Pew. Pew. Lasers in space!
Iconic movie franchises like Star Wars and Star Trek feature futuristic laser technologies, but space lasers aren’t limited to the realm of science fiction. In fact, laser communications technologies are changing the way missions transmit their data. The Laser Communications Relay Demonstration (LCRD) blasts into space this weekend, demonstrating the unique – and totally awesome – capabilities of laser communications systems.
Currently, NASA missions rely on radio frequency to send data to Earth. While radio has served the agency well since the earliest days of spaceflight, there are significant benefits to laser systems. Just as the internet has gone from dial-up to high-speed connections, lasers communications’ higher frequency allows missions to send much more information per second than radio systems. With laser communications, it would only take nine days to transmit a complete map of Mars back to Earth, compared to nine weeks with radio frequency systems.
LCRD will demonstrate these enhanced capabilities from 22,000 miles above Earth’s surface. And although the mission uses lasers, these lasers are not visible to the human eye. Once in orbit, the mission will perform experiments using two telescopes on Earth that will relay data through the spacecraft from one site to the other over an optical communications link. These experiments will help NASA and the aerospace community understand the operational challenges of using lasers to communicate to and from space.
On Earth, there are ground stations telescopes that will capture LCRD’s laser signal and send the data to the mission operations center in New Mexico. The two ground stations are located on Haleakalā, Hawaii and Table Mountain, California. These picturesque locations weren’t chosen because they’re beautiful, but rather for their mostly clear skies. Clouds – and other atmospheric disturbances – can disrupt laser signals. However, when those locations do get cloudy, we’ve developed corrective technologies to ensure we receive and successfully decode signals from LCRD.
This demonstration will help NASA, researchers, and space companies learn more about potential future applications for laser communications technologies. In the next few years, NASA will launch additional laser missions to the Moon on Artemis II and to the asteroid belt, even deeper into space. These missions will give us insight on the use of laser communications further in space than ever before.
Ultimately, laser systems will allow us to glean more information from space. This means more galaxy pics, videos of deep space phenomena, and live, 4K videos from astronauts living and working in space.
Laser communications = more data in less time = more discoveries.
If laser communications interests you, check out our Space Communications and Navigation (SCaN) Internship Project. This program provides high school, undergrad, graduate, and even Ph.D. candidates with internship opportunities in space communications areas – like laser comm.
Make sure to follow us on Tumblr for your regular dose of space!
Discoveries in planetary science are often both weird and wonderful, and these newest announcements are no exception. This week we present a few of the most interesting recent scientific findings from our missions and NASA-funded planetary science. Take a look:
1. Seeing Spots
Scientists from our Dawn mission unveiled new images from the spacecraft’s lowest orbit at the dwarf planet Ceres, including highly anticipated views of the famous “bright spots” of Occator Crater. Take a look HERE.
2. Pluto’s Secrets Brought to Light
A year ago, Pluto was just a bright speck in the cameras of our approaching New Horizons spacecraft, not much different than its appearances in telescopes since Clyde Tombaugh discovered the dwarf planet in 1930. Now, New Horizons scientists have authored the first comprehensive set of papers describing results from last summer’s Pluto system flyby. Find out more HERE.
3. Rising Above the Rest
In a nod to extraterrestrial mountaineers of the future, scientists working on our Cassini mission have identified the highest point on Saturn’s largest moon, Titan. The tallest peak is 10,948 feet (3,337 meters) high and is found within a trio of mountainous ridges called the Mithrim Montes, named for the mountains in Tolkien’s Middle-Earth.
4. Does the “Man in the Moon” Have a New Face?
New NASA-funded research provides evidence that the spin axis of Earth’s moon shifted by about five degrees roughly three billion years ago. The evidence of this motion is recorded in the distribution of ancient lunar ice, evidence of delivery of water to the early solar system.
5. X-Ray Vision
Solar storms are triggering X-ray auroras on Jupiter that are about eight times brighter than normal over a large area of the planet and hundreds of times more energetic than Earth’s “northern lights,” according to a new study using data from our Chandra X-ray Observatory.
Want to learn more? Read our full list of things to know this week about the solar system HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We've created a virtual Mars photo booth, 3D rover experience and more for you to put your own creative touch on wishing Perseverance well for her launch to the Red Planet! Check it out, HERE.
Don’t forget to mark the July 30 launch date on your calendars!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What in the world is a polar vortex? On Earth, it’s a large area of low pressure and extremely cold air that usually swirls over the Arctic, with strong counter-clockwise winds that trap the cold around the Pole. But disturbances in the jet stream and the intrusion of warmer mid-latitude air masses can disturb this polar vortex and make it unstable, sending Arctic air south into middle latitudes.
That has been the case in late January 2019 as frigid weather moves across the Midwest and Northern Plains of the United States, as well as interior Canada. Forecasters are predicting that air temperatures in parts of the continental United States will drop to their lowest levels since at least 1994, with the potential to break all-time record lows for January 30 and 31. With clear skies, steady winds, and snow cover on the ground, as many as 90 million Americans could experience temperatures at or below 0 degrees Fahrenheit (-18° Celsius), according to the National Weather Service (NWS).
The Goddard Earth Observing System Model above shows this air temperature movement at 2 meters (around 6.5 feet above the ground) from January 23-29. You can see some portions of the Arctic are close to the freezing point—significantly warmer than usual for the dark of mid-winter—while masses of cooler air plunge toward the interior of North America.
Science Behind the Polar Vortex / Credit: NOAA
Meteorologists predicted that steady northwest winds (10 to 20 miles per hour) were likely to add to the misery, causing dangerous wind chills below -40°F (-40°C) in portions of 12 states. A wind chill of -20°F can cause frostbite in as little as 30 minutes, according to the weather service.
Not sure how cold that is? Check out the low temperatures on January 30, 2019 in some of the coldest places on Earth—and a planetary neighbor:
-46°F (-43°C) -- Chesterfield, Newfoundland
-36°F (-33°C) -- Yukon Territory, Canada
-33°F (-27°C) -- Fargo, North Dakota (Within the Polar Vortex)
-28°F (-18°C) -- Minneapolis, Minnesota (Within the Polar Vortex)
-27°F (-33°C) -- Amundsen-Scott South Pole Station, Antarctica
-24°F (-31°C) -- Chicago, Illinois (Within the Polar Vortex)
-15°F (5°C) -- Barrow, Alaska
-99°F (-73°C) -- Mars
Learn more about the science behind the polar vortex and how NASA is modeling it here: https://go.nasa.gov/2Wtmb43.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
This month binoculars will come in handy--to view the moon, star clusters, and a close pairing of Venus and Jupiter.
You can’t miss bright Venus in the predawn sky. This month Venus pairs up with Jupiter on the morning of November 13th.
The Leonids peak on a moonless November 17th. Expect no more than 10 meteors an hour around 3:00 a.m., the height of the shower.
The Northern and Southern sub-branches of the Taurid meteor shower offer sparse counts of about 5 meteors per hour, but slow, bright meteors are common.
The nearby November Orionids peak on the 28th. In contrast to the Taurids, the Orionids are swift. But don’t expect more than 3 meteors per hour.
The moon glides by three beautiful star clusters in the morning sky this month, and a pair of binoculars will allow you to see the individual stars in the clusters. Aim your binoculars at the Pleiades and the moon on the 5th.
Then aim at the Messier or M-35 cluster and the moon on the 7th and the Beehive cluster and the moon on the 10th.
Meanwhile, at dusk, catch Saturn as it dips closer to the western horizon and pairs up with Mercury on the 24th through the 28th.
Also, Comet C/2017 O1 should still be a binocular-friendly magnitude 7 or 8 greenish object in November. Use Polaris, the North Star as a guide. Look in the East to Northeast sky in the late evening.
Watch the full What’s Up for November Video:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
While most people plant gardens on Earth, we’re working to cultivate one in space!
On April 5, the First Lady welcomed students from across the country as well as NASA Deputy Administrator Dava Newman and NASA astronaut Cady Coleman to the White House Kitchen Garden.
While there, they planted various produce, including the same variety of lettuce that will be sent to the International Space Station on the April 8 SpaceX cargo launch.
These seeds were prepared and packaged for both the First Lady’s garden, as well as the batch headed up to space station. “Outredgeous” Red Romaine Lettuce and “Tokyo bekana” Chinese Cabbage will soon be growing in both gardens!
Our Veggie plant growth system on the space station provides lighting and nutrient supply for a space garden. It supports a variety of plant species that can be cultivated for educational outreach, fresh food and even recreation for crew members on long-duration missions.
When crews travel farther into space, they will need a self-sustaining life support system, and that means growing their own food.
How do we grow plants in space? Here’s a resource for “Space Gardening 101”.
Want to see the space station seeds launch? You can watch Friday’s SpaceX cargo launch live online starting at 3:30 p.m. EDT, with launch scheduled for 4:43 p.m.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The Geminid meteor shower, one of the biggest meteor showers of the year, will peak this weekend, December 13 to 14. We get a lot of questions about the Geminids—so we’ve put together some answers to the ones we’re most commonly asked. Take a look!
The Geminids are pieces of debris from an asteroid called 3200 Phaethon. Earth runs into Phaethon’s debris stream every year in mid-December, causing meteors to fly from the direction of the constellation Gemini – hence the name “Geminids.”
Image Credit: Arecibo Observatory/NASA/NSF
This year, the peak is during the overnight hours of December 13 and into the morning of December 14. Viewing should still be good on the night of December 14 into the early morning hours of the 15th. Weather permitting, the Geminids can be viewed from around midnight to 4 a.m. local time. The best time to see them is around 2 a.m. your local time on December 14, when the Geminid radiant is highest in your night sky. The higher the radiant – the celestial point in the sky from which meteors appear to originate – rises into the sky, the more meteors you are likely to see.
Image Credit & Copyright: Jeff Dai
Find the darkest place you can and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will disrupt your night vision. Lie flat on your back and look straight up, taking in as much sky as possible. You will soon start to see the Geminid meteors!
Image Credit: NASA/Bill Dunford
The Geminids are best observed in the Northern Hemisphere, but no matter where you are in the world (except Antarctica), some Geminids will be visible.
Image Credit: Jimmy Westlake
Under dark, clear skies, the Geminids can produce up to 120 meteors per hour – but this year, a bright, nearly full moon will hinder observations of the shower. Still, observers can hope to see up to 30 meteors per hour. Happy viewing!
Image Credit & Copyright: Yuri Beletsky
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A new experiment that will collect tiny charged particles known as galactic cosmic rays will soon be added to the International Space Station. The Cosmic Ray Energetics And Mass for the International Space Station payload, nicknamed ISS-CREAM, will soon be installed in its new home on the Station’s Japanese Experiment Module Exposed Facility. ISS-CREAM will help scientists understand more about galactic cosmic rays and the processes that produce them.
Cosmic rays are pieces of atoms that move through space at nearly the speed of light. Galactic cosmic rays come from beyond our solar system.
They provide us with direct samples of matter from distant places in our galaxy.
Galactic cosmic rays have been sped up by extreme processes. When massive stars die, they explode as supernovas. The explosion’s blast wave expands into space along with a cloud of debris.
Particles caught up in this blast wave can bounce around in it and slowly pick up speed. Eventually they move so fast they can escape the blast wave and race away as a cosmic ray.
Cosmic rays are constantly zipping through space at these super-fast speeds, running into whatever is in their path -- including Earth.
But Earth’s atmosphere is a great shield, protecting us from 99.9 percent of the radiation coming from space, including most cosmic rays. This is good news for life on Earth, but bad news for scientists studying cosmic rays.
Because Earth has such an effective shield against cosmic rays, the best place for scientists to study them is above our atmosphere -- in space. Since the 1920s, scientists have tried to get their instruments as close to space as possible. One of the simplest ways to do this is to send these instruments up on balloons the size of football stadiums. These balloons are so large because they have to be able to both lift their own weight and that of their cargo, which can be heavier than a car. Scientific balloons fly to 120,000 feet or more above the ground -- that’s at least three times higher than you might fly in a commercial airplane!
Credit: Isaac Mognet (Pennsylvania State University)
Earlier versions of ISS-CREAM’s instruments were launched on these giant balloons from McMurdo Station in Antarctica seven times, starting in 2004, for a total of 191 days near the top of the atmosphere. Each of these flights helped the team test their hardware and work towards sending a cutting-edge cosmic ray detector into space!
Balloon flights allowed the team to collect a lot of cosmic rays, but even at 120,000 feet, a lot of the particles are still blocked. Scientists at the University of Maryland, College Park, who operate ISS-CREAM, expect to get about 10 times as much data from their new home on the International Space Station.
That’s because it will be both above the atmosphere and fly far longer than is possible with a balloon. As you might imagine, there are large differences between flying something on a balloon and launching it into space. The science instruments and other systems had to be changed so ISS-CREAM could safely launch on a rocket and work in space.
While on the space station, ISS-CREAM will collect millions of cosmic rays -- electrons, protons and atomic nuclei representing the elements found in the solar system. These results will help us understand why cosmic rays reach the wicked-fast speeds they do and, most important, what limits those speeds.
ISS-CREAM launches to the International Space Station aboard the latest SpaceX Dragon spacecraft, targeted to launch August 14. Want to learn more about ISS-CREAM and some of our scientific balloons? Check out our recent feature, NASA’s Scientific Balloon Program Reaches New Heights.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Spacewalk complete and new astronaut record set! Shane Kimbrough and Peggy Whitson of NASA successfully reconnected cables and electrical connections on an adapter-3 that will provide the pressurized interface between the station and the second of two international docking adapters to be delivered to the complex to support the dockings of U.S. commercial crew spacecraft in the future. The duo were also tasked with installing four thermal protection shields on the Tranquility module of the International Space Station.
Having completed her eighth spacewalk, Whitson now holds the record for the most spacewalks and accumulated time spacewalking by a female astronaut. Spacewalkers have now spent a total of 1,243 hours and 42 minutes outside the station during 199 spacewalks in support of assembly and maintenance of the orbiting laboratory.
Astronaut Thomas Pesquet of ESA posted this image and wrote, ' Shane and Peggy on their way to their first #spacewalk tasks.'
Credit: ESA/NASA
Do you have any protections against asteroids?
An eclipse occurs when the Moon temporarily blocks the light from the Sun. Within the narrow, 60- to 70-mile-wide band stretching from Oregon to South Carolina called the path of totality, the Moon completely blocked out the Sun’s face; elsewhere in North America, the Moon covered only a part of the star, leaving a crescent-shaped Sun visible in the sky.
During this exciting event, we were collecting your images and reactions online.
This composite image, made from 4 frames, shows the International Space Station, with a crew of six onboard, as it transits the Sun at roughly five miles per second during a partial solar eclipse from, Northern Cascades National Park in Washington. Onboard as part of Expedition 52 are: NASA astronauts Peggy Whitson, Jack Fischer, and Randy Bresnik; Russian cosmonauts Fyodor Yurchikhin and Sergey Ryazanskiy; and ESA (European Space Agency) astronaut Paolo Nespoli.
Credit: NASA/Bill Ingalls
The Bailey's Beads effect is seen as the moon makes its final move over the sun during the total solar eclipse on Monday, August 21, 2017 above Madras, Oregon.
Credit: NASA/Aubrey Gemignani
This image from one of our Twitter followers shows the eclipse through tree leaves as crescent shaped shadows from Seattle, WA.
Credit: Logan Johnson
“The eclipse in the palm of my hand”. The eclipse is seen here through an indirect method, known as a pinhole projector, by one of our followers on social media from Arlington, TX.
Credit: Mark Schnyder
Through the lens on a pair of solar filter glasses, a social media follower captures the partial eclipse from Norridgewock, ME.
Credit: Mikayla Chase
While most of us watched the eclipse from Earth, six humans had the opportunity to view the event from 250 miles above on the International Space Station. European Space Agency (ESA) astronaut Paolo Nespoli captured this image of the Moon’s shadow crossing America.
Credit: Paolo Nespoli
This composite image shows the progression of a partial solar eclipse over Ross Lake, in Northern Cascades National Park, Washington. The beautiful series of the partially eclipsed sun shows the full spectrum of the event.
Credit: NASA/Bill Ingalls
In this video captured at 1,500 frames per second with a high-speed camera, the International Space Station, with a crew of six onboard, is seen in silhouette as it transits the sun at roughly five miles per second during a partial solar eclipse, Monday, Aug. 21, 2017 near Banner, Wyoming.
Credit: NASA/Joel Kowsky
To see more images from our NASA photographers, visit: https://www.flickr.com/photos/nasahqphoto/albums/72157685363271303
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts