sept. 2, and above Venus on the 3rd, right after sunset low on the West-Southwest horizon. On the 15th the nearly full moon pairs up with Neptune, two weeks after its opposition, when the 8th planet is closest to Earth in its orbit around the sun.

Watch the full September “What’s Up” video for more: 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

How is Biotechnology Preparing us to Live on the Moon and Mars?

The adventures awaiting astronauts on future long-duration missions have technologists researching sustainable ways to live away from Earth. We’re using what we know from almost 20 years of a continuous human presence on the International Space Station and looking at new technologies to prepare for missions to the Moon and Mars. 

image

Biotechnology – technology that uses living organisms to make products that provide a new use – is key to this research.

With biotechnology, we’re developing new ways to manufacture medicines, build habitats and more in space. Here are some ways biotechnology is advancing spaceflight and how the same research is reaping benefits on Earth.

image

Healthy astronauts

Planning ways to supply food for a multi-year mission on the Moon or Mars may require making food and nutrients in space. Our scientists are testing an early version of a potential solution: get microorganisms to produce vital nutrients like those usually found in vegetables. Then, whenever they’re needed, astronauts can drink them down. 

The microorganisms are genetically engineered to rapidly produce controlled quantities of essential nutrients. Because the microorganisms and their food source both have a long shelf-life at room temperature and only need water to be activated, the system provides a simple, practical way to produce essential nutrients on-demand. The same kind of system designed for space could also help provide nutrition for people in remote areas of our planet.

Our researchers are evaluating the first batches of BioNutrient samples that came back to Earth after an experimental run on the International Space Station.

image

Because space travel takes a toll on the human body, we’re also researching how biotechnology can be used to advance the field of regenerative medicine. 

Related cells that are joined together are collectively referred to as tissue, and these cells work together as organs to accomplish specific functions in the human body. Blood vessels around the cells vascularize, providing nutrients to the tissue to keep it healthy. 

Our Vascular Tissue Challenge offers a $500,000 prize to be divided among the first three teams that successfully create thick, metabolically-functional human vascularized organ tissue in a controlled laboratory environment. The vascularized, thick-tissue models resulting from this challenge will function as organ analogs, or models, that can be used to study deep space environmental effects, such as radiation, and to develop strategies to minimize the damage to healthy cells.  

Plant factories

Humans have relied on plants’ medicinal qualities for thousands of years for everything from alleviating minor ailments to curing serious diseases. Now, researchers are trying to simplify the process of turning plants into medicine (i.e. how to make it compact and portable). If successful, the cost of biomanufacturing pharmaceuticals on Earth could go down, and plants could produce medicines in space.

image

Creating medicine on demand isn’t something we typically do, so we’re turning to experts in the field for help. Researchers at the University of California, Davis are transforming plants into mini-medicine factories for future Mars missions. They’re genetically altering an ordinary type of lettuce so that it produces a protein called parathyroid hormone. This hormone is an approved drug for treating osteoporosis, a common condition where bones become weak and brittle.

image

This type of research is important to long duration spaceflight. When astronauts land on Mars, they will have spent more than half a year in zero gravity on the flight there, and they’ll need to be strong and ready to explore. Having the technologies needed to treat that possibility, and other unanticipated health effects of long duration spaceflight, is crucial.

Growing habitats

Vitamins aren’t the only thing astronauts could be growing on Mars; we’re exploring technologies that could grow structures out of fungi.

An early-stage research project underway at our Ames Research Center is prototyping technologies that could "grow" habitats on the Moon, Mars and beyond out of life – specifically, fungi and the unseen underground threads that make up the main part of the fungus. These tiny threads build complex structures with extreme precision, networking out into larger structures like mushrooms. With the right conditions, they can be coaxed into making new structures – ranging from a material similar to leather to the building blocks for a planetary home.

The myco-architecture project envisions a future where astronauts can construct a habitat out of the lightweight fungi material. Upon arrival, by unfolding a basic structure made up of dormant fungi and simply adding water, the fungi would grow around that framework into a fully functional human habitat – all while being safely contained to avoid contaminating the external environment.

image

Recycling waste

Once astronauts arrive on the surface of the Moon or a more distant planet, they’ll have to carefully manage garbage. This waste includes some stuff that gets flushed on Earth.

Today, we’re already using a recycling system on the space station to turn urine into drinking water. Poop on the other hand is contained then disposed of on spacecraft returning to Earth. That won’t be possible on more distant journeys, so, we’re turning to biomanufacturing for a practical solution.

Biology can serve as an effective recycling factory. Microorganisms such as yeast and algae feed on all kinds of things classified as “mission waste.” Processing their preferred form of nourishment generates products that can serve as raw materials used to make essential supplies like nutrients, medicines, plastic and fuel.

image

By taking a careful look at biological processes, we hope to develop new, lightweight systems to leverage that biology to do some helpful in-space manufacturing.

From Space to Earth

Biotechnology is preparing us for longer space missions to the Moon and then Mars – farther from Earth than humans have ever traveled before. As we prepare for those exciting missions, we’re also conducting research on the space station for the primary benefit of everyone on Earth.

January is National Biotechnology Month. To learn more about some of the ways NASA is using biotechnology to solve challenges in space and improve life on Earth, visit this link. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Juno: Exploring Jupiter’s Intense Radiation

Since 2011, our Juno spacecraft has been heading towards Jupiter, where it will study the gas giant’s atmosphere, aurora, gravity and magnetic field. Along the way, Juno has had to deal with the radiation that permeates space.

All of space is filled with particles, and when these particles get moving at high speeds, they’re called radiation. We study space radiation to better protect spacecraft as they travel through space, as well as to understand how this space environment influences planetary evolution. Once at Jupiter, Juno will have a chance to study one of the most intense radiation environments in our solar system.

Juno: Exploring Jupiter’s Intense Radiation

Near worlds with magnetic fields – like Earth and Jupiter – these fast-moving particles can get trapped inside the magnetic fields, creating donut-shaped swaths of radiation called radiation belts.

Jupiter’s radiation belts – the glowing areas in the animation below – are especially intense, with particles so energetic that they zip up and down the belts at nearly the speed of light.

Juno: Exploring Jupiter’s Intense Radiation

Earth also has radiation belts, but they aren’t nearly as intense as Jupiter’s – why? First, Jupiter’s magnetic field is much stronger than Earth’s, meaning that it traps and accelerates faster particles.

Second, while both Earth’s and Jupiter’s radiation belts are populated with particles from space, Jupiter also has a second source of particles – its volcanically active moon Io. Io’s volcanoes constantly release plumes of particles that are energized by Jupiter’s magnetic field. These fast particles get trapped in Jupiter’s radiation belts, making the belts that much stronger and more intense.  

Juno: Exploring Jupiter’s Intense Radiation

In addition to studying this vast space environment, Juno engineers had to take this intense radiation into consideration when building the spacecraft. The radiation can cause instruments to degrade, interfere with measurements, and can even give the spacecraft itself an electric charge – not good for something with so many sensitive electronics.  

Since we know Jupiter is a harsh radiation environment, we designed Juno with protections in place to keep it safe. Most of Juno’s electronics live inside a half-inch-thick titanium vault, where most of the radiation can’t reach them. We also planned Juno’s orbit to swoop in very close to Jupiter’s surface, underneath the most intense pockets of radiation in Jupiter’s radiation belts.

Juno: Exploring Jupiter’s Intense Radiation

Juno arrives at Jupiter on July 4th. Throughout its time orbiting the planet, it will send back data on Jupiter’s magnetic field and energetic particles, helping us understand this intense radiation environment better than ever before.

For updates on the Juno mission, follow the spacecraft on Facebook, Twitter, YouTube and Tumblr.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago
Artist’s concept showing the seven planets discovered orbiting a Sun-like star. The system, called Kepler-385, was identified using data from NASA’s Kepler mission. Credit: NASA/Daniel Rutter

Hot New Planetary System Just Dropped.

We hope you like your planetary systems extra spicy. 🔥

A new system of seven sizzling planets has been discovered using data from our retired Kepler space telescope.

Named Kepler-385, it’s part of a new catalog of planet candidates and multi-planet systems discovered using Kepler.

The discovery helps illustrate that multi-planetary systems have more circular orbits around the host star than systems with only one or two planets.

Our Kepler mission is responsible for the discovery of the most known exoplanets to date. The space telescope’s observations ended in 2018, but its data continues to paint a more detailed picture of our galaxy today.

Here are a few more things to know about Kepler-385:

Artist’s concept of Kepler 385, a seven-planet system with a Sun-like star to the left of the image and the planets varying in color and size are arranged in a straight line from inner-most to outer-most going from left to right. Credit: NASA/Daniel Rutter

All seven planets are between the size of Earth and Neptune.

Artist’s concept showing two of the seven planets discovered orbiting a Sun-like star. Credit: NASA/Daniel Rutter

Its star is 10% larger and 5% hotter than our Sun.

This artist concept shows NASA's planet-hunting Kepler spacecraft among the stars. The spacecraft looks like a golden cylinder with one end cut diagonally. Silver metal surrounds the cylinder, with solar panels all along one portion. Credit: NASA/ESA/CSA/STScI

This system is one of over 700 that Kepler’s data has revealed.

The planets’ orbits have been represented in sound.

Now that you’ve heard a little about this planetary system, get acquainted with more exoplanets and why we want to explore them.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
3 years ago

Lasers Bring Internet Speeds to Space

Pew. Pew. Lasers in space!

Iconic movie franchises like Star Wars and Star Trek feature futuristic laser technologies, but space lasers aren’t limited to the realm of science fiction. In fact, laser communications technologies are changing the way missions transmit their data. The Laser Communications Relay Demonstration (LCRD) blasts into space this weekend, demonstrating the unique – and totally awesome – capabilities of laser communications systems.

image

Currently, NASA missions rely on radio frequency to send data to Earth. While radio has served the agency well since the earliest days of spaceflight, there are significant benefits to laser systems. Just as the internet has gone from dial-up to high-speed connections, lasers communications’ higher frequency allows missions to send much more information per second than radio systems. With laser communications, it would only take nine days to transmit a complete map of Mars back to Earth, compared to nine weeks with radio frequency systems.

image

LCRD will demonstrate these enhanced capabilities from 22,000 miles above Earth’s surface. And although the mission uses lasers, these lasers are not visible to the human eye. Once in orbit, the mission will perform experiments using two telescopes on Earth that will relay data through the spacecraft from one site to the other over an optical communications link. These experiments will help NASA and the aerospace community understand the operational challenges of using lasers to communicate to and from space.

image

On Earth, there are ground stations telescopes that will capture LCRD’s laser signal and send the data to the mission operations center in New Mexico. The two ground stations are located on Haleakalā, Hawaii and Table Mountain, California. These picturesque locations weren’t chosen because they’re beautiful, but rather for their mostly clear skies. Clouds – and other atmospheric disturbances – can disrupt laser signals. However, when those locations do get cloudy, we’ve developed corrective technologies to ensure we receive and successfully decode signals from LCRD.

image

This demonstration will help NASA, researchers, and space companies learn more about potential future applications for laser communications technologies. In the next few years, NASA will launch additional laser missions to the Moon on Artemis II and to the asteroid belt, even deeper into space. These missions will give us insight on the use of laser communications further in space than ever before.

image

Ultimately, laser systems will allow us to glean more information from space. This means more galaxy pics, videos of deep space phenomena, and live, 4K videos from astronauts living and working in space.

Laser communications = more data in less time = more discoveries.

If laser communications interests you, check out our Space Communications and Navigation (SCaN) Internship Project. This program provides high school, undergrad, graduate, and even Ph.D. candidates with internship opportunities in space communications areas – like laser comm.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
8 years ago

6 Ways Earth Observations Tackle Real-World Problems

This summer, 30 research projects were launched by recent college graduates and early career professionals as part of our DEVELOP program. The aim is to use our satellite observations of Earth to address an environmental or public policy issue. And they have just 10 weeks to do it! On Aug. 10, 2016, the “DEVELOPers” gathered at our Headquarters in Washington, DC to showcase their results. So, how can Earth observations solve real-world problems? Let’s take a look:

image

1. They help land managers identify the locations of invasive species.

Austin Haney, DEVELOP project co-lead at University of Georgia, has seen first-hand how an invasive species can affect the ecosystem of Lake Thurmond, a large reservoir that straddles the border between Georgia and South Carolina. Birds in the area “behave visibly different,” he said, after they consume a toxic cyanobacteria that lives on Hydrilla verticillata, an invasive aquatic plant. Ingesting the toxin causes a neurodegenerative disease and ultimately death. Scores of birds have been found dead near lake areas where large amounts of the toxin-supporting Hydrilla grow. To help lake managers better address the situation, Haney and project members developed a tool that uses data from the Landsat 8 satellite to map the distribution of Hydrilla across the lake. 

Image Credit: NASA/Bill Ingalls

image

2. They help identify wildlife habitat threatened by wildfires.

Maps that depict habitat and fire risk in eastern Idaho previously stopped short of Craters of the Moon National Monument and Preserve, where shrubs and grasses transition to a sea of ankle-twisting basalt. But the environment is not as inhospitable as it first appears. Throughout the monument there are more than 500 kipukas —pockets of older lava capable of supporting some vegetation. That means it is also prone to burning. Project lead Courtney Ohr explained how her team used data from the Landsat 8 and Sentinel-2 satellites to develop a model that can simulate the area’s susceptibility to wildfires. Decision makers can use this model to monitor the remote wildlife habitat from afar.

Image Credit: NASA/Bill Ingalls

image

3. In conjunction with Instagram, they help find seaweed blooms

Who knew that Instagram could be a tool for science? One DEVELOP team searched for photographs of massive seaweed (sargassum) blooms in the Caribbean, mapped the locations, and then checked what satellites could see. In the process, they tested two techniques for finding algae and floating vegetation in the ocean.

Image Credit: Caribbean Oceans Team

image

4. They help conserve water by reducing urban stormwater runoff.

Atlanta’s sewer system is among the nation’s most expensive. Yet, the city still struggles with stormwater. It’s an uphill climb as new construction paves over more of the city, hindering its ability to absorb rain. The University of Georgia DEVELOP team partnered with The Nature Conservancy to address the problem.

Using satellite imagery, the team was able to pinpoint areas well-poised to capture more of the city’s runoff. They identified 17 communities ripe for expanding green infrastructure and reforestation. The team used the Land-Use Conflict Identification Strategy and Soil and Water Assessment Tool models and Landsat and Terra satellite data. Their analysis provides local groups with a working picture of the city’s water resources.

Image Credit: NASA/Bill Ingalls

image

5. They show the spread of the mite eating away Puerto Rico’s palm trees.

The red palm mite has devastated Puerto Rico’s trees in recent years. The insect chewed its way through coconut palms, bananas, and plantains on the island in the recent decade. Its spread has hurt crops across the Caribbean.

A DEVELOP team led by Sara Lubkin analyzed satellite imagery to track the mites’ rapid spread from 2002. The team mapped changes to vegetation, such as yellowing, and differences in canopy structure. They made use of imagery from Landsat, Hyperion, IKONOS, and aerial views. Their work can be used to mitigate current mite infestations and monitor and prevent future ones.

Image Credit: NASA/Bill Ingalls

image

6. They evaluate landslide-prone areas in the developing world

One team of DEVELOPers took on several projects to aid people in developing nations. This team from Alabama examined satellite imagery to find past landslides in the African nation of Malawi. Factors such as flooding after long periods of drought have made the country increasingly prone to landslides. Blending maps of the landscape, rainfall data, and population centers, the young researchers assessed the areas most at risk—and most in need of education and support—from landslides.

Image Credit: East Africa Disasters II Team

Want to read more about DEVELOP projects, or get involved? Summaries, images, and maps of current and past projects can be viewed HERE. You can also learn how to apply for the DEVELOP program HERE.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Game Time: Final Voting for Tournament Earth

The moment has arrived- it's time to decide the NASA Earth Observatory's all-time best image. After four grueling rounds of voting, two contenders remain: Ocean Sand, Bahamas (#5 seed) versus Raikoke Erupts (#6 seed).

image

The road to the finals has been full of surprises. All top seeds have been knocked out. In one semifinal, Ocean Sand garnered 50.6 percent of the votes to squeak out a win over the overall favorite, Twin Blue Marbles. In the other matchup, Raikoke Erupts trounced Where the Dunes End, 66.5 to 33.5 percent.

Now you have to pick a champion. Will it be a gorgeous, artistic image from the very early years of Earth Observatory or stunning natural-color views of an explosive event from 2019? Which image will you crown as the best in the EO archives: Ocean Sand, Bahamas or Raikoke Erupts? Voting ends on April 28 at 9 a.m. U.S. Eastern Time.

Thank you for helping us celebrate Earth Observatory’s 20th anniversary and the 50th anniversary of Earth Day!

Vote here: https://earthobservatory.nasa.gov/tournament-earth

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • tyla-jo-foxes
    tyla-jo-foxes liked this · 3 years ago
  • justatheatrekidwholovesspace
    justatheatrekidwholovesspace liked this · 3 years ago
  • ducky2814
    ducky2814 liked this · 3 years ago
  • forgetfulsleepyhead
    forgetfulsleepyhead liked this · 3 years ago
  • neonicastfu
    neonicastfu liked this · 4 years ago
  • vusall
    vusall liked this · 4 years ago
  • totaleclipseofmyheart
    totaleclipseofmyheart reblogged this · 4 years ago
  • bellacosmos
    bellacosmos liked this · 4 years ago
  • thegreatyin
    thegreatyin liked this · 4 years ago
  • omgthecatwoman
    omgthecatwoman liked this · 4 years ago
  • dame-night
    dame-night liked this · 4 years ago
  • muetciel
    muetciel reblogged this · 4 years ago
  • fire-within-burns-eternal
    fire-within-burns-eternal liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags